Search results for: effect of soil structure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22630

Search results for: effect of soil structure

19930 Fluoride Immobilization in Plaster Board Waste: A Safety Measure to Prevent Soil and Water Pollution

Authors: Venkataraman Sivasankar, Kiyoshi Omine, Hideaki Sano

Abstract:

The leaching of fluoride from Plaster Board Waste (PBW) is quite feasible in soil and water environments. The Ministry of Environment, Japan recommended the standard limit of 0.8 mgL⁻¹ or less for fluoride. Although the utilization of PBW as a substitute for cement is rather meritorious, its fluoride leaching behavior deteriorates the quality of soil and water and therefore envisaged as a demerit. In view of this fluoride leaching problem, the present research is focused on immobilizing fluoride in PBW. The immobilization experiments were conducted with four chemical systems operated by DAHP (diammonium hydrogen phosphate) and phosphoric acid carbonization of bamboo mass coupled with certain inorganic reactions using reagents such as calcium hydroxide, sodium hydroxide, and aqueous ammonia. The fluoride immobilization was determined after shaking the reactor contents including the plaster board waste for 24 h at 25˚C. In the DAHP system, the immobilization of fluoride was evident from the leaching of fluoride in the range 0.071-0.12 mgL⁻¹, 0.026-0.14 mgL⁻¹ and 0.068-0.12 mgL⁻¹ for the reaction temperatures at 30˚C, 50˚C, and 90˚C, respectively, with final pH of 6.8. The other chemical systems designated as PACCa, PACAm, and PACNa could immobilize fluoride in PBW, and the resulting solution was analyzed with the fluoride less than the Japanese environmental standard of 0.8 mgL⁻¹. In the case of PACAm and PACCa systems, the calcium concentration was found undetectable and witnessed the formation of phosphate compounds. The immobilization of fluoride was found inversely proportional to the increase in the volume of leaching solvent and dose of PBW. Characterization studies of PBW and the solid after fluoride immobilization was done using FTIR (Fourier transform infrared spectroscopy), Raman spectroscopy, FE-SEM ( Field Emission Scanning Electron Microscopy) with EDAX (Energy Dispersive Spectroscopy), XRD (X-ray diffraction), and XPS (X-ray photoelectron spectroscopy). The results revealed the formation of new calcium phosphate compounds such as apatite, monetite, and hydroxylapatite. The participation of such new compounds in fluoride immobilization seems indispensable through the exchange mechanism of hydroxyl and fluoride groups. Acknowledgment: First author thanks to Japanese Society for the Promotion of Science (JSPS) for the award of the fellowship (ID No. 16544).

Keywords: characterization, fluoride, immobilization, plaster board waste

Procedia PDF Downloads 152
19929 Evaluation of Geotechnical Parameters at Nubian Habitations in Kurkur Area, Aswan, Egypt

Authors: R. E. Fat-Helbary, A. A. Abdel-latief, M. S. Arfa, Alaa Mostafa

Abstract:

The Egyptian Government proposed a general plan, aiming at constructing new settlements for Nubian in south Aswan in different places around Nasser Lake, one of these settlements in Kurkur area. The Nubian habitations in Wadi Kurkur are located around 30 km southwest of Aswan City. This area are affecting by near distance earthquakes from Kalabsha faults system. The shallow seismic refraction technique was conducted at the study area, to evaluate the soil and rock material quality and geotechnical parameters, in addition to the detection of the subsurface ground model under the study area. The P and S-wave velocities were calculated. The surface layer has P-wave, velocity ranges from 900 m/sec to 1625 m/sec and S-wave velocity ranges from 650 m/sec to 1400 m/sec. On the other hand the bedrock has P-wave velocity ranges from 1300 m/sec to 1980 m/sec and S-wave velocity ranges from 1050 m/sec to1725 m/sec. Measuring Vp and Vs velocities together with bulk density are calculated and used to extract the mechanical properties and geotechnical parameters of the foundation material at the study area. Output of this study is very important for solving the problems, which associated with the construction of various civil engineering purposes, for land use planning and for earthquakes resistant structure design.

Keywords: shallow seismic refraction technique, Kurkur area, p and s-wave velocities, geotechnical parameters, bulk density, Kalabsha faults

Procedia PDF Downloads 417
19928 Analysing the Permanent Deformation of Cohesive Subsoil Subject to Long Term Cyclic Train Loading

Authors: Natalie M. Wride, Xueyu Geng

Abstract:

Subgrade soils of railway infrastructure are subjected to a significant number of load applications over their design life. The use of slab track on existing and future proposed rail links requires a reduced maintenance and repair regime for the embankment subgrade, due to restricted access to the subgrade soils for remediation caused by cyclic deformation. It is, therefore, important to study the deformation behaviour of soft cohesive subsoils induced as a result of long term cyclic loading. In this study, a series of oedometer tests and cyclic triaxial tests (10,000 cycles) have been undertaken to investigate the undrained deformation behaviour of soft kaolin. X-ray Computer Tomography (CT) scanning of the samples has been performed to determine the change in porosity and soil structure density from the sample microstructure as a result of the laboratory testing regime undertaken. Combined with the examination of excess pore pressures and strains obtained from the cyclic triaxial tests, the results are compared with an existing analytical solution for long term settlement considering repeated low amplitude loading. Modifications to the analytical solution are presented based on the laboratory analysis that shows good agreement with further test data.

Keywords: creep, cyclic loading, deformation, long term settlement, train loading

Procedia PDF Downloads 285
19927 Revenue Management of Perishable Products Considering Freshness and Price Sensitive Customers

Authors: Onur Kaya, Halit Bayer

Abstract:

Global grocery and supermarket sales are among the largest markets in the world and perishable products such as fresh produce, dairy and meat constitute the biggest section of these markets. Due to their deterioration over time, the demand for these products depends highly on their freshness. They become totally obsolete after a certain amount of time causing a high amount of wastage and decreases in grocery profits. In addition, customers are asking for higher product variety in perishable product categories, leading to less predictable demand per product and to more out-dating. Effective management of these perishable products is an important issue since it is observed that billions of dollars’ worth of food is expired and wasted every month. We consider coordinated inventory and pricing decisions for perishable products with a time and price dependent random demand function. We use stochastic dynamic programming to model this system for both periodically-reviewed and continuously-reviewed inventory systems and prove certain structural characteristics of the optimal solution. We prove that the optimal ordering decision scenario has a monotone structure and the optimal price value decreases by time. However, the optimal price changes in a non-monotonic structure with respect to inventory size. We also analyze the effect of 1 different parameters on the optimal solution through numerical experiments. In addition, we analyze simple-to-implement heuristics, investigate their effectiveness and extract managerial insights. This study gives valuable insights about the management of perishable products in order to decrease wastage and increase profits.

Keywords: age-dependent demand, dynamic programming, perishable inventory, pricing

Procedia PDF Downloads 242
19926 Evaluation of Ecological Resilience in Mountain-plain Transition Zones: A Case Study of Dujiangyan City, Chengdu

Authors: Zhu Zhizheng, Huang Yong, Li Tong

Abstract:

In the context of land and space development and resource environmental protection. Due to its special geographical location, mountain-plain transition zones are limited by many factors such as topography, mountain forest protection, etc., and their ecology is also more sensitive, with the characteristics of disaster susceptibility and resource gradient. Taking Dujiangyan City, Chengdu as an example, this paper establishes resilience evaluation indicators on the basis of ecological suitability evaluation through the analysis of current situation data and relevant policies: water conservation evaluation, soil and water conservation evaluation, biodiversity evaluation, soil erosion sensitivity evaluation, etc. Based on GIS spatial analysis, the ecological suitability and resilience evaluation results of Dujiangyan city were obtained by disjunction operation. The ecological resilience level of Dujiangyan city was divided into three categories: high, medium and low, with an area ratio of 50.81%, 16.4% and 32.79%, respectively. This paper can provide ideas for solving the contradiction between man and land in the mountain-plain transition zones, and also provide a certain basis for the construction of regional ecological protection and the delineation of three zones and three lines.

Keywords: urban and rural planning, ecological resilience, dujiangyan city, mountain-plain transition zones

Procedia PDF Downloads 100
19925 Study on Hydrogen Isotope Permeability of High Entropy Alloy Coating

Authors: Long Wang, Yongjin Feng, Xiaofang Luo

Abstract:

Tritium permeation through structural materials is a significant issue for fusion demonstration (DEMO) reactor blankets in terms of fuel cycle efficiency and radiological safety. Reduced activation ferritic (RAFM) steel CLF-1 is a prime candidate for the China’s CFETR blanket structural material, facing high permeability of hydrogen isotopes at reactor operational temperature. To confine tritium as much as possible in the reactor, surface modification of the steels including fabrication of tritium permeation barrier (TPB) attracts much attention. As a new alloy system, high entropy alloy (HEA) contains at least five principal elements, each of which ranges from 5 at% to 35 at%. This high mixing effect entitles HEA extraordinary comprehensive performance. So it is attractive to lead HEA into surface alloying for protective use. At present, studies on the hydrogen isotope permeability of HEA coatings is still insufficient and corresponding mechanism isn’t clear. In our study, we prepared three kinds of HEA coatings, including AlCrTaTiZr, (AlCrTaTiZr)N and (AlCrTaTiZr)O. After comprehensive characterization of SEM, XPS, AFM, XRD and TEM, the structure and composition of the HEA coatings were obtained. Deuterium permeation tests were conducted to evaluate the hydrogen isotope permeability of AlCrTaTiZr, (AlCrTaTiZr)N and (AlCrTaTiZr)O HEA coatings. Results proved that the (AlCrTaTiZr)N and (AlCrTaTiZr)O HEA coatings had better hydrogen isotope permeation resistance. Through analyzing and characterizing the hydrogen isotope permeation results of the corroded samples, an internal link between hydrogen isotope permeation behavior and structure of HEA coatings was established. The results provide valuable reference in engineering design of structural and TPB materials for future fusion device.

Keywords: high entropy alloy, hydrogen isotope permeability, tritium permeation barrier, fusion demonstration reactor

Procedia PDF Downloads 161
19924 FDI, Environmental Regulations and Innovation Performance of Chinese Enterprises

Authors: Yan Chen, Hongbing Li, Ruirui Zhai

Abstract:

Innovation driven and innovation in the process of new-type urbanization is a major strategic choice for the introduction of foreign capital and the process of economic development. This research investigates the effect of urbanization, FDI and environmental regulations on innovation performance of enterprises, based on Chinese Industrial Statistics Database of 2004 to 2007 and data at province-level. It is found that the FDI from U.S. and environmental regulations will hinder the creativity of Chinese industry through reducing the R&D of them. However, the FDI from U.S. enhances the ability of domestic enterprises to attain “compensation from innovation” following the environmental regulations. Meanwhile, we confirm that environmental regulation can contribute to the innovation spillover of FDI from U.S. Furthermore, the channel of effect is discussed. In addition, FDI from EU and Japan are further examined. Unlike the FDI from U.S., the FDI from EU and Japan both have the positive innovation spillover effect, but through the same channel referred above which exist in FDI. Further analysis based on "innovation-driven effect" of urbanization is developed, and it is found that urbanization has an innovation-driven effect on environmental regulation and FDI spillover. The regulation of FDI from the United States and the European Union outperforms the FDI from Japan at a restrained degree.

Keywords: environmental regulations, FDI, innovation-driven, innovation performance

Procedia PDF Downloads 431
19923 Sustainable Ecological Agricultural Systems in Bangladesh: Environmental, Economic and Social Perspective of Compost

Authors: Protima Chakraborty

Abstract:

The sustainability of conventional agriculture in Bangladesh is under threat from the continuous degradation of land and water resources, and from declining yields due to indiscriminate use of agrochemicals. NASL (Northern Agro Services Limited) is pursuing efforts to promote ecological agriculture with emphasis on better use of organic fertilizer resources and the reduction of external inputs. This paper examines the sustainability of two production systems in terms of their environmental soundness, economic viability and social acceptability based on empirical data collected through making demonstration land cultivation, a household survey, soil sample analysis, observations and discussions with key informants. Twelve indicators were selected to evaluate sustainability. Significant differences were found between the two systems in crop diversification, soil fertility management, pests and diseases management, and use of agrochemicals & Organic Compost. However, significant variations were found in other indicators such as land-use pattern, crop yield and stability, risk and uncertainties, and food security. Although crop yield and financial return were found to be slightly higher in the ecological system, the economic return and value addition per unit of land show the positive difference of using compost rather than chemical fertilizer. The findings suggest that ecological agriculture has a tendency towards becoming ecologically, economically and socially more sound than conventional agriculture, as it requires considerably fewer agro-chemicals, adds more organic matter to the soil, provides balanced food, and requires higher local inputs without markedly compromising output and financial benefits. Broad-policy measures, including the creation of mass awareness of adverse health effects of agrochemical-based products, are outlined for the promotion of ecological agriculture.

Keywords: Bangladesh, compost, conventional agriculture, organic fertilizer, environmental sustainability, economic viability, social acceptability

Procedia PDF Downloads 232
19922 An Acoustical Diagnosis of a Shaft-Wood Phyto-Pathogenic Damage of Sequoiadendron giganteum (Lindl.) Buccholz

Authors: Yuri V. Plugatar, Vladimir P. Koba, Vladimir V. Papelbu, Vladimir N. Gerasimchuk, Tatjana M. Sakhno

Abstract:

Using a supersonic shaft–wood tomography, the evaluation of a shaft-wood phyto-pathogenic damage level of Sequoiadendron giganteum (Lindl.) Buccholz was prosecuted. The digital bivariate reflections of the shaft tissue damage were obtained, the characteristics of comparative parameters of the wood-decay degree were given. The investigation results allowed to show up the role of some edaphic factors in their affection on a vital condition and the level of destructive processes while shaft tissue damaging of S.giganteum. It was pinned up that soil consolidation, and hydro-morphication equally make for a phyto-pathogenic damage of plants. While soil consolidation negative acting the shaft-wood damage is located in an underneath of a shaft. In the conditions of an enlarged hydro-morphication a tissue degradation runs less intensively, the destructive processes more active spread in a vertical section of a shaft. The use of a supersonic tomography method gives wide possibilities to diagnose a shaft-wood phyto-pathogenic damage.

Keywords: Sequoiadendron giganteum (Lindl.) Buccholz, supersonic tomography, diagnosis, phyto-pathogenic damage, a vital condition

Procedia PDF Downloads 201
19921 The Effect of Ionic Liquid Anion Type on the Properties of TiO2 Particles

Authors: Marta Paszkiewicz, Justyna Łuczak, Martyna Marchelek, Adriana Zaleska-Medynska

Abstract:

In recent years, photocatalytical processes have been intensively investigated for destruction of pollutants, hydrogen evolution, disinfection of water, air and surfaces, for the construction of self-cleaning materials (tiles, glass, fibres, etc.). Titanium dioxide (TiO2) is the most popular material used in heterogeneous photocatalysis due to its excellent properties, such as high stability, chemical inertness, non-toxicity and low cost. It is well known that morphology and microstructure of TiO2 significantly influence the photocatalytic activity. This characteristics as well as other physical and structural properties of photocatalysts, i.e., specific surface area or density of crystalline defects, could be controlled by preparation route. In this regard, TiO2 particles can be obtained by sol-gel, hydrothermal, sonochemical methods, chemical vapour deposition and alternatively, by ionothermal synthesis using ionic liquids (ILs). In the TiO2 particles synthesis ILs may play a role of a solvent, soft template, reagent, agent promoting reduction of the precursor or particles stabilizer during synthesis of inorganic materials. In this work, the effect of the ILs anion type on morphology and photoactivity of TiO2 is presented. The preparation of TiO2 microparticles with spherical structure was successfully achieved by solvothermal method, using tetra-tert-butyl orthotitatane (TBOT) as the precursor. The reaction process was assisted by an ionic liquids 1-butyl-3-methylimidazolium bromide [BMIM][Br], 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] and 1-butyl-3-methylimidazolium haxafluorophosphate [BMIM][PF6]. Various molar ratios of all ILs to TBOT (IL:TBOT) were chosen. For comparison, reference TiO2 was prepared using the same method without IL addition. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brenauer-Emmett-Teller surface area (BET), NCHS analysis, and FTIR spectroscopy were used to characterize the surface properties of the samples. The photocatalytic activity was investigated by means of phenol photodegradation in the aqueous phase as a model pollutant, as well as formation of hydroxyl radicals based on detection of fluorescent product of coumarine hydroxylation. The analysis results showed that the TiO2 microspheres had spherical structure with the diameters ranging from 1 to 6 µm. The TEM micrographs gave a bright observation of the samples in which the particles were comprised of inter-aggregated crystals. It could be also observed that the IL-assisted TiO2 microspheres are not hollow, which provides additional information about possible formation mechanism. Application of the ILs results in rise of the photocatalytic activity as well as BET surface area of TiO2 as compared to pure TiO2. The results of the formation of 7-hydroxycoumarin indicated that the increased amount of ·OH produced at the surface of excited TiO2 for samples TiO2_ILs well correlated with more efficient degradation of phenol. NCHS analysis showed that ionic liquids remained on the TiO2 surface confirming structure directing role of that compounds.

Keywords: heterogeneous photocatalysis, IL-assisted synthesis, ionic liquids, TiO2

Procedia PDF Downloads 260
19920 Analysis of Correlation Between Manufacturing Parameters and Mechanical Strength Followed by Uncertainty Propagation of Geometric Defects in Lattice Structures

Authors: Chetra Mang, Ahmadali Tahmasebimoradi, Xavier Lorang

Abstract:

Lattice structures are widely used in various applications, especially in aeronautic, aerospace, and medical applications because of their high performance properties. Thanks to advancement of the additive manufacturing technology, the lattice structures can be manufactured by different methods such as laser beam melting technology. However, the presence of geometric defects in the lattice structures is inevitable due to the manufacturing process. The geometric defects may have high impact on the mechanical strength of the structures. This work analyzes the correlation between the manufacturing parameters and the mechanical strengths of the lattice structures. To do that, two types of the lattice structures; body-centered cubic with z-struts (BCCZ) structures made of Inconel718, and body-centered cubic (BCC) structures made of Scalmalloy, are manufactured by laser melting beam machine using Taguchi design of experiment. Each structure is placed on the substrate with a specific position and orientation regarding the roller direction of deposed metal powder. The position and orientation are considered as the manufacturing parameters. The geometric defects of each beam in the lattice are characterized and used to build the geometric model in order to perform simulations. Then, the mechanical strengths are defined by the homogeneous response as Young's modulus and yield strength. The distribution of mechanical strengths is observed as a function of manufacturing parameters. The mechanical response of the BCCZ structure is stretch-dominated, i.e., the mechanical strengths are directly dependent on the strengths of the vertical beams. As the geometric defects of vertical beams are slightly changed based on their position/orientation on the manufacturing substrate, the mechanical strengths are less dispersed. The manufacturing parameters are less influenced on the mechanical strengths of the structure BCCZ. The mechanical response of the BCC structure is bending-dominated. The geometric defects of inclined beam are highly dispersed within a structure and also based on their position/orientation on the manufacturing substrate. For different position/orientation on the substrate, the mechanical responses are highly dispersed as well. This shows that the mechanical strengths are directly impacted by manufacturing parameters. In addition, this work is carried out to study the uncertainty propagation of the geometric defects on the mechanical strength of the BCC lattice structure made of Scalmalloy. To do that, we observe the distribution of mechanical strengths of the lattice according to the distribution of the geometric defects. A probability density law is determined based on a statistical hypothesis corresponding to the geometric defects of the inclined beams. The samples of inclined beams are then randomly drawn from the density law to build the lattice structure samples. The lattice samples are then used for simulation to characterize the mechanical strengths. The results reveal that the distribution of mechanical strengths of the structures with the same manufacturing parameters is less dispersed than one of the structures with different manufacturing parameters. Nevertheless, the dispersion of mechanical strengths due to the structures with the same manufacturing parameters are unneglectable.

Keywords: geometric defects, lattice structure, mechanical strength, uncertainty propagation

Procedia PDF Downloads 118
19919 Studies on the Mechanical Behavior of Bottom Ash for a Sustainable Environment

Authors: B. A. Mir, Asim Malik

Abstract:

Bottom ash is a by-product of the combustion process of coal in furnaces in the production of electricity in thermal power plants. In India, about 75% of total power is produced by using pulverized coal. The coal of India has a high ash content which leads to the generation of a huge quantity of bottom ash per year posing the dual problem of environmental pollution and difficulty in disposal. This calls for establishing strategies to use this industry by-product effectively and efficiently. However, its large-scale utilization is possible only in geotechnical applications, either alone or with soil. In the present investigation, bottom ash was collected from National Capital Power Station Dadri, Uttar Pradesh, India. Test samples of bottom ash admixed with 20% clayey soil were prepared and treated with different cement content by weight and subjected to various laboratory tests for assessing its suitability as an engineered construction material. This study has shown that use of 10% cement content is a viable chemical additive to enhance the mechanical properties of bottom ash, which can be used effectively as an engineered construction material in various geotechnical applications. More importantly, it offers an interesting potential for making use of an industrial waste to overcome challenges posed by bottom ash for a sustainable environment.

Keywords: bottom ash, environmental pollution, solid waste, sustainable environment, waste utilization

Procedia PDF Downloads 247
19918 Effect of Experience on Evacuation of Mice in Emergency Conditions

Authors: Teng Zhang, Shenshi Huang, Gang Xu, Xuelin Zhang, Shouxiang Lu

Abstract:

With the acceleration of urbanization and the increasing of the population in the city, the evacuation of pedestrians suffering from disaster environments such as fire in a room or other limited space becomes a vital issue in modern society. Mice have been used in experimental crowd evacuation in recent years for its good similarities to human in physical structure and stress reaction. In this study, the effect of experience or memory on the collective behavior of mice was explored. To help mice familiarize themselves with the design of the space and the stimulus caused by smoke, we trained them repeatedly for 2 days so that they can escape from the emergency conditions as soon as possible. The escape pattern, trajectories, walking speed, turning angle and mean individual escape time of mice in each training trail were analyzed. We found that mice can build memory quickly after the first trial on the first day. On the second day, the evacuation of mice was maintained in a stable and efficient state. Meanwhile, the group with size of 30 (G30) had a shorter mean individual escape time compared with G12. Furthermore, we tested the experience of evacuation skill of mice after several days. The results showed that the mice can hold the experience or memory over 3 weeks. We proposed the importance of experience of evacuation skill and the research of training methods in experimental evacuation of mice. The results can deepen our understanding of collective behavior of mice and conduce to the establishment of animal models in the study of pedestrian crowd dynamics in emergency conditions.

Keywords: experience, evacuation, mice, group size, behavior

Procedia PDF Downloads 258
19917 Power Reduction of Hall-Effect Sensor by Pulse Width Modulation of Spinning-Current

Authors: Hyungil Chae

Abstract:

This work presents a method to reduce spinning current of a Hall-effect sensor for low-power magnetic sensor applications. Spinning current of a Hall-effect sensor changes the direction of bias current periodically and can separate signals from DC-offset. The bias current is proportional to the sensor sensitivity but also increases the power consumption. To achieve both high sensitivity and low power consumption, the bias current can be pulse-width modulated. When the bias current duration Tb is reduced by a factor of N compared to the spinning current period of Tₛ/2, the total power consumption can be saved by N times. N can be large as long as the Hall-effect sensor settles down within Tb. The proposed scheme is implemented and simulated in a 0.18um CMOS process, and the power saving factor is 9.6 when N is 10. Acknowledgements: This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (20160001360022003, Development of Hall Semi-conductor for Smart Car and Device).

Keywords: chopper stabilization, Hall-effect sensor, pulse width modulation, spinning current

Procedia PDF Downloads 475
19916 Development of Mesoporous Gel Based Nonwoven Structure for Thermal Barrier Application

Authors: R. P. Naik, A. K. Rakshit

Abstract:

In recent years, with the rapid development in science and technology, people have increasing requirements on uses of clothing for new functions, which contributes to opportunities for further development and incorporation of new technologies along with novel materials. In this context, textiles are of fast decalescence or fast heat radiation media as per as comfort accountability of textile articles are concern. The microstructure and texture of textiles play a vital role in determining the heat-moisture comfort level of the human body because clothing serves as a barrier to the outside environment and a transporter of heat and moisture from the body to the surrounding environment to keep thermal balance between body heat produced and body heat loss. The main bottleneck which is associated with textile materials to be successful as thermal insulation materials can be enumerated as; firstly, high loft or bulkiness of material so as to provide predetermined amount of insulation by ensuring sufficient trapping of air. Secondly, the insulation depends on forced convection; such convective heat loss cannot be prevented by textile material. Third is that the textile alone cannot reach the level of thermal conductivity lower than 0.025 W/ m.k of air. Perhaps, nano-fibers can do so, but still, mass production and cost-effectiveness is a problem. Finally, such high loft materials for thermal insulation becomes heavier and uneasy to manage especially when required to carry over a body. The proposed works aim at developing lightweight effective thermal insulation textiles in combination with nanoporous silica-gel which provides the fundamental basis for the optimization of material properties to achieve good performance of the clothing system. This flexible nonwoven silica-gel composites fabric in intact monolith was successfully developed by reinforcing SiO2-gel in thermal bonded nonwoven fabric via sol-gel processing. Ambient Pressure Drying method is opted for silica gel preparation for cost-effective manufacturing. The formed structure of the nonwoven / SiO₂ -gel composites were analyzed, and the transfer properties were measured. The effects of structure and fibre on the thermal properties of the SiO₂-gel composites were evaluated. Samples are then tested against untreated samples of same GSM in order to study the effect of SiO₂-gel application on various properties of nonwoven fabric. The nonwoven fabric composites reinforced with aerogel showed intact monolith structure were also analyzed for their surface structure, functional group present, microscopic images. Developed product reveals a significant reduction in pores' size and air permeability than the conventional nonwoven fabric. Composite made from polyester fibre with lower GSM shows lowest thermal conductivity. Results obtained were statistically analyzed by using STATISTICA-6 software for their level of significance. Univariate tests of significance for various parameters are practiced which gives the P value for analyzing significance level along with that regression summary for dependent variable are also studied to obtain correlation coefficient.

Keywords: silica-gel, heat insulation, nonwoven fabric, thermal barrier clothing

Procedia PDF Downloads 102
19915 Investigation of Vortex Induced Vibration and Galloping Characteristic for Various Shape Slender Bridge Hanger

Authors: Matza Gusto Andika, Syariefatunnisa

Abstract:

Hanger at the arch bridges is an important part to transfer load on the bridge deck onto the arch. Bridges are subjected to several types of loadings, such as dead load, temperature load, wind load, moving loads etc. Usually the hanger bridge has a typical bluff body shape such as circle, square, H beam, etc. When flow past bluff body, the flow separates from the body surface generating an unsteady broad wake. These vortices are shed to the wake periodically with some frequency that is related to the undisturbed wind speed and the size of the cross-section body by the well-known Strouhal relationship. The dynamic characteristic and hanger shape are crucial for the evaluation of vortex induced vibrations and structural vibrations. The effect of vortex induced vibration is not catastrophic as a flutter phenomenon, but it can make fatigue failure to the structure. Wind tunnel tests are conducted to investigate the VIV and galloping effect at circle, hexagonal, and H beam bluff body for hanger bridge. From this research, the hanger bridge with hexagonal shape has a minimum vibration amplitude due to VIV phenomenon compared to circle and H beam. However, when the wind bruises the acute angle of hexagon shape, the vibration amplitude of bridge hanger with hexagonal shape is higher than the other bluff body.

Keywords: vortex induced vibration, hanger bridge, wind tunnel, galloping

Procedia PDF Downloads 258
19914 Crop Water Productivity for Sunflower under Different Irrigation Regimes and Plant Spacing, at Gezira Clay Soil, Sudan

Authors: R. A. Eman Elsheikh, Bart Schultz, Abraham Mehari Haile, Hussein S. Adam

Abstract:

A field experiment was conducted at Gezira research station farm during the winter season in the third week of November 2012, in WadMedani, Sudan (Lat 14.23 W, Long 33.39 E and altitude 405 m above sea level, in deep cracking alkaline heavy clay Vertisols). The objective of this study was to determine the effect of three different irrigation for 10 days (W1), 15 days (W2) and 20 days (W3) and for two rows of 30 cm (S1) and 40 cm (S2), respectively. The experimental design was split plot with three replicates. The sunflower test variety was Hysun 33 cultivar. The seasonal water applied during the study was 6898, 6647, 5256, 5435, 5214, 5416 m3/ha for W1S1, W1S2, W2S1, W2S2, W3S1 and W3S2 respectively. The seed yield obtained for the above treatment in that sequence was 4208, 5542, 5167, 4579, 2931, 2936 kg/ha. The corresponding computed water productivity was 0.61, 0.82, 0.87, 0.95, 0.54, 0.56 kg/m3. The study clearly indicated that the highest seed yield was obtained when the crop was sown at 40 cm row spacing and was irrigated every 10 days (W1S2), followed by W2S1.

Keywords: water productivity, water deficit, sunflower, plant spacing

Procedia PDF Downloads 338
19913 Role of Spatial Variability in the Service Life Prediction of Reinforced Concrete Bridges Affected by Corrosion

Authors: Omran M. Kenshel, Alan J. O'Connor

Abstract:

Estimating the service life of Reinforced Concrete (RC) bridge structures located in corrosive marine environments of a great importance to their owners/engineers. Traditionally, bridge owners/engineers relied more on subjective engineering judgment, e.g. visual inspection, in their estimation approach. However, because financial resources are often limited, rational calculation methods of estimation are needed to aid in making reliable and more accurate predictions for the service life of RC structures. This is in order to direct funds to bridges found to be the most critical. Criticality of the structure can be considered either form the Structural Capacity (i.e. Ultimate Limit State) or from Serviceability viewpoint whichever is adopted. This paper considers the service life of the structure only from the Structural Capacity viewpoint. Considering the great variability associated with the parameters involved in the estimation process, the probabilistic approach is most suited. The probabilistic modelling adopted here used Monte Carlo simulation technique to estimate the Reliability (i.e. Probability of Failure) of the structure under consideration. In this paper the authors used their own experimental data for the Correlation Length (CL) for the most important deterioration parameters. The CL is a parameter of the Correlation Function (CF) by which the spatial fluctuation of a certain deterioration parameter is described. The CL data used here were produced by analyzing 45 chloride profiles obtained from a 30 years old RC bridge located in a marine environment. The service life of the structure were predicted in terms of the load carrying capacity of an RC bridge beam girder. The analysis showed that the influence of SV is only evident if the reliability of the structure is governed by the Flexure failure rather than by the Shear failure.

Keywords: Chloride-induced corrosion, Monte-Carlo simulation, reinforced concrete, spatial variability

Procedia PDF Downloads 465
19912 Earthquakes and Buildings: Lesson Learnt from Past Earthquakes in Turkey

Authors: Yavuz Yardım

Abstract:

The most important criteria for structural engineering is the structure’s ability to carry intended loads safely. The key element of this ability is mathematical modeling of really loadings situation into a simple loads input to use in structure analysis and design. Amongst many different types of loads, the most challenging load is earthquake load. It is possible magnitude is unclear and timing is unknown. Therefore the concept of intended loads and safety have been built on experience of previous earthquake impact on the structures. Understanding and developing these concepts is achieved by investigating performance of the structures after real earthquakes. Damage after an earthquake provide results of thousands of full-scale structure test under a real seismic load. Thus, Earthquakes reveille all the weakness, mistakes and deficiencies of analysis, design rules and practice. This study deals with lesson learnt from earthquake recoded last two decades in Turkey. Results of investigation after several earthquakes exposes many deficiencies in structural detailing, inappropriate design, wrong architecture layout, and mainly mistake in construction practice.

Keywords: earthquake, seismic assessment, RC buildings, building performance

Procedia PDF Downloads 254
19911 Limitations of Recent National Enactments on International Crimes: The Case of Kenya, Uganda and Sudan

Authors: Emma Charlene Lubaale

Abstract:

The International Criminal Court (ICC) operates based on the principle of complementarity. On the basis of this principle, states enjoy the primary right to prosecute international crimes, with the ICC intervening only when a state with jurisdiction over an international crime is unable or unwilling to prosecute. To ably exercise their primary right to prosecute international crimes domestically, a number of states are taking steps to criminalise international crimes in their national laws. Significant to note, many of the laws enacted are not being applied in the prosecution of the international crimes allegedly committed. Kenya, Uganda and Sudan are some notable states where commission of international crimes is documented. All these states have recently enacted laws on international crimes. Kenya enacted the International Crimes Act in 2008, Uganda enacted the International Criminal Court Act in 2010 and in 2007, Sudan made provision for international crimes under its Armed Forces Act. However, in all these three states, the enacted national laws on international crimes have thus far not featured in any of the proceedings before these states’ courts. Instead, these states have either relied on ordinary crimes to prosecute international crimes or not prosecuted international crimes altogether. This paper underscores the limitations of the enacted laws, explaining why, even with efforts taken by these states to enact national laws on international crimes, these laws cannot be relied on to advance accountability for the international crimes. Notably, the laws in Kenya and Uganda do not have retroactive application. In Sudan, despite the 2007 reforms, the structure of military justice in Sudan has the effect of placing certain categories of individuals beyond the reach of international criminal justice. For Kenya and Uganda, it is concluded that the only benefit that flows from these enactments is reliance on them to prosecute future international crimes. For Sudan, the 2007 reforms will only have the desired impact if reforms are equally made to the structure of military justice.

Keywords: complementarity, national laws, Kenya, Sudan, Uganda, international crimes, limitations

Procedia PDF Downloads 271
19910 Microbial Diversity of El-Baida Marsh: Setif, Algeria

Authors: H. Necef, A. Benayad

Abstract:

Fungi are becoming more and more important in our life. Therefore, as a start for the symposium on filamentous fungi in biotechnology a short survey of the role of fungi in biotechnology. Salin soils occupy about 7% of land area; they are characterized by unsuitable physical conditions for the growth of living organisms. However, researches showed that some microorganisms especially fungi are able to grow and adapt to such extreme conditions; it is due to their ability to develop different physiological mechanisms in their adaptation. This is the first study on the physiological and biological characteristics of El-Beida marsh. Nine soil samples were taken at different points in two steps, the first was in winter (low temperature), and the second was in summer (high temperature). The physicochemical analyses of the soil were conducted, then the isolation process was applied using two methods, direct method and dilution method (10-1, 10-2, 10-3, 10-4). Different species of fungi were identified belong to 21 genera in addition to 3 yeast species, Aspergillus showed the highest proportion by 43%, then Penicillium by 20% then Alternaria by 7%, in addition to various genera in different proportions. As for the sampling periods, it was observed that the spread of fungi in winter was higher than in summer with the proportion 75.47% and 24.53% respectively. Some halotolerant fungi have a biotechnological importance especially if the salinity of the medium is necessary for the fermentation, and if the halotolerance genes of the fungus will define, this will open the research to study and improve this property for the industrial important micro-organisms.

Keywords: salinity, identification, aspergillus oryzae, halotolerance, fungi

Procedia PDF Downloads 386
19909 Characteristics of Double-Stator Inner-Rotor Axial Flux Permanent Magnet Machine with Rotor Eccentricity

Authors: Dawoon Choi, Jian Li, Yunhyun Cho

Abstract:

Axial Flux Permanent Magnet (AFPM) machines have been widely used in various applications due to their important merits, such as compact structure, high efficiency and high torque density. This paper presents one of the most important characteristics in the design process of the AFPM device, which is a recent issue. To design AFPM machine, the predicting electromagnetic forces between the permanent magnets and stator is important. Because of the magnitude of electromagnetic force affects many characteristics such as machine size, noise, vibration, and quality of output power. Theoretically, this force is canceled by the equilibrium of force when it is in the middle of the gap, but it is inevitable to deviate due to manufacturing problems in actual machine. Such as large scale wind generator, because of the huge attractive force between rotor and stator disks, this is more serious in getting large power applications such as large. This paper represents the characteristics of Double-Stator Inner –Rotor AFPM machines when it has rotor eccentricity. And, unbalanced air-gap and inclined air-gap condition which is caused by rotor offset and tilt in a double-stator single inner-rotor AFPM machine are each studied in electromagnetic and mechanical aspects. The output voltage and cogging torque under un-normal air-gap condition of AF machines are firstly calculated using a combined analytical and numerical methods, followed by a structure analysis to study the effect to mechanical stress, deformation and bending forces on bearings. Results and conclusions given in this paper are instructive for the successful development of AFPM machines.

Keywords: axial flux permanent magnet machine, inclined air gap, unbalanced air gap, rotor eccentricity

Procedia PDF Downloads 208
19908 Strengthening Reinforced Concrete Beams Using Carbon Fibre Reinforced Polymer Strips

Authors: Mina Iskander, Mina Melad, Mourad Yasser, Waleed Abdel Rahim, Amr Mosa, Mohamed El Lahamy, Ezzeldin Sayed-Ahmed, Mohamed Abou-Zeid

Abstract:

Strengthening of reinforced concrete beams in flexure using externally bonded composite laminate of high tensile strength is easy and of the minimum cost compared to traditional methods such as increasing the concrete section depth or reinforcement that requires formwork and curing which affect the structure usability. One of the main limitations of this technique is debonding of the externally bonded laminate, either by end delamination or by mid-span flexural crack-induced debonding. ACI 440.2-08 suggests that using side-bonded FRP laminate in the flexural strengthening of RC beams may serve to limit the extent and width of flexural cracks. Consequently, this technique may decrease the effect of flexural cracks on initiating the mid-span debonding; i.e. delays the flexural crack-induced debonding. Furthermore, bonding the FRP strips to the side of the beam may offer an attractive, practical solution when the soffit of this beam is not accessible. This paper presents an experimental programme designed to investigate the effect of using externally bonded CFRP laminate on the sides of reinforced concrete beams and compares the results to those of bonding the CFRP laminate to the soffit of the beams. In addition, the paper discusses the effect of using end anchorage by U-wrapping the CFRP strips at their end zones with CFRP sheets for beams strengthened with soffit-bonded and side-bonded CFRP strips. Thus, ten rectangular reinforced concrete beams were tested to failure in order to study the effect of changing the location of the externally bonded laminate on the flexural capacity and ductility of the strengthened beams. Pultruded CFRP strips were bonded to the soffit of the beams or their sides to check the possibility of limiting the flexural cracking in mid-span region, which is the main reason for mid-span debonding. Pre-peg CFRP sheets were used near the support as U-wrap for the beam to act as an end-anchorage for the externally bonded strips in order to delay/prevent the end delamination. Strength gains of 38% and 43% were recorded for the soffit-bonded and the side-bonded composite strips with end U-wrapped sheets, respectively. Furthermore, beams with end sheets applied as an end anchorage showed higher ductility than those without these sheets.

Keywords: flexural strengthening, externally bonded CFRP, side-bonded CFRP, CFRP laminates

Procedia PDF Downloads 347
19907 Alignment between Governance Structures and Food Safety Standards on the Shrimp Supply Chain in Indonesia

Authors: Maharani Yulisti, Amin Mugera, James Fogarty

Abstract:

Food safety standards have received significant attention in the fisheries global market due to health issues, free trade agreements, and increasing aquaculture production. Vertical coordination throughout the supply chain of fish producing and exporting countries is needed to meet food safety demands imposed by importing countries. However, the complexities of the supply chain governance structures and difficulties in standard implementation can generate safety uncertainty and high transaction costs. Using a Transaction Cost Economics framework, this paper examines the alignment between food safety standards and the governance structures in the shrimp supply chain in Indonesia. We find the supply chain is organized closer to the hierarchy-like governance structure where private standard (organic standard) are implemented and more towards a market-like governance structure where public standard (IndoGAP certification) are more prevalent. To verify the statements, two cases are examined from Sidoarjo district as a centre of shrimp production in Indonesia. The results show that public baseline FSS (Food Safety Standards) need additional mechanism to achieve a coordinated chain-wide response because uncertainty, asset specificity, and performance measurement problems are high in this chain. Organic standard as private chain-wide FSS is more efficient because it has been achieved by hierarchical-like type of governance structure.

Keywords: governance structure, shrimp value chain, food safety standards, transaction costs economics

Procedia PDF Downloads 363
19906 Criteria for Assessing Prostate Structure after Proton Radiotherapy for Prostate Cancer

Authors: Kuplevatsky V., Kuplevatskay, Cherkashin M., Berezina N.

Abstract:

After 6 months, a violation of the differentiation of the structure of the gland due to edema in 100%. 20% retained signs of a tumor according to DWI/ADC data. By 12 months, the reduction in the size of the gland is 100%. In all cases, no diffusion restriction was observed. The study after 18 months showed no significant changes in all (100%) patients. In the study, 24 months after treatment, the size of the gland was stable in all cases (+/- up to 5%). Diffuse decrease in T2VI signals from peripheral zones, without signs of diffusion restriction in 100%. After 30 months, signs of recovery of adenomatous changes in the transient zone were revealed in 85%. After 36 and 42 months, the restoration of organ differentiation was observed in 93% of patients. In 4 patients, by the 48th month, signs of biochemical relapse were clinically noted. According to the MRI data, signs of a local relapse were revealed. After 48 months, there were signs of restoration of organ differentiation, which allowed the use of PI-RADS criteria. The study after 54 months showed no changes compared to the control. 60 months after treatment, 97% of patients showed a restoration of differentiation of the gland structure, which allows evaluating the organ according to PI-RADS criteria Conclusions: The beginning of restoration of the structure of the prostate gland began 24 months after proton radiation therapy, the PI-RADS criteria can be fully applied after 48 months of treatment. Control studies every 6 months without clinical signs of relapse are not advisable. Local control of the prostate tumor after proton radiation therapy was achieved in 95% of patients during the entire follow-up period ( 60 months).

Keywords: proton therapy, prostate cancer, MRI imaging, PI-RADS

Procedia PDF Downloads 96
19905 Exploring Framing Effect and Repetition Effect of the Persuasive Message on Moral Decision Making in Conflict of Interests

Authors: Sae-Yeon Seong, EunSun Chung, Dongjoo Chin

Abstract:

Conflict of interest (COI) is one of the dominant circumstantial factors of moral corruption across various fields. Several management strategies have been proposed to prevent self-interested decision making in COIs. Among these strategies, message persuasion has been considered as a practical and effective approach. Framing and repetition are two of the major factors in the persuasion effect of message. Therefore, their effect on moral decision making in COI should be explored systematically. The purpose of this study was to compare the differential effects of positively framed message and negatively framed message, and secondly, to investigate how the effectiveness of persuasive message changes through repetitive exposures. A total of 63 participants were randomly assigned to one of 3 framing conditions: positive framing, negative framing, and no-message condition. Prior to the online experiment involving a consultation task, the differently framed persuasive message was presented to the participants. This process was repeated four times in a row. The results showed that participants with positive-framing message were less likely to provide self-interested consultation than participants in the no-message condition. Also, a U-shaped quadric relation between repetition and self-interest consultation was found. Implications and limitations are further discussed.

Keywords: conflicts of interest, persuasive message, framing effect, repetition effect, self-interested behavior

Procedia PDF Downloads 160
19904 Developing Sustainable Rammed Earth Material Using Pulp Mill Fly Ash as Cement Replacement

Authors: Amin Ajabi, Chinchu Cherian, Sumi Siddiqua

Abstract:

Rammed earth (RE) is a traditional soil-based building material made by compressing a mixture of natural earth and binder ingredients such as chalk or lime, in temporary formworks. However, the modern RE uses 5 to 10% cement as a binder in order to meet the strength and durability requirements as per the standard specifications and guidelines. RE construction is considered to be an energy-efficient and environmental-friendly approach when compared to conventional concrete systems, which use 20 to 30% cement. The present study aimed to develop RE mix designs by utilizing non-hazardous wood-based fly ash generated by pulp and paper mills as a partial replacement for cement. The pulp mill fly ash (PPFA)-stabilized RE is considered to be a sustainable approach keeping in view of the massive carbon footprints associated with cement production as well as the adverse environmental impacts due to disposal of PPFA in landfills. For the experimental study, as-received PPFA, as well as PPFA-based geopolymer (synthesized by alkaline activation method), were incorporated as cement substitutes in the RE mixtures. Initially, local soil was collected and characterized by index and engineering properties. The PPFA was procured from a pulp manufacturing mill, and its physicochemical, mineralogical and morphological characterization, as well as environmental impact assessment, was conducted. Further, the various mix designs of RE material incorporating local soil and different proportions of cement, PPFA, and alkaline activator (a mixture of sodium silicate and sodium hydroxide solutions) were developed. The compacted RE specimens were cured and tested for 7-day and 28-day unconfined compressive strength (UCS) variations. Based on UCS results, the optimum mix design was identified corresponding to maximum strength improvement. Further, the cured RE specimens were subjected to freeze-thaw cycle testing for evaluating its performance and durability as a sustainable construction technique under extreme climatic conditions.

Keywords: sustainability, rammed earth, stabilization, pulp mill fly ash, geopolymer, alkaline activation, strength, durability

Procedia PDF Downloads 95
19903 The Cracks Propagation Monitoring of a Cantilever Beam Using Modal Analysis

Authors: Morteza Raki, Abolghasem Zabihollah, Omid Askari

Abstract:

Cantilever beam is a simplified sample of a lot of mechanical components used in a wide range of applications, including many industries such as gas turbine blade. Due to the nature of the operating conditions, beams are subject to variety of damages especially crack propagates. Crack propagation may lead to catastrophic failure during operation. Therefore, online detection of crack presence and its propagation is very important and may reduce possible significant cost of the whole system failure. This paper aims to investigate the effect of cracks presence and crack propagation on one end fixed beam`s vibration. A finite element model will be developed for the blade in which the modal response of the structure with and without crack will be studied. 

Keywords: blade, crack propagation, health monitoring, modal analysis

Procedia PDF Downloads 333
19902 Evaluating the Seismic Stress Distribution in the High-Rise Structures Connections with Optimal Bracing System

Authors: H. R. Vosoughifar, Seyedeh Zeinab. Hosseininejad, Nahid Shabazi, Seyed Mohialdin Hosseininejad

Abstract:

In recent years, structure designers advocate further application of energy absorption devices for lateral loads damping. The Un-bonded Braced Frame (UBF) system is one of the efficient damping systems, which is made of a smart combination of steel and concrete or mortar. In this system, steel bears the earthquake-induced axial force as compressive or tension forces without loss of strength. Concrete or mortar around the steel core acts as a constraint for brace and prevents brace buckling during seismic axial load. In this study, the optimal bracing system in the high-rise structures has been evaluated considering the seismic stress distribution in the connections. An actual 18-story structure was modeled using the proper Finite Element (FE) software where braced with UBF, Eccentrically Braced Frames (EBF) and Concentrically Braced Frame (CBF) systems. Nonlinear static pushover and time-history analyses are then performed so that the acquired results demonstrate that the UBF system reduces drift values in the high-rise buildings. Further statistical analyses show that there is a significant difference between the drift values of UBF system compared with those resulted from the EBF and CBF systems. Hence, the seismic stress distribution in the connections of the proposed structure which braced with UBF system was investigated.

Keywords: optimal bracing system, high-rise structure, finite element analysis (FEA), seismic stress

Procedia PDF Downloads 422
19901 Effect of Climate Change on Rainfall Induced Failures for Embankment Slopes in Timor-Leste

Authors: Kuo Chieh Chao, Thishani Amarathunga, Sangam Shrestha

Abstract:

Rainfall induced slope failures are one of the most damaging and disastrous natural hazards which occur frequently in the world. This type of sliding mainly occurs in the zone above the groundwater level in silty/sandy soils. When the rainwater begins to infiltrate into the vadose zone of the soil, the negative pore-water pressure tends to decrease and reduce the shear strength of soil material. Climate change has resulted in excessive and unpredictable rainfall in all around the world, resulting in landslides with dire consequences to human lives and infrastructure. Such problems could be overcome by examining in detail the causes for such slope failures and recommending effective repair plans for vulnerable locations by considering future climatic change. The selected area for this study is located in the road rehabilitation section from Maubara to Mota Ain road in Timor-Leste. Slope failures and cracks have occurred in 2013 and after repairs reoccurred again in 2017 subsequent to heavy rains. Both observed and future predicted climate data analyses were conducted to understand the severe precipitation conditions in past and future. Observed climate data were collected from NOAA global climate data portal. CORDEX data portal was used to collect Regional Climate Model (RCM) future predicted climate data. Both observed and RCM data were extracted to location-based data using ArcGIS Software. Linear scaling method was used for the bias correction of future data and bias corrected climate data were assigned to GeoStudio Software. Precipitations of wet seasons (December to March ) in 2007 to 2013 is higher than 2001-2006 period and it is more than nearly 40% higher precipitation than usual monthly average precipitation of 160mm.The results of seepage analyses which were carried out using SEEP/W model with observed climate, clearly demonstrated that the pore water pressure within the fill slope was significantly increased due to the increase of the infiltration during the wet season of 2013.One main Regional Climate Models (RCM) was analyzed in order to predict future climate variation under two Representative Concentration Pathways (RCPs).In the projected period of 76 years ahead from 2014, shows that the amount of precipitation is considerably getting higher in the future in both RCP 4.5 and RCP 8.5 emission scenarios. Critical pore water pressure conditions during 2014-2090 were used in order to recommend appropriate remediation methods. Results of slope stability analyses indicated that the factor of safety of the fill slopes was reduced from 1.226 to 0.793 during the dry season to wet season in 2013.Results of future slope stability which were obtained using SLOPE/W model for the RCP emissions scenarios depict that, the use of tieback anchors and geogrids in slope protection could be effective in increasing the stability of slopes to an acceptable level during the wet seasons. Moreover, methods and procedures like monitoring of slopes showing signs or susceptible for movement and installing surface protections could be used to increase the stability of slopes.

Keywords: climate change, precipitation, SEEP/W, SLOPE/W, unsaturated soil

Procedia PDF Downloads 128