Search results for: thermal rating
1396 Improvement of Heat Dissipation Ability of Polyimide Composite Film
Authors: Jinyoung Kim, Jinuk Kwon, Haksoo Han
Abstract:
Polyimide is widely used in electronic industries, and heat dissipation of polyimide film is important for its application in electric devices for high-temperature resistance heat dissipation film. In this study, we demonstrated a new way to increase heat dissipating rate by adding carbon black as filler. This type of polyimide composite film was produced by pyromellitic dianhydride (PMDA) and 4,4’-oxydianiline (ODA). Carbon black (CB) is added in different loading, shows increasing heat dissipation rate for increase of Carbon black. The polyimide-carbon black composite film is synthesized with high dissipation rate to ~8W∙m−1K−1. Its high thermal decomposition temperature and glass transition temperature were maintained with carbon filler verified by thermogravimetric analysis (TGA) and differential scanning calorimetric (DSC), the polyimidization reaction of polyi(amide-mide) was confirmed by Fourier transform infrared spectroscopy (FT-IR). The polyimide composite film with carbon black with high heat dissipating rate could be used in various applications such as computers, mobile phone industries, integrated circuits, coating materials, semiconductor etc.Keywords: polyimide, heat dissipation, electric device, filler
Procedia PDF Downloads 6791395 Green Building Risks: Limits on Environmental and Health Quality Metrics for Contractors
Authors: Erica Cochran Hameen, Bobuchi Ken-Opurum, Mounica Guturu
Abstract:
The United Stated (U.S.) populous spends the majority of their time indoors in spaces where building codes and voluntary sustainability standards provide clear Indoor Environmental Quality (IEQ) metrics. The existing sustainable building standards and codes are aimed towards improving IEQ, health of occupants, and reducing the negative impacts of buildings on the environment. While they address the post-occupancy stage of buildings, there are fewer standards on the pre-occupancy stage thereby placing a large labor population in environments much less regulated. Construction personnel are often exposed to a variety of uncomfortable and unhealthy elements while on construction sites, primarily thermal, visual, acoustic, and air quality related. Construction site power generators, equipment, and machinery generate on average 9 decibels (dBA) above the U.S. OSHA regulations, creating uncomfortable noise levels. Research has shown that frequent exposure to high noise levels leads to chronic physiological issues and increases noise induced stress, yet beyond OSHA no other metric focuses directly on the impacts of noise on contractors’ well-being. Research has also associated natural light with higher productivity and attention span, and lower cases of fatigue in construction workers. However, daylight is not always available as construction workers often perform tasks in cramped spaces, dark areas, or at nighttime. In these instances, the use of artificial light is necessary, yet lighting standards for use during lengthy tasks and arduous activities is not specified. Additionally, ambient air, contaminants, and material off-gassing expelled at construction sites are one of the causes of serious health effects in construction workers. Coupled with extreme hot and cold temperatures for different climate zones, health and productivity can be seriously compromised. This research evaluates the impact of existing green building metrics on construction and risk management, by analyzing two codes and nine standards including LEED, WELL, and BREAM. These metrics were chosen based on the relevance to the U.S. construction industry. This research determined that less than 20% of the sustainability context within the standards and codes (texts) are related to the pre-occupancy building sector. The research also investigated the impact of construction personnel’s health and well-being on construction management through two surveys of project managers and on-site contractors’ perception of their work environment on productivity. To fully understand the risks of limited Environmental and Health Quality metrics for contractors (EHQ) this research evaluated the connection between EHQ factors such as inefficient lighting, on construction workers and investigated the correlation between various site coping strategies for comfort and productivity. Outcomes from this research are three-pronged. The first includes fostering a discussion about the existing conditions of EQH elements, i.e. thermal, lighting, ergonomic, acoustic, and air quality on the construction labor force. The second identifies gaps in sustainability standards and codes during the pre-occupancy stage of building construction from ground-breaking to substantial completion. The third identifies opportunities for improvements and mitigation strategies to improve EQH such as increased monitoring of effects on productivity and health of contractors and increased inclusion of the pre-occupancy stage in green building standards.Keywords: construction contractors, health and well-being, environmental quality, risk management
Procedia PDF Downloads 1321394 Evaluating Daylight Performance in an Office Environment in Malaysia, Using Venetian Blind System: Case Study
Authors: Fatemeh Deldarabdolmaleki, Mohamad Fakri Zaky Bin Ja'afar
Abstract:
Having a daylit space together with view results in a pleasant and productive environment for office employees. A daylit space is a space which utilizes daylight as a basic source of illumination to fulfill user’s visual demands and minimizes the electric energy consumption. Malaysian weather is hot and humid all over the year because of its location in the equatorial belt. however, because most of the commercial buildings in Malaysia are air-conditioned, huge glass windows are normally installed in order to keep the physical and visual relation between inside and outside. As a result of climatic situation and mentioned new trend, an ordinary office has huge heat gain, glare, and discomfort for occupants. Balancing occupant’s comfort and energy conservation in a tropical climate is a real challenge. This study concentrates on evaluating a venetian blind system using per pixel analyzing tools based on the suggested cut-out metrics by the literature. Workplace area in a private office room has been selected as a case study. Eight-day measurement experiment was conducted to investigate the effect of different venetian blind angles in an office area under daylight conditions in Serdang, Malaysia. The study goal was to explore daylight comfort of a commercially available venetian blind system, its’ daylight sufficiency and excess (8:00 AM to 5 PM) as well as Glare examination. Recently developed software, analyzing High Dynamic Range Images (HDRI captured by CCD camera), such as radiance based Evalglare and hdrscope help to investigate luminance-based metrics. The main key factors are illuminance and luminance levels, mean and maximum luminance, daylight glare probability (DGP) and luminance ratio of the selected mask regions. The findings show that in most cases, morning session needs artificial lighting in order to achieve daylight comfort. However, in some conditions (e.g. 10° and 40° slat angles) in the second half of day the workplane illuminance level exceeds the maximum of 2000 lx. Generally, a rising trend is discovered toward mean window luminance and the most unpleasant cases occur after 2 P.M. Considering the luminance criteria rating, the uncomfortable conditions occur in the afternoon session. Surprisingly in no blind condition, extreme case of window/task ratio is not common. Studying the daylight glare probability, there is not any DGP value higher than 0.35 in this experiment.Keywords: daylighting, energy simulation, office environment, Venetian blind
Procedia PDF Downloads 2591393 Disposable Coffee Cups Recycling
Authors: Sasan Mohammadi
Abstract:
Due to our passion for coffee, we use 16 billion throwaway coffee cups yearly. Coffee lovers throughout the globe have discovered the hard way that their paper cups are not recyclable, despite what coffee businesses have repeatedly assured them [1] A disposable, single-use coffee cup comprises a paper and polyethylene layer. Polyethylene is a typical material used to fill a coffee cup's inside to keep its structure and provide water and heat resistance. In addition, the polyethylene layer prevents recycling since it is difficult to separate the plastic liner from the paper layer [2]. In addition, owing to the plastic membrane lining many of these cups, they cannot be recycled and may take up to 30 years to biodegrade [3]. Most of researcher try to separate plastic part ,but it is not economical and easy.For this purposes,it is not yet happen. In our research we don't separate plastic, just we make a homogeneous pulp with cold water.then fix it in mold and dry it,after completely drying cycle we heated the product in 100 degree of centigrade this cause a sintering effect by plastic particle between paper fibers.This method increase 30 percent the strength of product.This product has a good sound proof and thermal isolation. This means we can use it as insulator.with low density we can control the the density by percentage of air solved in pulp.Keywords: recycling, disposable coffee cup, insolator, low density
Procedia PDF Downloads 771392 Effects of Cow Milk and Camel Milk on Improving Covered Distance in the 6-Minute Walk Test Performed by Obese Young Adults
Authors: Mo'ath F. Bataineh
Abstract:
Exercise is highly effective against obesity. Milk contains several components that support exercising and physical performance. However, there is a lack of published studies on the relationship between camel milk and ability to exercise. A pilot study was conducted with the purpose of comparing the impact of milk type (Cow vs Camel) compared with water on physical performance. Seven male obese participants (age: 20.3 ± 1.5 years; BMI: 35.7 ± 2.7 kg/m2; resting heart rate: 92.7 ± 4.7 beats per minute; training frequency: 4.4 ± 0.8 days/week) were recruited for this pilot study. In a randomized counterbalanced crossover design, participants took part in 3 trials that included ingesting 3 different pre workout drinks in a random order. The pre workout drinks were water (W), whole cow milk (CW), and whole camel milk (CM). On each trial day, participants were asked to report to the laboratory after an overnight fasting. Following a 15-minute short recovery period after their arrival to the laboratory, each participant was presented with a 500 ml of the assigned experimental drink and were asked to ingest it in one minute and at least 120 minutes prior to performing the 6-minute walk test. All drinks were presented at room temperature. Trials with different experimental drinks were performed on separate days. Participants were given at least 4 days of washout period between trials. The trial order was randomized to avoid bias due to learning effect. The 6-minute walk test was performed by all participants and immediately at the conclusion of the test, the covered distance in meters and the rating of perceived exertion (RPE) were recorded. All data were analysed using SPSS software (Version 29.0). The repeated measures ANOVA testing of collected data showed a significant main effect for treatment on covered distance in meters, F (2, 8) = 5.794, p=0.028 with a large effect size (partial eta squared (ηp2) =0.592). Also, LSD post hoc pairwise comparison analysis revealed that Camel milk and Cow milk were significantly (p = 0.044 and p = 0.020 respectively) superior to water in improving the covered distance during the test and that Camel milk tended to be better than Cow’s milk. The RPE values were not significantly different between experimental drinks (p>0.05). In conclusion, milk is superior to water as a pre workout drink, and camel milk is comparable to cow’s milk in enhancing ability to support a higher level of performance compared with water, therefore, camel milk could be used to replace cow’s milk as a suitable pre-exercise drink without expecting any negative consequences on physical performance. The fact that these positive results were obtained with obese individuals should encourage using camel milk without the fear of disturbing physical performance in other weight categories.Keywords: camel milk, cow milk, obesity, physical performance, pre-workout drink
Procedia PDF Downloads 451391 A Novel Software Model for Enhancement of System Performance and Security through an Optimal Placement of PMU and FACTS
Authors: R. Kiran, B. R. Lakshmikantha, R. V. Parimala
Abstract:
Secure operation of power systems requires monitoring of the system operating conditions. Phasor measurement units (PMU) are the device, which uses synchronized signals from the GPS satellites, and provide the phasors information of voltage and currents at a given substation. The optimal locations for the PMUs must be determined, in order to avoid redundant use of PMUs. The objective of this paper is to make system observable by using minimum number of PMUs & the implementation of stability software at 22OkV grid for on-line estimation of the power system transfer capability based on voltage and thermal limitations and for security monitoring. This software utilizes State Estimator (SE) and synchrophasor PMU data sets for determining the power system operational margin under normal and contingency conditions. This software improves security of transmission system by continuously monitoring operational margin expressed in MW or in bus voltage angles, and alarms the operator if the margin violates a pre-defined threshold.Keywords: state estimator (SE), flexible ac transmission systems (FACTS), optimal location, phasor measurement units (PMU)
Procedia PDF Downloads 4101390 Magnetohydrodynamic (MHD) Flow of Cu-Water Nanofluid Due to a Rotating Disk with Partial Slip
Authors: Tasawar Hayat, Madiha Rashid, Maria Imtiaz, Ahmed Alsaedi
Abstract:
This problem is about the study of flow of viscous fluid due to rotating disk in nanofluid. Effects of magnetic field, slip boundary conditions and thermal radiations are encountered. An incompressible fluid soaked the porous medium. In this model, nanoparticles of Cu is considered with water as the base fluid. For Copper-water nanofluid, graphical results are presented to describe the influences of nanoparticles volume fraction (φ) on velocity and temperature fields for the slip boundary conditions. The governing differential equations are transformed to a system of nonlinear ordinary differential equations by suitable transformations. Convergent solution of the nonlinear system is developed. The obtained results are analyzed through graphical illustrations for different parameters. Moreover, the features of the flow and heat transfer characteristics are analyzed. It is found that the skin friction coefficient and heat transfer rate at the surface are highest in copper-water nanofluid.Keywords: MHD nanofluid, porous medium, rotating disk, slip effect
Procedia PDF Downloads 2601389 Enhancing Reused Lubricating Oil Performance Using Novel Ionic Liquids Based on Imidazolium Derivatives
Authors: Mohamed Deyab
Abstract:
The global lubricant additives market size was USD 14.35 billion in 2015. The industry is characterized by increasing additive usage in base oil blending for longer service life and performance. These additives improve the viscosity of oil, act as detergents, defoamers, antioxidants, and antiwear agents. Since additives play a significant role in base oil blending and subsequent formulations as they are critical materials in improving specification and performance of oils. Herein, we report on the synthesis and characterization of three imidazolium derivatives and their application as antioxidants, detergents and antiwear agents. The molecular structure and characterizations of these ionic liquids were confirmed by elemental analysis, FTIR, X-Ray Diffraction (XRD) and 1HNMR spectroscopy. Thermo gravimetric analysis (TGA), is used to study the degradation and thermal stability of the studied base stock samples. It was found that all the prepared ionic liquids additives have excellent power of dispersion and detergency. The ionic liquids as additives to engine oil reduced the friction (38%) and wear volume (76%) of steel balls. The obtained results show that the ionic liquids have an oxidation inhibitor up to 95%.Keywords: reused lubricating oil, waste, petroleum, ionic liquids
Procedia PDF Downloads 1381388 A Mini-Review on Effect of Magnetic Field and Material on Combustion Engines
Authors: A. N. Santhosh, Vinay Hegde, S. Vinod Kumar, R. Giria, D. L. Rakesh, M. S. Raghu
Abstract:
At present, research on automobile engineering is in high demand, particularly in the field of fuel combustion. A large number of fossil fuels are being used in combustion, which may get exhausted in the near future and are not economical. To this end, research on the use of magnetic material in combustion engines is in progress to enhance the efficiency of fuel. The present review describes the chemical, physical and mathematical theory behind the magnetic materials along with the working principle of the internal combustion engine. The effect of different magnets like ferrite magnet, Neodymium magnet, and electromagnets was discussed. The effect of magnetic field on the consumption of the fuel, brake thermal efficiency, carbon monoxide, Oxides of Nitrogen, carbon dioxide, and hydrocarbon emission, along with smoke density, have been discussed in detail. Detailed mathematical modelling that shows the effect of magnetic field on fuel combustion is elaborated. Required pictorial representations are included wherever necessary. This review article could serve as a base for studying the effect of magnetic materials on IC engines.Keywords: magnetic field, energizer, fuel conditioner, fuel consumption, emission reduction
Procedia PDF Downloads 1021387 Damage in Cementitious Materials Exposed to Sodium Chloride Solution and Thermal Cycling: The Effect of Using Supplementary Cementitious Materials
Authors: Fadi Althoey, Yaghoob Farnam
Abstract:
Sodium chloride (NaCl) can interact with the tricalcium aluminate (C3A) and its hydrates in concrete matrix. This interaction can result in formation of a harmful chemical phase as the temperature changes. It is thought that this chemical phase is embroiled in the premature concrete deterioration in the cold regions. This work examines the potential formation of the harmful chemical phase in various pastes prepared by using different types of ordinary portland cement (OPC) and supplementary cementitious materials (SCMs). The quantification of the chemical phase was done by using a low temperature differential scanning calorimetry. The results showed that the chemical phase formation can be reduced by using Type V cement (low content of C3A). The use of SCMs showed different behaviors on the formation of the chemical phase. Slag and Class F fly ash can reduce the chemical phase by the dilution of cement whereas silica fume can reduce the amount of the chemical phase by dilution and pozzolanic activates. Interestingly, the use of Class C fly ash has a negative effect on concrete exposed to NaCl through increasing the formation of the chemical phase.Keywords: concrete, damage, chemcial phase, NaCl, SCMs
Procedia PDF Downloads 1431386 Experimental Demonstration of an Ultra-Low Power Vertical-Cavity Surface-Emitting Laser for Optical Power Generation
Authors: S. Nazhan, Hassan K. Al-Musawi, Khalid A. Humood
Abstract:
This paper reports on an experimental investigation into the influence of current modulation on the properties of a vertical-cavity surface-emitting laser (VCSEL) with a direct square wave modulation. The optical output power response, as a function of the pumping current, modulation frequency, and amplitude, is measured for an 850 nm VCSEL. We demonstrate that modulation frequency and amplitude play important roles in reducing the VCSEL’s power consumption for optical generation. Indeed, even when the biasing current is below the static threshold, the VCSEL emits optical power under the square wave modulation. The power consumed by the device to generate light is significantly reduced to > 50%, which is below the threshold current, in response to both the modulation frequency and amplitude. An operating VCSEL device at low power is very desirable for less thermal effects, which are essential for a high-speed modulation bandwidth.Keywords: vertical-cavity surface-emitting lasers, VCSELs, optical power generation, power consumption, square wave modulation
Procedia PDF Downloads 1661385 Polymer-Nanographite Nanocomposites for Biosensor Applications
Authors: Payal Mazumdar, Sunita Rattan, Monalisa Mukherjee
Abstract:
Polymer nanocomposites are a special class of materials having unique properties and wide application in diverse areas such as EMI shielding, sensors, photovoltaic cells, membrane separation properties, drug delivery etc. Recently the nanocomposites are being investigated for their use in biomedical fields as biosensors. Though nanocomposites with carbon nanoparticles have received worldwide attention in the past few years, comparatively less work has been done on nanographite although it has in-plane electrical, thermal and mechanical properties comparable to that of carbon nanotubes. The main challenge in the fabrication of these nanocomposites lies in the establishment of homogeneous dispersion of nanographite in polymer matrix. In the present work, attempts have been made to synthesize the nanocomposites of polystyrene and nanographite using click chemistry. The polymer and the nanographite are functionalized prior to the formation of nanocomposites. The polymer, polystyrene, was functionalized with alkyne moeity and nanographite with azide moiety. The fabricating of the nanocomposites was accomplished through click chemistry using Cu (I)-catalyzed Huisgen dipolar cycloaddition. The functionalization of filler and polymer was confirmed by NMR and FTIR. The nanocomposites formed by the click chemistry exhibit better electrical properties and the sensors are evaluated for their application as biosensors.Keywords: nanocomposites, click chemistry, nanographite, biosensor
Procedia PDF Downloads 3061384 Ionic Liquid 1-Butyl-3-Methylimidazolium Bromide as Reaction Medium for the Synthesis of Flavanones under Solvent-Free Conditions
Authors: Cecilia Espindola, Juan Carlos Palacios
Abstract:
Flavonoids are a large group of natural compounds which are found in many fruits and vegetables. A subgroup of these called flavanones display a wide range of biological activities, and they also have an important physiological role in plants. The ionic liquid (ILs) are compounds consisting of an organic cation with an organic or inorganic anion. Due to its unique properties such as high electrical conductivity, wide temperature range of the liquid state, thermal and electrochemical stability, high ionic density and low volatility and flammability, are considered as ecological solvents in organic synthesis, catalysis, electrolytes in accumulators, and electrochemistry, non-volatile plasticizers, and chemical separation. It was synthesized ionic liquid IL 1-butyl-3-methylimidazolium bromide free-solvent and used as reaction medium for flavanones synthesis, under several reaction conditions of temperature, time and production. The obtained compounds were analyzed by melting point, elemental analysis, IR and UV-vis spectroscopy.Keywords: 1-butyl-3-methylimidazolium bromide, flavonoids, free-solvent, IR spectroscopy
Procedia PDF Downloads 1201383 A Simple Chemical Approach to Regenerating Strength of Thermally Recycled Glass Fibre
Authors: Sairah Bashir, Liu Yang, John Liggat, James Thomason
Abstract:
Glass fibre is currently used as reinforcement in over 90% of all fibre-reinforced composites produced. The high rigidity and chemical resistance of these composites are required for optimum performance but unfortunately results in poor recyclability; when such materials are no longer fit for purpose, they are frequently deposited in landfill sites. Recycling technologies, for example, thermal treatment, can be employed to address this issue; temperatures typically between 450 and 600 °C are required to allow degradation of the rigid polymeric matrix and subsequent extraction of fibrous reinforcement. However, due to the severe thermal conditions utilised in the recycling procedure, glass fibres become too weak for reprocessing in second-life composite materials. In addition, more stringent legislation is being put in place regarding disposal of composite waste, and so it is becoming increasingly important to develop long-term recycling solutions for such materials. In particular, the development of a cost-effective method to regenerate strength of thermally recycled glass fibres will have a positive environmental effect as a reduced volume of composite material will be destined for landfill. This research study has demonstrated the positive impact of sodium hydroxide (NaOH) and potassium hydroxide (KOH) solution, prepared at relatively mild temperatures and at concentrations of 1.5 M and above, on the strength of heat-treated glass fibres. As a result, alkaline treatments can potentially be implemented to glass fibres that are recycled from composite waste to allow their reuse in second-life materials. The optimisation of the strength recovery process is being conducted by varying certain reaction parameters such as molarity of alkaline solution and treatment time. It is believed that deep V-shaped surface flaws exist commonly on severely damaged fibre surfaces and are effectively removed to form smooth, U-shaped structures following alkaline treatment. Although these surface flaws are believed to be present on glass fibres they have not in fact been observed, however, they have recently been discovered in this research investigation through analytical techniques such as AFM (atomic force microscopy) and SEM (scanning electron microscopy). Reaction conditions such as molarity of alkaline solution affect the degree of etching of the glass fibre surface, and therefore the extent to which fibre strength is recovered. A novel method in determining the etching rate of glass fibres after alkaline treatment has been developed, and the data acquired can be correlated with strength. By varying reaction conditions such as alkaline solution temperature and molarity, the activation energy of the glass etching process and the reaction order can be calculated respectively. The promising results obtained from NaOH and KOH treatments have opened an exciting route to strength regeneration of thermally recycled glass fibres, and the optimisation of the alkaline treatment process is being continued in order to produce recycled fibres with properties that match original glass fibre products. The reuse of such glass filaments indicates that closed-loop recycling of glass fibre reinforced composite (GFRC) waste can be achieved. In fact, the development of a closed-loop recycling process for GFRC waste is already underway in this research study.Keywords: glass fibers, glass strengthening, glass structure and properties, surface reactions and corrosion
Procedia PDF Downloads 2551382 Optimal Temperature and Duration for Dabbing Customers with the Massage Compressed Packs Reported from Customers' Perception
Authors: Wichan Lertlop, Boonyarat Chaleephay
Abstract:
The objective of this research was to study the appropriate thermal level and time for dabbing customers with the massage compressed pack reported from their perception. The investigation was conducted by comparing different angles of tilted heads done by the customers together with their perception before and after the dabbing. The variables included different temperature of the compressed packs and different dabbing duration. Samples in this study included volunteers who got massage therapy and dabbing with hot compressed packs by traditional Thai medical students. The experiment was conducted during January to June 2013. The research tool consisted of angle meters, stop watches, thermometers, and massage compressed packs. The customers were interviewed for their perceptions before and after the dabbing. The results showed that: 1. There was a difference of the average angles of tilted heads before and after the dabbing. 2. There was no difference of the average angles at different temperatures but constant duration. 3. There was no difference of the average angles at different durations. 4. The customers reported relaxation no matter what the various temperatures and various dabbing durations were. However, they reported too hot at the temperature 70 °C and over.Keywords: massage, therapy, therapeutic systems, technologies
Procedia PDF Downloads 1691381 Properties Modification of Fiber Metal Laminates by Nanofillers
Authors: R. Eslami-Farsani, S. M. S. Mousavi Bafrouyi
Abstract:
During past decades, increasing demand of modified Fiber Metal Laminates (FMLs) has stimulated a strong trend towards the development of these structures. FMLs contain several thin layers of metal bonded with composite materials. Characteristics of FMLs such as low specific mass, high bearing strength, impact resistance, corrosion resistance and high fatigue life are attractive. Nowadays, increasing development can be observed to promote the properties of polymer-based composites by nanofillers. By dispersing strong, nanofillers in polymer matrix, modified composites can be developed and tailored to individual applications. On the other hand, the synergic effects of nanoparticles such as graphene and carbon nanotube can significantly improve the mechanical, electrical and thermal properties of nanocomposites. In present paper, the modifying of FMLs by nanofillers and the dispersing of nanoparticles in the polymers matrix are discussed. The evaluations have revealed that this approach is acceptable. Finally, a prospect is presented. This paper will lead to further work on these modified FML species.Keywords: fiber metal laminate, nanofiller, polymer matrix, property modification
Procedia PDF Downloads 2061380 Deposition Rates and Annealing Effects on the Growth of Nb Thin Film on Cu Substrate: Molecular Dynamic Simulation
Authors: Lablali Mohammed, Mes-Adi Hassan, Mazroui M’Hammed
Abstract:
To tackle the complexity of grasping atomic-scale structures and unraveling the factors affecting the development of thin films. In our work, we perform the deposition of Nb atoms on Cu substrates using the molecular dynamics simulation combined with the embedded atom method to describe the interaction between different atoms. We investigated the impact of varying deposition rates and thermal annealing processes on the microstructural, morphological, and mechanical characteristics of the deposited Nb film. Our findings reveal that Nb atom growth on the Cu substrate occurs in island mode, accompanied by the presence of nucleation phenomena during growth. On the other hand, mixing behavior was observed at the interface between the film and the substrate, where Nb penetration is initially limited to the first Cu layer, whereas Cu atoms diffuse until reaching the third layer in the Nb film. Furthermore, Nb exhibits a BCC structure, with a significant concentration observed at a rate of 5 atoms/ps, and annealing further amplifies these percentages. Deposition at different rates leads to distinct levels of compressive normal and biaxial stress.Keywords: molecular dynamics, Nb thin film, structure and morphology, atomic penetration
Procedia PDF Downloads 321379 CFD Investigation of Turbulent Mixed Convection Heat Transfer in a Closed Lid-Driven Cavity
Authors: A. Khaleel, S. Gao
Abstract:
Both steady and unsteady turbulent mixed convection heat transfer in a 3D lid-driven enclosure, which has constant heat flux on the middle of bottom wall and with isothermal moving sidewalls, is reported in this paper for working fluid with Prandtl number Pr = 0.71. The other walls are adiabatic and stationary. The dimensionless parameters used in this research are Reynolds number, Re = 5000, 10000 and 15000, and Richardson number, Ri = 1 and 10. The simulations have been done by using different turbulent methods such as RANS, URANS, and LES. The effects of using different k- models such as standard, RNG and Realizable k- model are investigated. Interesting behaviours of the thermal and flow fields with changing the Re or Ri numbers are observed. Isotherm and turbulent kinetic energy distributions and variation of local Nusselt number at the hot bottom wall are studied as well. The local Nusselt number is found increasing with increasing either Re or Ri number. In addition, the turbulent kinetic energy is discernibly affected by increasing Re number. Moreover, the LES results have shown a good ability of this method in predicting more detailed flow structures in the cavity.Keywords: mixed convection, lid-driven cavity, turbulent flow, RANS model, large Eddy simulation
Procedia PDF Downloads 2101378 Environment Saving and Efficiency of Diesel Heat-Insulated Combustion Chamber Using Semitransparent Ceramic Coatings
Authors: Victoria Yu. Garnova, Vladimir G. Merzlikin, Sergey V. Khudyakov, Valeriy A. Tovstonog, Svyatoslav V. Cheranev
Abstract:
Long-term scientific forecasts confirm that diesel engines still will be the basis of the transport and stationary power in the near future. This is explained by their high efficiency and profitability compared to other types of heat engines. In the automotive industry carried basic researches are aimed at creating a new generation of diesel engines with reduced exhaust emissions (with stable performance) determining the minimum impact on the environment. The application of thermal barrier coatings (TBCs) and especially their modifications based on semitransparent ceramic materials allows solving this problem. For such researches, the preliminary stage of testing of physical characteristics materials and coatings especially with semitransparent properties the authors proposed experimental operating innovative radiative-and-convective cycling simulator. This setup contains original radiation sources (imitator) with tunable spectrum for modeling integral flux up to several MW/m2.Keywords: environment saving, radiative and convective cycling simulator, semitransparent ceramic coatings, imitator radiant energy
Procedia PDF Downloads 2671377 The Effect of Combustion Chamber Deposits (CCD) on Homogeneous Change Compression Ignition (HCCI)
Authors: Abdulmagid A. Khattabi, Ahmed A. Hablus, Osama Ab. M. Shafah
Abstract:
The goal of this work is to understand how the thermal influence of combustion chamber deposits can be utilized to expand the operating range of HCCI combustion. In order to do this, two main objectives must first be met; tracking deposit formation trends in an HCCI engine and determining the sensitivity of HCCI combustion to CCD. This requires testing that demonstrates the differences in combustion between a clean engine and one with deposits coating the chamber. This will involve a long-term test that tracks the effects of CCD on combustion. The test will start with a clean engine. One baseline HCCI operating point is maintained for the duration of the test during which gradual combustion chamber deposit formation will occur. Combustion parameters, including heat release rates and emissions will be tracked for the duration and compared to the case of a clean engine. This work will begin by detailing the specifics of the test procedure and measurements taken throughout the test. Then a review of the effects of the gradual formation of deposits in the engine will be given.Keywords: fuels, fuel atomization, pattern factor, alternate fuels combustion, efficiency gas turbine combustion, lean blow out, exhaust and liner wall temperature
Procedia PDF Downloads 5271376 Effect of Orientation of the Wall Window on Energy Saving under Clear Sky Conditions
Authors: Madhu Sudan, G. N. Tiwari
Abstract:
In this paper, an attempt has been made to analyze the effect of wall window orientation on Daylight Illuminance Ratio (DIR) and energy saving in a building known as “SODHA BERS COMPLEX (SBC)” at Varanasi, UP, India. The building has been designed incorporating all passive concepts for thermal comfort as well daylighting concepts to maximize the use of natural daylighting for the occupants in the day to day activities. The annual average DIR and the energy saving has been estimated by using the DIR model for wall window with different orientations under clear sky condition. It has been found that for south oriented window the energy saving per square meter is more compared to the other orientations due to the higher level of solar insolation for the south window in northern hemisphere whereas energy saving potential is minimum for north oriented wall window. The energy saving potential was 26%, 81% and 51% higher for east, south and west oriented window in comparison to north oriented window. The average annual DIR has same trends of variation as the annual energy saving and it is maximum for south oriented window and minimum for north oriented window.Keywords: clear sky, daylight factor, energy saving, wall window
Procedia PDF Downloads 4071375 A Functional Thermochemical Energy Storage System for Mobile Applications: Design and Performance Analysis
Authors: Jure Galović, Peter Hofmann
Abstract:
Thermochemical energy storage (TCES), as a long-term and lossless energy storage principle, provides a contribution for the reduction of greenhouse emissions of mobile applications, such as passenger vehicles with an internal combustion engine. A prototype of a TCES system, based on reversible sorption reactions of LiBr composite and methanol has been designed at Vienna University of Technology. In this paper, the selection of reactive and inert carrier materials as well as the design of heat exchangers (reactor vessel and evapo-condenser) was reviewed and the cycle stability under real operating conditions was investigated. The performance of the developed system strongly depends on the environmental temperatures, to which the reactor vessel and evapo-condenser are exposed during the phases of thermal conversion. For an integration of the system into mobile applications, the functionality of the designed prototype was proved in numerous conducted cycles whereby no adverse reactions were observed.Keywords: dynamic applications, LiBr composite, methanol, performance of TCES system, sorption process, thermochemical energy storage
Procedia PDF Downloads 1661374 Numerical Investigation of a Slightly Oblique Round Jet Flowing into a Uniform Counterflow Stream
Authors: Amani Amamou, Sabra Habli, Nejla Mahjoub Saïd, Philippe Bournot, Georges Le Palec
Abstract:
A counterflowing jet is a particular configuration of turbulent jets issuing into a moving ambient which has not carried much attention in literature compared with jet in a coflow or in a crossflow. This is due to the marked instability of the jet in a counterflow coupled with experimental and theoretical difficulties related to the flow inversion phenomenon. Nevertheless, jets in a counterflow are encountered in many engineering applications which required enhanced mixing as combustion, process and environmental engineering. In this work, we propose to investigate a round turbulent jet flowing into a uniform counterflow stream through a numerical approach. A hydrodynamic and thermal study of a slightly oblique round jets issuing into a uniform counterflow stream is carried out for different jet-to-counterflow velocity ratios ranging between 3.1 and 15. It is found that even a slight inclination of the jet in the vertical direction of the flow affects the structure and the velocity field of the counterflowing jet. In addition, the evolution of passive scalar temperature and pertinent length scales are presented at various velocity ratios, confirming that the flow is sensitive to directional perturbations.Keywords: jet, counterflow, velocity, temperature, jet inclination
Procedia PDF Downloads 2691373 Engineers 'Write' Job Description: Development of English for Specific Purposes (ESP)-Based Instructional Materials for Engineering Students
Authors: Marjorie Miguel
Abstract:
Globalization offers better career opportunities hence demands more competent professionals efficient for the job. With the transformation of the world industry from competition to collaboration coupled with the rapid development in the field of science and technology, engineers need not only to be technically proficient, but also multilingual-skilled: two characteristics that a global engineer possesses. English often serves as the global language between people from different cultures being the medium mostly used in international business. Ironically, most universities worldwide adapt engineering curriculum heavily built around the language of mathematics not realizing that the goal of an engineer is not only to create and design, but more importantly to promote his creations and designs to the general public through effective communication. This premise led to some developments in the teaching process of English subjects in the tertiary level which include the integration of the technical knowledge related to the area of specialization of the students in the English subjects that they are taking. This is also known as English for Specific Purposes. This study focused on the development of English for Specific Purposes-Based Instructional Materials for Engineering Students of Bulacan State University (BulSU). The materials were tailor-made in which the contents and structure were designed to meet the specific needs of the students as well as the industry. Based on the needs analysis, the needs of the students and the industry were determined to make the study descriptive in nature. The major respondents included fifty engineering students and ten professional engineers from selected institutions. The needs analysis was done and the results showed the common writing difficulties of the students and the writing skills needed among the engineers in the industry. The topics in the instructional materials were established after the needs analysis was conducted. Simple statistical treatment including frequency distribution, percentages, mean, standard deviation, and weighted mean were used. The findings showed that the greatest number of the respondents had an average proficiency rating in writing, and the much-needed skills that must be developed by the engineers are directly related to the preparation and presentation of technical reports about their projects, as well as to the different communications they transmit to their colleagues and superiors. The researcher undertook the following phases in the development of the instructional materials: a design phase, development phase, and evaluation phase. Evaluations are given by some college instructors about the instructional materials generally helped in its usefulness and significance making the study beneficial not only as a career enhancer for BulSU engineering students, but also creating the university one of the educational institutions ready for the new millennium.Keywords: English for specific purposes, instructional materials, needs analysis, write (right) job description
Procedia PDF Downloads 2391372 An Improved Particle Swarm Optimization Technique for Combined Economic and Environmental Power Dispatch Including Valve Point Loading Effects
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
In recent years, the combined economic and emission power dispatch is one of the main problems of electrical power system. It aims to schedule the power generation of generators in order to minimize cost production and emission of harmful gases caused by fossil-fueled thermal units such as CO, CO2, NOx, and SO2. To solve this complicated multi-objective problem, an improved version of the particle swarm optimization technique that includes non-dominated sorting concept has been proposed. Valve point loading effects and system losses have been considered. The three-unit and ten-unit benchmark systems have been used to show the effectiveness of the suggested optimization technique for solving this kind of nonconvex problem. The simulation results have been compared with those obtained using genetic algorithm based method. Comparison results show that the proposed approach can provide a higher quality solution with better performance.Keywords: power dispatch, valve point loading effects, multiobjective optimization, Pareto solutions
Procedia PDF Downloads 2731371 Oscillating Water Column Wave Energy Converter with Deep Water Reactance
Authors: William C. Alexander
Abstract:
The oscillating water column (OSC) wave energy converter (WEC) with deep water reactance (DWR) consists of a large hollow sphere filled with seawater at the base, referred to as the ‘stabilizer’, a hollow cylinder at the top of the device, with a said cylinder having a bottom open to the sea and a sealed top save for an orifice which leads to an air turbine, and a long, narrow rod connecting said stabilizer with said cylinder. A small amount of ballast at the bottom of the stabilizer and a small amount of floatation in the cylinder keeps the device upright in the sea. The floatation is set such that the mean water level is nominally halfway up the cylinder. The entire device is loosely moored to the seabed to keep it from drifting away. In the presence of ocean waves, seawater will move up and down within the cylinder, producing the ‘oscillating water column’. This gives rise to air pressure within the cylinder alternating between positive and negative gauge pressure, which in turn causes air to alternately leave and enter the cylinder through said top-cover situated orifice. An air turbine situated within or immediately adjacent to said orifice converts the oscillating airflow into electric power for transport to shore or elsewhere by electric power cable. Said oscillating air pressure produces large up and down forces on the cylinder. Said large forces are opposed through the rod to the large mass of water retained within the stabilizer, which is located deep enough to be mostly free of any wave influence and which provides the deepwater reactance. The cylinder and stabilizer form a spring-mass system which has a vertical (heave) resonant frequency. The diameter of the cylinder largely determines the power rating of the device, while the size (and water mass within) of the stabilizer determines said resonant frequency. Said frequency is chosen to be on the lower end of the wave frequency spectrum to maximize the average power output of the device over a large span of time (such as a year). The upper portion of the device (the cylinder) moves laterally (surge) with the waves. This motion is accommodated with minimal loading on the said rod by having the stabilizer shaped like a sphere, allowing the entire device to rotate about the center of the stabilizer without rotating the seawater within the stabilizer. A full-scale device of this type may have the following dimensions. The cylinder may be 16 meters in diameter and 30 meters high, the stabilizer 25 meters in diameter, and the rod 55 meters long. Simulations predict that this will produce 1,400 kW in waves of 3.5-meter height and 12 second period, with a relatively flat power curve between 5 and 16 second wave periods, as will be suitable for an open-ocean location. This is nominally 10 times higher power than similar-sized WEC spar buoys as reported in the literature, and the device is projected to have only 5% of the mass per unit power of other OWC converters.Keywords: oscillating water column, wave energy converter, spar bouy, stabilizer
Procedia PDF Downloads 1071370 Multi-Criteria Optimization of High-Temperature Reversed Starter-Generator
Authors: Flur R. Ismagilov, Irek Kh. Khayrullin, Vyacheslav E. Vavilov, Ruslan D. Karimov, Anton S. Gorbunov, Danis R. Farrakhov
Abstract:
The paper presents another structural scheme of high-temperature starter-generator with external rotor to be installed on High Pressure Shaft (HPS) of aircraft engines (AE) to implement More Electrical Engine concept. The basic materials to make this starter-generator (SG) were selected and justified. Multi-criteria optimization of the developed structural scheme was performed using a genetic algorithm and Pareto method. The optimum (in Pareto terms) active length and thickness of permanent magnets of SG were selected as a result of the optimization. Using the dimensions obtained, allowed to reduce the weight of the designed SG by 10 kg relative to a base option at constant thermal loads. Multidisciplinary computer simulation was performed on the basis of the optimum geometric dimensions, which proved performance efficiency of the design. We further plan to make a full-scale sample of SG of HPS and publish the results of its experimental research.Keywords: high-temperature starter-generator, more electrical engine, multi-criteria optimization, permanent magnet
Procedia PDF Downloads 3681369 CFD Study on the Effect of Primary Air on Combustion of Simulated MSW Process in the Fixed Bed
Authors: Rui Sun, Tamer M. Ismail, Xiaohan Ren, M. Abd El-Salam
Abstract:
Incineration of municipal solid waste (MSW) is one of the key scopes in the global clean energy strategy. A computational fluid dynamics (CFD) model was established. In order to reveal these features of the combustion process in a fixed porous bed of MSW. Transporting equations and process rate equations of the waste bed were modeled and set up to describe the incineration process, according to the local thermal conditions and waste property characters. Gas phase turbulence was modeled using k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The heterogeneous reaction rates were determined using Arrhenius eddy dissipation and the Arrhenius-diffusion reaction rates. The effects of primary air flow rate and temperature in the burning process of simulated MSW are investigated experimentally and numerically. The simulation results in bed are accordant with experimental data well. The model provides detailed information on burning processes in the fixed bed, which is otherwise very difficult to obtain by conventional experimental techniques.Keywords: computational fluid dynamics (CFD) model, waste incineration, municipal solid waste (MSW), fixed bed, primary air
Procedia PDF Downloads 4021368 An Analysis of Packaging Materials for an Energy-Efficient Wrapping System
Authors: John Sweeney, Martin Leeming, Raj Thaker, Cristina L. Tuinea-Bobe
Abstract:
Shrink wrapping is widely used as a method for secondary packaging to assemble individual items, such as cans or other consumer products, into single packages. This method involves conveying the packages into heated tunnels and so has the disadvantages that it is energy-intensive, and, in the case of aerosol products, potentially hazardous. We are developing an automated packaging system that uses stretch wrapping to address both these problems, by using a mechanical rather than a thermal process. In this study, we present a comparative study of shrink wrapping and stretch wrapping materials to assess the relative capability of candidate stretch wrap polymer film in terms of mechanical response. The stretch wrap materials are of oriented polymer and therefore elastically anisotropic. We are developing material constitutive models that include both anisotropy and nonlinearity. These material models are to be incorporated into computer simulations of the automated stretch wrapping system. We present results showing the validity of these models and the feasibility of applying them in the simulations.Keywords: constitutive model, polymer, mechanical testing, wrapping system
Procedia PDF Downloads 2931367 Heat Transfer Characteristics of Aluminum Foam Heat Sinks Subject to an Impinging Jet
Authors: So-Ra Jeon, Chan Byon
Abstract:
This study investigates the heat transfer characteristics of aluminum foam heat sink and pin fin heat sink subjected to an impinging air jet under a fixed pumping power condition as well as fixed flow rate condition. The effects of dimensionless pumping power or the Reynolds number and the impinging distance ratio on the Nusselt number are considered. The result shows that the effect of the impinging distance on the Nusselt number is negligible under a fixed pumping power condition, while the Nusselt number increases with decreasing the impinging distance under a fixed pumping power condition. A correlation for the pressure drop is obtained as a function of the flow rate and the impinging distance ratio. And correlations for the stagnation Nusselt number of the impinging jet are developed as a function of the pumping power. The aluminum foam heat sinks did not show higher thermal performance compared to a conventional pin fin heat sink under a fixed pumping power condition.Keywords: aluminum foam, heat sinks, impinging jet, pumping power
Procedia PDF Downloads 305