Search results for: time-to-event data
22465 An Exploratory Sequential Design: A Mixed Methods Model for the Statistics Learning Assessment with a Bayesian Network Representation
Authors: Zhidong Zhang
Abstract:
This study established a mixed method model in assessing statistics learning with Bayesian network models. There are three variants in exploratory sequential designs. There are three linked steps in one of the designs: qualitative data collection and analysis, quantitative measure, instrument, intervention, and quantitative data collection analysis. The study used a scoring model of analysis of variance (ANOVA) as a content domain. The research study is to examine students’ learning in both semantic and performance aspects at fine grain level. The ANOVA score model, y = α+ βx1 + γx1+ ε, as a cognitive task to collect data during the student learning process. When the learning processes were decomposed into multiple steps in both semantic and performance aspects, a hierarchical Bayesian network was established. This is a theory-driven process. The hierarchical structure was gained based on qualitative cognitive analysis. The data from students’ ANOVA score model learning was used to give evidence to the hierarchical Bayesian network model from the evidential variables. Finally, the assessment results of students’ ANOVA score model learning were reported. Briefly, this was a mixed method research design applied to statistics learning assessment. The mixed methods designs expanded more possibilities for researchers to establish advanced quantitative models initially with a theory-driven qualitative mode.Keywords: exploratory sequential design, ANOVA score model, Bayesian network model, mixed methods research design, cognitive analysis
Procedia PDF Downloads 17922464 The Analysis of Differential Item and Test Functioning between Sexes by Studying on the Scholastic Aptitude Test 2013
Authors: Panwasn Mahalawalert
Abstract:
The purposes of this research were analyzed differential item functioning and differential test functioning of SWUSAT aptitude test classification by sex variable. The data used in this research is the secondary data from Srinakharinwirot University Scholastic Aptitude Test 2013 (SWUSAT). SWUSAT test consists of four subjects. There are verbal ability test, number ability test, reasoning ability test and spatial ability test. The data analysis was analyzed in 2 steps. The first step was analyzing descriptive statistics. In the second step were analyzed differential item functioning (DIF) and differential test functioning (DTF) by using the DIFAS program. The research results were as follows: The results of DIF and DTF analysis for all 10 tests in year 2013. Gender was the characteristic that found DIF all 10 tests. The percentage of item number that found DIF is between 6.67% - 60%. There are 5 tests that most of items favors female group and 2 tests that most of items favors male group. There are 3 tests that the number of items favors female group equal favors male group. For Differential test functioning (DTF), there are 8 tests that have small level.Keywords: aptitude test, differential item functioning, differential test functioning, educational measurement
Procedia PDF Downloads 41222463 Terrestrial Laser Scans to Assess Aerial LiDAR Data
Authors: J. F. Reinoso-Gordo, F. J. Ariza-López, A. Mozas-Calvache, J. L. García-Balboa, S. Eddargani
Abstract:
The DEMs quality may depend on several factors such as data source, capture method, processing type used to derive them, or the cell size of the DEM. The two most important capture methods to produce regional-sized DEMs are photogrammetry and LiDAR; DEMs covering entire countries have been obtained with these methods. The quality of these DEMs has traditionally been evaluated by the national cartographic agencies through punctual sampling that focused on its vertical component. For this type of evaluation there are standards such as NMAS and ASPRS Positional Accuracy Standards for Digital Geospatial Data. However, it seems more appropriate to carry out this evaluation by means of a method that takes into account the superficial nature of the DEM and, therefore, its sampling is superficial and not punctual. This work is part of the Research Project "Functional Quality of Digital Elevation Models in Engineering" where it is necessary to control the quality of a DEM whose data source is an experimental LiDAR flight with a density of 14 points per square meter to which we call Point Cloud Product (PCpro). In the present work it is described the capture data on the ground and the postprocessing tasks until getting the point cloud that will be used as reference (PCref) to evaluate the PCpro quality. Each PCref consists of a patch 50x50 m size coming from a registration of 4 different scan stations. The area studied was the Spanish region of Navarra that covers an area of 10,391 km2; 30 patches homogeneously distributed were necessary to sample the entire surface. The patches have been captured using a Leica BLK360 terrestrial laser scanner mounted on a pole that reached heights of up to 7 meters; the position of the scanner was inverted so that the characteristic shadow circle does not exist when the scanner is in direct position. To ensure that the accuracy of the PCref is greater than that of the PCpro, the georeferencing of the PCref has been carried out with real-time GNSS, and its accuracy positioning was better than 4 cm; this accuracy is much better than the altimetric mean square error estimated for the PCpro (<15 cm); The kind of DEM of interest is the corresponding to the bare earth, so that it was necessary to apply a filter to eliminate vegetation and auxiliary elements such as poles, tripods, etc. After the postprocessing tasks the PCref is ready to be compared with the PCpro using different techniques: cloud to cloud or after a resampling process DEM to DEM.Keywords: data quality, DEM, LiDAR, terrestrial laser scanner, accuracy
Procedia PDF Downloads 10022462 A Comparative Study of Burnout and Coping Strategies between HIV Counselors: Face to Face and Online Counseling Services in Addis Ababa
Authors: Yemisrach Mihertu Amsale
Abstract:
The purpose of this study was to compare burnout and coping strategies between HIV counselors in face to face and online counseling settings in Addis Ababa. The study was mixed approach design that was quantitative and qualitative. For the quantitative data the participants involved in this study included 64 face to face and 47 online HIV counselors in both counseling settings. In addition, 23 participants were involved to offer qualitative data from both counseling settings. For the purpose of gathering the quantitative data, the instruments, namely, demographic questionnaire, Maslach Burnout Inventory and the COPE questionnaire, were used to gather quantitative data. Qualitative data was also gathered in the FGD Guide and Interview Guide. Thus, this study revealed that HIV counselors in online counseling settings scored high on emotional exhaustion, depersonalization and low in personal accomplishment dimensions of burnout as compared to HIV counselors in face to face setting and the difference was statistically significant in emotional exhaustion and personal accomplishment, but there was no a significant difference on depersonalization dimension of burnout between the two groups. In addition, the present study revealed a statistically significant difference on problem focused coping strategy between the two groups and yet for on the emotion focused coping strategy the difference was not statistically significant. Statistically negative correlation was observed between some demographic variables such as age with emotional exhaustion and depersonalization dimensions of burnout; years of experiences and personal accomplishment dimension of burnout. A statistically positive correlation was also observed between average number of clients served per day and emotional exhaustion. Sex was having a statistically positive correlation with coping strategy. Lastly, a significant positive correlation was also observed in the emotional exhaustion dimension of the burnout and the emotional focused coping strategy. Generally, this study has shown that HIV counselors suffer from moderate to high level of burnout. Based on the findings, conclusions were made and recommendations were forwarded.Keywords: counseling, burnout management, psychological, behavioral sciences
Procedia PDF Downloads 30522461 Video Analytics on Pedagogy Using Big Data
Authors: Jamuna Loganath
Abstract:
Education is the key to the development of any individual’s personality. Today’s students will be tomorrow’s citizens of the global society. The education of the student is the edifice on which his/her future will be built. Schools therefore should provide an all-round development of students so as to foster a healthy society. The behaviors and the attitude of the students in school play an essential role for the success of the education process. Frequent reports of misbehaviors such as clowning, harassing classmates, verbal insults are becoming common in schools today. If this issue is left unattended, it may develop a negative attitude and increase the delinquent behavior. So, the need of the hour is to find a solution to this problem. To solve this issue, it is important to monitor the students’ behaviors in school and give necessary feedback and mentor them to develop a positive attitude and help them to become a successful grownup. Nevertheless, measuring students’ behavior and attitude is extremely challenging. None of the present technology has proven to be effective in this measurement process because actions, reactions, interactions, response of the students are rarely used in the course of the data due to complexity. The purpose of this proposal is to recommend an effective supervising system after carrying out a feasibility study by measuring the behavior of the Students. This can be achieved by equipping schools with CCTV cameras. These CCTV cameras installed in various schools of the world capture the facial expressions and interactions of the students inside and outside their classroom. The real time raw videos captured from the CCTV can be uploaded to the cloud with the help of a network. The video feeds get scooped into various nodes in the same rack or on the different racks in the same cluster in Hadoop HDFS. The video feeds are converted into small frames and analyzed using various Pattern recognition algorithms and MapReduce algorithm. Then, the video frames are compared with the bench marking database (good behavior). When misbehavior is detected, an alert message can be sent to the counseling department which helps them in mentoring the students. This will help in improving the effectiveness of the education process. As Video feeds come from multiple geographical areas (schools from different parts of the world), BIG DATA helps in real time analysis as it analyzes computationally to reveal patterns, trends, and associations, especially relating to human behavior and interactions. It also analyzes data that can’t be analyzed by traditional software applications such as RDBMS, OODBMS. It has also proven successful in handling human reactions with ease. Therefore, BIG DATA could certainly play a vital role in handling this issue. Thus, effectiveness of the education process can be enhanced with the help of video analytics using the latest BIG DATA technology.Keywords: big data, cloud, CCTV, education process
Procedia PDF Downloads 24022460 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models
Authors: Jay L. Fu
Abstract:
Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction
Procedia PDF Downloads 14322459 The Effect of Group Counseling Program on 9th Grade Students' Assertiveness Levels
Authors: Ismail Seçer, Kerime Meryem Dereli̇oğlu
Abstract:
This study is conducted to determine the effects of group counseling program on secondary school 9th grade students’ assertiveness skills. The study group was formed of 100 students who have received education in Erzurum Kültür Elementary School in 2015-2016 education years. RAE-Rathus Assertiveness Schedule developed by Voltan Acar was applied on this group to gather data. 40 students who got lower grades from the inventory were divided randomly into experimental and control groups. Each group is formed of 20 students. Group counseling program was carried out on the experimental group to improve the students’ assertiveness skills for 8 weeks. Single-way and two-way analysis of covariance (ANCOVA) were used in the analysis of the data. The data was analyzed by using the SPSS 19.00. The results of the study show that assertiveness skills of the students who participate in the group counseling program increased meaningfully compared to the control group and pre-experiment. Besides, it was determined that the change observed in the experimental group occurred separately from the age and socio-economic level variables, and it was determined with the monitoring test applied after four months that this affect was continued. According to this result, it can be said that the applied group counseling program is an effective means to improve the assertiveness skills of secondary school students.Keywords: high school, assertiveness, assertiveness inventory, assertiveness education
Procedia PDF Downloads 24622458 Peak Data Rate Enhancement Using Switched Micro-Macro Diversity in Cellular Multiple-Input-Multiple-Output Systems
Authors: Jihad S. Daba, J. P. Dubois, Yvette Antar
Abstract:
With the exponential growth of cellular users, a new generation of cellular networks is needed to enhance the required peak data rates. The co-channel interference between neighboring base stations inhibits peak data rate increase. To overcome this interference, multi-cell cooperation known as coordinated multipoint transmission is proposed. Such a solution makes use of multiple-input-multiple-output (MIMO) systems under two different structures: Micro- and macro-diversity. In this paper, we study the capacity and bit error rate in cellular networks using MIMO technology. We analyse both micro- and macro-diversity schemes and develop a hybrid model that switches between macro- and micro-diversity in the case of hard handoff based on a cut-off range of signal-to-noise ratio values. We conclude that our hybrid switched micro-macro MIMO system outperforms classical MIMO systems at the cost of increased hardware and software complexity.Keywords: cooperative multipoint transmission, ergodic capacity, hard handoff, macro-diversity, micro-diversity, multiple-input-multiple output systems, orthogonal frequency division multiplexing
Procedia PDF Downloads 31222457 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 13322456 The Opinions of Counselor Candidates' regarding Universal Values in Marriage Relationship
Authors: Seval Kizildag, Ozge Can Aran
Abstract:
The effective intervention of counselors’ in conflict between spouses may be effective in increasing the quality of marital relationship. At this point, it is necessary for counselors to consider their own value systems at first and then reflect this correctly to the counseling process. For this reason, it is primarily important to determine the needs of counselors. Starting from this point of view, in this study, it is aimed to reveal the perspective of counselor candidates about the universal values in marriage relation. The study group of the survey was formed by sampling, which is one of the prospective sampling methods. As a criterion being a candidate for counseling area and having knowledge of the concepts of the Marriage and Family Counseling course is based, because, that candidate students have a comprehensive knowledge of the field and that students have mastered the concepts of marriage and family counseling will strengthen the findings of this study. For this reason, 61 counselor candidates, 32 (52%) female and 29 (48%) male counselor candidates, who were about to graduate from a university in south-east Turkey and who took a Marriage and Family Counseling course, voluntarily participated in the study. The average age of counselor candidates’ is 23. At the same time, 70 % of the parents of these candidates brought about their marriage through arranged marriage, 13% through flirting, 8% by relative marriage, 7% through friend circles and 2% by custom. The data were collected through Demographic Information Form and a form titled ‘Universal Values Form in Marriage’ which consists of six questions prepared by researchers. After the data were transferred to the computer, necessary statistical evaluations were made on the data. The qualitative data analysis was used on the data which was obtained in the study. The universal values which include six basic values covering trustworthiness, respect, responsibility, fairness, caring, citizenship, determined under the name as ‘six pillar of character’ are used as base and frequency values of the data were calculated trough content analysis. According to the findings of the study, while the value which most students find the most important value in marriage relation is being reliable, the value which they find the least important is to have citizenship consciousness. Also in this study, it is found out that counselor candidates associate the value of being trustworthiness ‘loyalty’ with (33%) as the highest in terms of frequency, the value of being respect ‘No violence’ with (23%), the value of responsibility ‘in the context of gender roles and spouses doing their owns’ with (35%) the value of being fairness ‘impartiality’ with (25%), the value of being caring ‘ being helpful’ with (25%) and finally as to the value of citizenship ‘love of country’ with (14%) and’ respect for the laws ‘ with (14%). It is believed that these results of the study will contribute to the arrangements for the development of counseling skills for counselor candidates regarding value in marriage and family counseling curricula.Keywords: caring, citizenship, counselor candidate, fairness, marriage relationship, respect, responsibility, trustworthiness, value system
Procedia PDF Downloads 27122455 Multivariate Data Analysis for Automatic Atrial Fibrillation Detection
Authors: Zouhair Haddi, Stephane Delliaux, Jean-Francois Pons, Ismail Kechaf, Jean-Claude De Haro, Mustapha Ouladsine
Abstract:
Atrial fibrillation (AF) has been considered as the most common cardiac arrhythmia, and a major public health burden associated with significant morbidity and mortality. Nowadays, telemedical approaches targeting cardiac outpatients situate AF among the most challenged medical issues. The automatic, early, and fast AF detection is still a major concern for the healthcare professional. Several algorithms based on univariate analysis have been developed to detect atrial fibrillation. However, the published results do not show satisfactory classification accuracy. This work was aimed at resolving this shortcoming by proposing multivariate data analysis methods for automatic AF detection. Four publicly-accessible sets of clinical data (AF Termination Challenge Database, MIT-BIH AF, Normal Sinus Rhythm RR Interval Database, and MIT-BIH Normal Sinus Rhythm Databases) were used for assessment. All time series were segmented in 1 min RR intervals window and then four specific features were calculated. Two pattern recognition methods, i.e., Principal Component Analysis (PCA) and Learning Vector Quantization (LVQ) neural network were used to develop classification models. PCA, as a feature reduction method, was employed to find important features to discriminate between AF and Normal Sinus Rhythm. Despite its very simple structure, the results show that the LVQ model performs better on the analyzed databases than do existing algorithms, with high sensitivity and specificity (99.19% and 99.39%, respectively). The proposed AF detection holds several interesting properties, and can be implemented with just a few arithmetical operations which make it a suitable choice for telecare applications.Keywords: atrial fibrillation, multivariate data analysis, automatic detection, telemedicine
Procedia PDF Downloads 26822454 Study of Components and Effective Factors on Organizational Commitment of Khoramabad Branchs Islamic Azad University’s Faculty Members
Authors: Mehry Daraei
Abstract:
The goal of this study was to survey the components and affective factors on organizational commitment of Islamic Azad university Khoramabad Baranch’s faculty members. The research method was correlation by causal modeling and data were gathered by questionnaire. Statistical society consisted of 147 faculty members in Islamic Azad University Khoramabad Branch and sample size was determined as 106 persons by Morgan’s sample table that were selected by class sampling. Correlation test, T-single group test and path analysis test were used for analysis of data. Data were analyzed by Lisrel software. The results showed that organizational corporate was the most effective element on organizational commitment and organizational corporate, experience work and organizational justice were only in direct relation with organizational commitment. Also, job security had direct and indirect effect on OC. Job security had effect on OC by gender. Gender variable had direct and indirect effect on OC. Gender had effect on OC by organizational corporate. Job opportunities out of university also had direct and indirect effect on OC, which means job opportunities had indirect effect on OC by organizational corporate.Keywords: organization, commitment, job security, Islamic Azad University
Procedia PDF Downloads 32322453 A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling
Authors: Addin Osman, Anwar Ali Yahya, Mohammed Basit Kamal
Abstract:
Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.Keywords: ABET, accreditation, benchmark collection, machine learning, program educational objectives, student outcomes, supervised multi-class classification, text mining
Procedia PDF Downloads 17322452 Heavy Vehicle Traffic Estimation Using Automatic Traffic Recorders/Weigh-In-Motion Data: Current Practice and Proposed Methods
Authors: Muhammad Faizan Rehman Qureshi, Ahmed Al-Kaisy
Abstract:
Accurate estimation of traffic loads is critical for pavement and bridge design, among other transportation applications. Given the disproportional impact of heavier axle loads on pavement and bridge structures, truck and heavy vehicle traffic is expected to be a major determinant of traffic load estimation. Further, heavy vehicle traffic is also a major input in transportation planning and economic studies. The traditional method for estimating heavy vehicle traffic primarily relies on AADT estimation using Monthly Day of the Week (MDOW) adjustment factors as well as the percent heavy vehicles observed using statewide data collection programs. The MDOW factors are developed using daily and seasonal (or monthly) variation patterns for total traffic, consisting predominantly of passenger cars and other smaller vehicles. Therefore, while using these factors may yield reasonable estimates for total traffic (AADT), such estimates may involve a great deal of approximation when applied to heavy vehicle traffic. This research aims at assessing the approximation involved in estimating heavy vehicle traffic using MDOW adjustment factors for total traffic (conventional approach) along with three other methods of using MDOW adjustment factors for total trucks (class 5-13), combination-unit trucks (class 8-13), as well as adjustment factors for each vehicle class separately. Results clearly indicate that the conventional method was outperformed by the other three methods by a large margin. Further, using the most detailed and data intensive method (class-specific adjustment factors) does not necessarily yield a more accurate estimation of heavy vehicle traffic.Keywords: traffic loads, heavy vehicles, truck traffic, adjustment factors, traffic data collection
Procedia PDF Downloads 2322451 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model
Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David
Abstract:
The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an artificial neural network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study includes granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R²), Root mean square error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.Keywords: national development, granite, profitability assessment, ANN models
Procedia PDF Downloads 10122450 Mobile Devices and E-Learning Systems as a Cost-Effective Alternative for Digitizing Paper Quizzes and Questionnaires in Social Work
Authors: K. Myška, L. Pilařová
Abstract:
The article deals with possibilities of using cheap mobile devices with the combination of free or open source software tools as an alternative to professional hardware and software equipment. Especially in social work, it is important to find cheap yet functional solution that can compete with complex but expensive solutions for digitizing paper materials. Our research was focused on the analysis of cheap and affordable solutions for digitizing the most frequently used paper materials that are being commonly used by terrain workers in social work. We used comparative analysis as a research method. Social workers need to process data from paper forms quite often. It is still more affordable, time and cost-effective to use paper forms to get feedback in many cases. Collecting data from paper quizzes and questionnaires can be done with the help of professional scanners and software. These technologies are very powerful and have advanced options for digitizing and processing digitized data, but are also very expensive. According to results of our study, the combination of open source software and mobile phone or cheap scanner can be considered as a cost-effective alternative to professional equipment.Keywords: digitalization, e-learning, mobile devices, questionnaire
Procedia PDF Downloads 15122449 Sri Lanka-Middle East Labour Migration Corridor: Trends, Patterns and Structural Changes
Authors: Dinesha Siriwardhane, Indralal De Silva, Sampath Amaratunge
Abstract:
Objective of this study is to explore the recent trends, patterns and the structural changes in the labour migration from Sri Lanka to Middle East countries and to discuss the possible impacts of those changes on the remittance flow. Study uses secondary data published by Sri Lanka Bureau of Foreign Employment and Central Bank. Thematic analysis of the secondary data revealed that the migration for labour has increased rapidly during past decades. Parallel with that the gender and the skill composition of the migration flow has been changing. Similarly, the destinations for male migration have changed over the period. These show positive implications on the international remittance receipts to the country.Keywords: migration, middle east, Sri Lanka, social sciences
Procedia PDF Downloads 39922448 Consonant Harmony and the Challenges of Articulation and Perception
Authors: Froogh Shooshtaryzadeh, Pramod Pandey
Abstract:
The present study investigates place and manner harmony in typically developing (TD) children and children with phonological disorder (PD) who are acquiring Farsi as their first language. Five TD and five PD children are examined regarding their place and manner harmony patterns. Data is collected through a Picture-Naming Task using 132 pictures of different items designed to elicit the production of 132 different words. The examination of the data has indicated some similarities and differences in harmony patterns in PD and TD children. Moreover, the results of this study on the place and manner harmony have illustrated some differences with the results of the preceding studies on languages other than Farsi. The results of this study are discussed and compared with results from other studies. Optimality Theory is employed to explain some of the findings of this study.Keywords: place harmony, manner harmony, phonological development, Farsi
Procedia PDF Downloads 31322447 Assessment of Biofuel Feedstock Production on Arkansas State Highway Transportation Department's Marginalized Lands
Authors: Ross J. Maestas
Abstract:
Biofuels are derived from multiple renewable bioenergy feedstocks including animal fats, wood, starchy grains, and oil seeds. Transportation agencies have considered growing the latter two on underutilized and nontraditional lands that they manage, such as in the Right of Way (ROW), abandoned weigh stations, and at maintenance yards. These crops provide the opportunity to generate revenue or supplement fuel once converted and offer a solution to increasing fuel costs and instability by creating a ‘home-grown’ alternative. Biofuels are non-toxic, biodegradable, and emit less Green House Gasses (GHG) than fossil fuels, therefore allowing agencies to meet sustainability goals and regulations. Furthermore, they enable land managers to achieve soil erosion and roadside aesthetic strategies. The research sought to understand if the cultivation of a biofuel feedstock within the Arkansas State Highway Transportation Department’s (AHTD) managed and marginalized lands is feasible by identifying potential land areas and crops. To determine potential plots the parcel data was downloaded from Arkansas’s GIS office. ArcGIS was used to query the data for all variations of the names of property owned by AHTD and a KML file was created that identifies the queried parcel data in Google Earth. Furthermore, biofuel refineries in the state were identified to optimize the harvest to transesterification process. Agricultural data was collected from federal and state agencies and universities to assess various oil seed crops suitable for conversion and suited to grow in Arkansas’s climate and ROW conditions. Research data determined that soybean is the best adapted biofuel feedstock for Arkansas with camelina and canola showing possibilities as well. Agriculture is Arkansas’s largest industry and soybean is grown in over half of the state’s counties. Successful cultivation of a feedstock in the aforementioned areas could potentially offer significant employment opportunity for which the skilled farmers already exist. Based on compiled data, AHTD manages 21,489 acres of marginalized land. The result of the feasibility assessment offer suggestions and guidance should AHTD decide to further investigate this type of initiative.Keywords: Arkansas highways, biofuels, renewable energy initiative, marginalized lands
Procedia PDF Downloads 32922446 Evaluating Impact of Teacher Professional Development Program on Students’ Learning
Authors: S. C. Lin, W. W. Cheng, M. S. Wu
Abstract:
This study attempted to investigate the connection between teacher professional development program and students’ Learning. This study took Readers’ Theater Teaching Program (RTTP) for professional development as an example to inquiry how participants apply their new knowledge and skills learned from RTTP to their teaching practice and how the impact influence students learning. The goals of the RTTP included: 1) to enhance teachers RT content knowledge; 2) to implement RT instruction in teachers’ classrooms in response to their professional development. 2) to improve students’ ability of reading fluency in professional development teachers’ classrooms. This study was a two-year project. The researchers applied mixed methods to conduct this study including qualitative inquiry and one-group pretest-posttest experimental design. In the first year, this study focused on designing and implementing RTTP and evaluating participants’ satisfaction of RTTP, what they learned and how they applied it to design their English reading curriculum. In the second year, the study adopted quasi-experimental design approach and evaluated how participants RT instruction influenced their students’ learning, including English knowledge, skill, and attitudes. The participants in this study composed two junior high school English teachers and their students. Data were collected from a number of different sources including teaching observation, semi-structured interviews, teaching diary, teachers’ professional development portfolio, Pre/post RT content knowledge tests, teacher survey, and students’ reading fluency tests. To analyze the data, both qualitative and quantitative data analysis were used. Qualitative data analysis included three stages: organizing data, coding data, and analyzing and interpreting data. Quantitative data analysis included descriptive analysis. The results indicated that average percentage of correct on pre-tests in RT content knowledge assessment was 40.75% with two teachers ranging in prior knowledge from 35% to 46% in specific RT content. Post-test RT content scores ranged from 70% to 82% correct with an average score of 76.50%. That gives teachers an average gain of 35.75% in overall content knowledge as measured by these pre/post exams. Teachers’ pre-test scores were lowest in script writing and highest in performing. Script writing was also the content area that showed the highest gains in content knowledge. Moreover, participants hold a positive attitude toward RTTP. They recommended that the approach of professional learning community, which was applied in RTTP was benefit to their professional development. Participants also applied the new skills and knowledge which they learned from RTTP to their practices. The evidences from this study indicated that RT English instruction significantly influenced students’ reading fluency and classroom climate. The result indicated that all of the experimental group students had a big progress in reading fluency after RT instruction. The study also found out several obstacles. Suggestions were also made.Keywords: teacher’s professional development, program evaluation, readers’ theater, english reading instruction, english reading fluency
Procedia PDF Downloads 39822445 Possible Risks for Online Orders in the Furniture Industry - Customer and Entrepreneur Perspective
Authors: Justyna Żywiołek, Marek Matulewski
Abstract:
Data, is information processed by enterprises for primary and secondary purposes as processes. Thanks to processing, the sales process takes place; in the case of the surveyed companies, sales take place online. However, this indirect form of contact with the customer causes many problems for both customers and furniture manufacturers. The article presents solutions that would solve problems related to the analysis of data and information in the order fulfillment process sent to post-warranty service. The article also presents an analysis of threats to the security of this information, both for customers and the enterprise.Keywords: ordering furniture online, information security, furniture industry, enterprise security, risk analysis
Procedia PDF Downloads 4822444 The Family Sense of Coherence of Early Childhood Education Students
Abstract:
The aim of this study is to examine the family sense of coherence of early childhood education students. The Family Sense of Coherence Inventory has applied to 233 (108 girls and 125 boys) early childhood education students in Turkey. At the stage of data collection, with the aim of determining the family sense of coherence of early childhood education students, Family Sense of Coherence Inventory which was developed by Çeçen (2007) was used. In the process of the analysis of data, independent samples t-test, and one-way ANOVA were used. According to the results of the study, there were significant differences between some demographic variables in terms of the family sense of coherence.Keywords: family sense of coherence, early childhood education students
Procedia PDF Downloads 16422443 Remote Learning During Pandemic: Malaysian Classroom
Authors: Hema Vanita Kesevan
Abstract:
The global spread of Covid-19 virus in early 2020 has led to major changes in many walks of life, including the education system. Traditional face to face lessons that were carried out for years has been replaced by online learning. Although online learning has been used before the pandemic, it has not been the only source of teaching and learning. This drastic change has brought significant impact to the process of teaching and learning in many classrooms around the world. Likewise, in country like Malaysia that that has been promoting online learning but has not utilize it fully due to many restrictions in terms of technology, accessibility, and online literacy, the sudden change to full online platform learning in all educational sector has definitely caused Issues in terms of its adaptation and usage. Although many studies have been conducted to explore the efficiency and impact of online learning during the pandemic, studies focusing on the same are limited in Malaysian classroom context, especially in English language classrooms. Thus, this study seeks to explore on the efficacy and effectiveness of online learning tools in ESL classroom contexts during the pandemic. The aim of this study is to understand the educator's and student's perceptions on the implementation of online learning tools in the teaching and learning process and the types of online learning tools that were used to assist the teaching and learning process during the pandemic. Particularly, this study focused to explore the types of online learning tools used in Malaysian schools and university during the online teaching and learning process and further explores how the various types of tools used impacted the students' participation in the lessons conducted. The participants of this study are secondary school students, teachers, and university students. Data will be collected in terms of survey questionnaire and interviews. The survey data intends to obtain information on the types of online learning used in ESL teaching and learning practices during the pandemic, how the various types of online tools influence students' participation during lessons. The interview data from the teachers serves to provide information about the selection of online learning tools, challenges of using it to conduct online lessons, and other arising issues. A mixed method design will be used to analysed the data obtained. The questionnaire will be analysed quantitatively using descriptive analysis meanwhile, the interview data will be analysed qualitatively.Keywords: Covid 19, online learning tools, ESL classroom, effectiveness, efficacy
Procedia PDF Downloads 23622442 The Influence of Intellectual Capital Disclosures on Market Capitalization Growth
Authors: Nyoman Wijana, Chandra Arha
Abstract:
Disclosures of Intellectual Capital (IC) is a presentation of corporate information assets that are not recorded in the financial statements. This disclosures is very helpful because it provides inform corporate assets are intangible. In the new economic era, the company's intangible assets will determine company's competitive advantage. This study aimed to examine the effect of IC disclosures on market capitalization growth. Observational studies conducted over ten years in 2002-2011. The purpose of this study was to determine the effect for last ten years. One hundred samples of the company's largest market capitalization in 2011 traced back to last ten years. Data that used, are in 2011, 2008, 2005, and 2002 Method that’s used for acquiring the data is content analysis. The analytical method used is Ordinanary Least Square (OLS) and analysis tools are e views 7 This software using Pooled Least Square estimation parameters are specifically designed for panel data. The results of testing analysis showed inconsistent expression levels affect the growth of the market capitalization in each year of observation. The results of this study are expected to motivate the public company in Indonesia to do more voluntary IC disclosures and encourage regulators to make regulations in a comprehensive manner so that all categories of the IC must be disclosed by the company.Keywords: IC disclosures, market capitalization growth, analytical method, OLS
Procedia PDF Downloads 34022441 Analysis of Temporal Factors Influencing Minimum Dwell Time Distributions
Authors: T. Pedersen, A. Lindfeldt
Abstract:
The minimum dwell time is an important part of railway timetable planning. Due to its stochastic behaviour, the minimum dwell time should be considered to create resilient timetables. While there has been significant focus on how to determine and estimate dwell times, to our knowledge, little research has been carried out regarding temporal and running direction variations of these. In this paper, we examine how the minimum dwell time varies depending on temporal factors such as the time of day, day of the week and time of the year. We also examine how it is affected by running direction and station type. The minimum dwell time is estimated by means of track occupation data. A method is proposed to ensure that only minimum dwell times and not planned dwell times are acquired from the track occupation data. The results show that on an aggregated level, the average minimum dwell times in both running directions at a station are similar. However, when temporal factors are considered, there are significant variations. The minimum dwell time varies throughout the day with peak hours having the longest dwell times. It is also found that the minimum dwell times are influenced by weekday, and in particular, weekends are found to have lower minimum dwell times than most other days. The findings show that there is a potential to significantly improve timetable planning by taking minimum dwell time variations into account.Keywords: minimum dwell time, operations quality, timetable planning, track occupation data
Procedia PDF Downloads 19822440 Advances in Design Decision Support Tools for Early-stage Energy-Efficient Architectural Design: A Review
Authors: Maryam Mohammadi, Mohammadjavad Mahdavinejad, Mojtaba Ansari
Abstract:
The main driving force for increasing movement towards the design of High-Performance Buildings (HPB) are building codes and rating systems that address the various components of the building and their impact on the environment and energy conservation through various methods like prescriptive methods or simulation-based approaches. The methods and tools developed to meet these needs, which are often based on building performance simulation tools (BPST), have limitations in terms of compatibility with the integrated design process (IDP) and HPB design, as well as use by architects in the early stages of design (when the most important decisions are made). To overcome these limitations in recent years, efforts have been made to develop Design Decision Support Systems, which are often based on artificial intelligence. Numerous needs and steps for designing and developing a Decision Support System (DSS), which complies with the early stages of energy-efficient architecture design -consisting of combinations of different methods in an integrated package- have been listed in the literature. While various review studies have been conducted in connection with each of these techniques (such as optimizations, sensitivity and uncertainty analysis, etc.) and their integration of them with specific targets; this article is a critical and holistic review of the researches which leads to the development of applicable systems or introduction of a comprehensive framework for developing models complies with the IDP. Information resources such as Science Direct and Google Scholar are searched using specific keywords and the results are divided into two main categories: Simulation-based DSSs and Meta-simulation-based DSSs. The strengths and limitations of different models are highlighted, two general conceptual models are introduced for each category and the degree of compliance of these models with the IDP Framework is discussed. The research shows movement towards Multi-Level of Development (MOD) models, well combined with early stages of integrated design (schematic design stage and design development stage), which are heuristic, hybrid and Meta-simulation-based, relies on Big-real Data (like Building Energy Management Systems Data or Web data). Obtaining, using and combining of these data with simulation data to create models with higher uncertainty, more dynamic and more sensitive to context and culture models, as well as models that can generate economy-energy-efficient design scenarios using local data (to be more harmonized with circular economy principles), are important research areas in this field. The results of this study are a roadmap for researchers and developers of these tools.Keywords: integrated design process, design decision support system, meta-simulation based, early stage, big data, energy efficiency
Procedia PDF Downloads 16222439 The Importance of Generating Electricity through Wind Farms in the Brazilian Electricity Matrix, from 2013 to 2020
Authors: Alex Sidarta Guglielmoni
Abstract:
Since the 1970s, sustainable development has become increasingly present on the international agenda. The present work has as general objective to analyze, discuss and bring answers to the following question, what is the importance of the generation of electric energy through the wind power plants in the Brazilian electricity matrix between 2013 and 2019? To answer this question, we analyzed the generation of renewable energy from wind farms and the consumption of electricity in Brazil during the period of January 2013 until December 2020. The specific objectives of this research are: to analyze the public data, to identify the total wind generation, to identify the total wind capacity generation, to identify the percentage participation of the generation and generation capacity of wind energy in the Brazilian electricity matrix. In order to develop this research, it was necessary a bibliographic search, collection of secondary data, tabulation of generation data, and electricity capacity by a comparative analysis between wind power and the Brazilian electricity matrix. As a result, it was possible to observe how important Brazil is for global sustainable development and how much this country can grow with this, in view of its capacity and potential for generating wind power since this percentage has grown in past few years.Keywords: wind power, Brazilian market, electricity matrix, generation capacity
Procedia PDF Downloads 12622438 Revisiting the Swadesh Wordlist: How Long Should It Be
Authors: Feda Negesse
Abstract:
One of the most important indicators of research quality is a good data - collection instrument that can yield reliable and valid data. The Swadesh wordlist has been used for more than half a century for collecting data in comparative and historical linguistics though arbitrariness is observed in its application and size. This research compare s the classification results of the 100 Swadesh wordlist with those of its subsets to determine if reducing the size of the wordlist impact s its effectiveness. In the comparison, the 100, 50 and 40 wordlists were used to compute lexical distances of 29 Cushitic and Semitic languages spoken in Ethiopia and neighbouring countries. Gabmap, a based application, was employed to compute the lexical distances and to divide the languages into related clusters. The study shows that the subsets are not as effective as the 100 wordlist in clustering languages into smaller subgroups but they are equally effective in di viding languages into bigger groups such as subfamilies. It is noted that the subsets may lead to an erroneous classification whereby unrelated languages by chance form a cluster which is not attested by a comparative study. The chance to get a wrong result is higher when the subsets are used to classify languages which are not closely related. Though a further study is still needed to settle the issues around the size of the Swadesh wordlist, this study indicates that the 50 and 40 wordlists cannot be recommended as reliable substitute s for the 100 wordlist under all circumstances. The choice seems to be determined by the objective of a researcher and the degree of affiliation among the languages to be classified.Keywords: classification, Cushitic, Swadesh, wordlist
Procedia PDF Downloads 29822437 Factors Impacting Geostatistical Modeling Accuracy and Modeling Strategy of Fluvial Facies Models
Authors: Benbiao Song, Yan Gao, Zhuo Liu
Abstract:
Geostatistical modeling is the key technic for reservoir characterization, the quality of geological models will influence the prediction of reservoir performance greatly, but few studies have been done to quantify the factors impacting geostatistical reservoir modeling accuracy. In this study, 16 fluvial prototype models have been established to represent different geological complexity, 6 cases range from 16 to 361 wells were defined to reproduce all those 16 prototype models by different methodologies including SIS, object-based and MPFS algorithms accompany with different constraint parameters. Modeling accuracy ratio was defined to quantify the influence of each factor, and ten realizations were averaged to represent each accuracy ratio under the same modeling condition and parameters association. Totally 5760 simulations were done to quantify the relative contribution of each factor to the simulation accuracy, and the results can be used as strategy guide for facies modeling in the similar condition. It is founded that data density, geological trend and geological complexity have great impact on modeling accuracy. Modeling accuracy may up to 90% when channel sand width reaches up to 1.5 times of well space under whatever condition by SIS and MPFS methods. When well density is low, the contribution of geological trend may increase the modeling accuracy from 40% to 70%, while the use of proper variogram may have very limited contribution for SIS method. It can be implied that when well data are dense enough to cover simple geobodies, few efforts were needed to construct an acceptable model, when geobodies are complex with insufficient data group, it is better to construct a set of robust geological trend than rely on a reliable variogram function. For object-based method, the modeling accuracy does not increase obviously as SIS method by the increase of data density, but kept rational appearance when data density is low. MPFS methods have the similar trend with SIS method, but the use of proper geological trend accompany with rational variogram may have better modeling accuracy than MPFS method. It implies that the geological modeling strategy for a real reservoir case needs to be optimized by evaluation of dataset, geological complexity, geological constraint information and the modeling objective.Keywords: fluvial facies, geostatistics, geological trend, modeling strategy, modeling accuracy, variogram
Procedia PDF Downloads 26422436 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: cost prediction, machine learning, project management, random forest, neural networks
Procedia PDF Downloads 56