Search results for: temporal variation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3414

Search results for: temporal variation

744 Computational Fluid Dynamics Based Analysis of Heat Exchanging Performance of Rotary Thermal Wheels

Authors: H. M. D. Prabhashana Herath, M. D. Anuradha Wickramasinghe, A. M. C. Kalpani Polgolla, R. A. C. Prasad Ranasinghe, M. Anusha Wijewardane

Abstract:

The demand for thermal comfort in buildings in hot and humid climates increases progressively. In general, buildings in hot and humid climates spend more than 60% of the total energy cost for the functionality of the air conditioning (AC) system. Hence, it is required to install energy efficient AC systems or integrate energy recovery systems for both new and/or existing AC systems whenever possible, to reduce the energy consumption by the AC system. Integrate a Rotary Thermal Wheel as the energy recovery device of an existing AC system has shown very promising with attractive payback periods of less than 5 years. A rotary thermal wheel can be located in the Air Handling Unit (AHU) of a central AC system to recover the energy available in the return air stream. During this study, a sensitivity analysis was performed using a CFD (Computational Fluid Dynamics) software to determine the optimum design parameters (i.e., rotary speed and parameters of the matrix profile) of a rotary thermal wheel for hot and humid climates. The simulations were performed for a sinusoidal matrix geometry. Variation of sinusoidal matrix parameters, i.e., span length and height, were also analyzed to understand the heat exchanging performance and the induced pressure drop due to the air flow. The results show that the heat exchanging performance increases when increasing the wheel rpm. However, the performance increment rate decreases when increasing the rpm. As a result, it is more advisable to operate the wheel at 10-20 rpm. For the geometry, it was found that the sinusoidal geometries with lesser spans and higher heights have higher heat exchanging capabilities. Considering the sinusoidal profiles analyzed during the study, the geometry with 4mm height and 3mm width shows better performance than the other combinations.

Keywords: air conditioning, computational fluid dynamics, CFD, energy recovery, heat exchangers

Procedia PDF Downloads 122
743 Analysis and Design of Inductive Power Transfer Systems for Automotive Battery Charging Applications

Authors: Wahab Ali Shah, Junjia He

Abstract:

Transferring electrical power without any wiring has been a dream since late 19th century. There were some advances in this area as to know more about microwave systems. However, this subject has recently become very attractive due to their practiScal systems. There are low power applications such as charging the batteries of contactless tooth brushes or implanted devices, and higher power applications such as charging the batteries of electrical automobiles or buses. In the first group of applications operating frequencies are in microwave range while the frequency is lower in high power applications. In the latter, the concept is also called inductive power transfer. The aim of the paper is to have an overview of the inductive power transfer for electrical vehicles with a special concentration on coil design and power converter simulation for static charging. Coil design is very important for an efficient and safe power transfer. Coil design is one of the most critical tasks. Power converters are used in both side of the system. The converter on the primary side is used to generate a high frequency voltage to excite the primary coil. The purpose of the converter in the secondary is to rectify the voltage transferred from the primary to charge the battery. In this paper, an inductive power transfer system is studied. Inductive power transfer is a promising technology with several possible applications. Operation principles of these systems are explained, and components of the system are described. Finally, a single phase 2 kW system was simulated and results were presented. The work presented in this paper is just an introduction to the concept. A reformed compensation network based on traditional inductor-capacitor-inductor (LCL) topology is proposed to realize robust reaction to large coupling variation that is common in dynamic wireless charging application. In the future, this type compensation should be studied. Also, comparison of different compensation topologies should be done for the same power level.

Keywords: coil design, contactless charging, electrical automobiles, inductive power transfer, operating frequency

Procedia PDF Downloads 245
742 Lightweight Ceramics from Clay and Ground Corncobs

Authors: N.Quaranta, M. Caligaris, R. Varoli, A. Cristobal, M. Unsen, H. López

Abstract:

Corncobs are agricultural wastes and they can be used as fuel or as raw material in different industrial processes like cement manufacture, contaminant adsorption, chemical compound synthesis, etc. The aim of this work is to characterize this waste and analyze the feasibility of its use as a pore-forming material in the manufacture of lightweight ceramics for the civil construction industry. The characterization of raw materials is carried out by using various techniques: electron diffraction analysis X-ray, differential and gravimetric thermal analyses, FTIR spectroscopy, ecotoxicity evaluation, among others. The ground corncobs, particle size less than 2 mm, are mixed with clay up to 30% in volume and shaped by uniaxial pressure of 25 MPa, with 6% humidity, in moulds of 70mm x 40mm x 18mm. Then the green bodies are heat treated at 950°C for two hours following the treatment curves used in ceramic industry. The ceramic probes are characterized by several techniques: density, porosity and water absorption, permanent volumetric variation, loss on ignition, microscopies analysis, and mechanical properties. DTA-TGA analysis of corncobs shows in the range 20°-250°C a small loss in TGA curve and exothermic peaks at 250°-500°C. FTIR spectrum of the corncobs sample shows the characteristic pattern of this kind of organic matter with stretching vibration bands of adsorbed water, methyl groups, C–O and C–C bonds, and the complex form of the cellulose and hemicellulose glycosidic bonds. The obtained ceramic bodies present external good characteristics without loose edges and adequate properties for the market requirements. The porosity values of the sintered pieces are higher than those of the reference sample without waste addition. The results generally indicate that it is possible to use corncobs as porosity former in ceramic bodies without modifying the usual sintering temperatures employed in the industry.

Keywords: ceramic industry, biomass, recycling, hemicellulose glycosidic bonds

Procedia PDF Downloads 403
741 Scoping Review of Biological Age Measurement Composed of Biomarkers

Authors: Diego Alejandro Espíndola-Fernández, Ana María Posada-Cano, Dagnóvar Aristizábal-Ocampo, Jaime Alberto Gallo-Villegas

Abstract:

Background: With the increase in life expectancy, aging has been subject of frequent research, and therefore multiple strategies have been proposed to quantify the advance of the years based on the known physiology of human senescence. For several decades, attempts have been made to characterize these changes through the concept of biological age, which aims to integrate, in a measure of time, structural or functional variation through biomarkers in comparison with simple chronological age. The objective of this scoping review is to deepen the updated concept of measuring biological age composed of biomarkers in the general population and to summarize recent evidence to identify gaps and priorities for future research. Methods: A scoping review was conducted according to the five-phase methodology developed by Arksey and O'Malley through a search of five bibliographic databases to February 2021. Original articles were included with no time or language limit that described the biological age composed of at least two biomarkers in those over 18 years of age. Results: 674 articles were identified, of which 105 were evaluated for eligibility and 65 were included with information on the measurement of biological age composed of biomarkers. Articles from 1974 of 15 nationalities were found, most observational studies, in which clinical or paraclinical biomarkers were used, and 11 different methods described for the calculation of the composite biological age were informed. The outcomes reported were the relationship with the same measured biomarkers, specified risk factors, comorbidities, physical or cognitive functionality, and mortality. Conclusions: The concept of biological age composed of biomarkers has evolved since the 1970s and multiple methods of its quantification have been described through the combination of different clinical and paraclinical variables from observational studies. Future research should consider the population characteristics, and the choice of biomarkers against the proposed outcomes to improve the understanding of aging variables to direct effective strategies for a proper approach.

Keywords: biological age, biological aging, aging, senescence, biomarker

Procedia PDF Downloads 182
740 Effect of the Magnetite Nanoparticles Concentration on Biogas and Methane Production from Chicken Litter

Authors: Guadalupe Stefanny Aguilar-Moreno, Miguel Angel Aguilar-Mendez, Teodoro Espinosa-Solares

Abstract:

In the agricultural sector, one of the main emitters of greenhouse gases is manure management, which has been increased considerably in recent years. Biogas is an energy source that can be produced from different organic materials through anaerobic digestion (AD); however, production efficiency is still low. Several techniques have been studied to increase its performance, such as co-digestion, the variation of digestion conditions, and nanomaterials used. Therefore, the aim of this investigation was to evaluate the effect of magnetite nanoparticles (NPs) concentration, synthesized by co-precipitation, on the biogas and methane production in AD using chicken litter as a substrate. Synthesis of NPs was performed according to the co-precipitation method, for which a fractional factorial experimental design 25⁻² with two replications was used. The study factors were concentrations (precursors and passivating), time of sonication and dissolution temperatures, and the response variables were size, hydrodynamic diameter (HD) and zeta potential. Subsequently, the treatment that presented the smallest NPs was chosen for their use on AD. The AD was established in serological bottles with a working volume of 250 mL, incubated at 36 ± 1 °C for 80 days. The treatments consisted of the addition of different concentrations of NPs in the microcosms: chicken litter only (control), 20 mg∙L⁻¹ of NPs + chicken litter, 40 mg∙L⁻¹ of NPs + chicken litter and 60 mg∙L⁻¹ of NPs + chicken litter, all by triplicate. Methane and biogas production were evaluated daily. The smallest HD (49.5 nm) and the most stable NPs (21.22 mV) were obtained with the highest passivating concentration and the lower precursors dissolution temperature, which were the only factors that had a significant effect on the HD. In the transmission electron microscopy performed to these NPs, an average size of 4.2 ± 0.73 nm was observed. The highest biogas and methane production was obtained with the treatment that had 20 mg∙L⁻¹ of NPs, being 29.5 and 73.9%, respectively, higher than the control, while the treatment with the highest concentration of NPs was not statistically different from the control. From the above, it can be concluded that the magnetite NPs promote the biogas and methane production in AD; however, high concentrations may cause inhibitory effects among methanogenic microorganisms.

Keywords: agricultural sector, anaerobic digestion, nanotechnology, waste management

Procedia PDF Downloads 134
739 Building an Arithmetic Model to Assess Visual Consistency in Townscape

Authors: Dheyaa Hussein, Peter Armstrong

Abstract:

The phenomenon of visual disorder is prominent in contemporary townscapes. This paper provides a theoretical framework for the assessment of visual consistency in townscape in order to achieve more favourable outcomes for users. In this paper, visual consistency refers to the amount of similarity between adjacent components of townscape. The paper investigates parameters which relate to visual consistency in townscape, explores the relationships between them and highlights their significance. The paper uses arithmetic methods from outside the domain of urban design to enable the establishment of an objective approach of assessment which considers subjective indicators including users’ preferences. These methods involve the standard of deviation, colour distance and the distance between points. The paper identifies urban space as a key representative of the visual parameters of townscape. It focuses on its two components, geometry and colour in the evaluation of the visual consistency of townscape. Accordingly, this article proposes four measurements. The first quantifies the number of vertices, which are points in the three-dimensional space that are connected, by lines, to represent the appearance of elements. The second evaluates the visual surroundings of urban space through assessing the location of their vertices. The last two measurements calculate the visual similarity in both vertices and colour in townscape by the calculation of their variation using methods including standard of deviation and colour difference. The proposed quantitative assessment is based on users’ preferences towards these measurements. The paper offers a theoretical basis for a practical tool which can alter the current understanding of architectural form and its application in urban space. This tool is currently under development. The proposed method underpins expert subjective assessment and permits the establishment of a unified framework which adds to creativity by the achievement of a higher level of consistency and satisfaction among the citizens of evolving townscapes.

Keywords: townscape, urban design, visual assessment, visual consistency

Procedia PDF Downloads 308
738 Association between Occupational Characteristics and Well-Being: An Exploratory Study of Married Working Women in New Delhi, India

Authors: Kanchan Negi

Abstract:

Background: Modern and urban occupational culture have driven demands for people to work long hours and weekends and take work to home at times. Research on the health effects of these exhaustive temporal work patterns is scant or contradictory. This study examines the relationship between work patterns and wellbeing in a sample of women living in the metropolitan hub of Delhi. Method: This study is based on the data collected from 360 currently married women between age 29 and 49 years, working in the urban capital hub of India, i.e., Delhi. The women interviewed were professionals from the education, health, banking and information and technology (IT) sector. Bivariate analysis was done to study the characteristics of the sample. Logistic regression analysis was used to estimate the physical and psychological wellbeing across occupational characteristics. Results: Most of the working women were below age 35 years; around 30% of women worked in the education sector, 23% in health, 21% in banking and 26% in the IT sector. Over 55% of women were employed in the private sector and only 36% were permanent employees. Nearly 30% of women worked for more than the standard 8 hours a day. The findings from logistic regression showed that compared to women working in the education sector, those who worked in the banking and IT sector more likely to have physical and psychological health issues (OR 2.07-4.37, CI 1.17-4.37); women who bear dual burden of responsibilities had higher odds of physical and psychological health issues than women who did not (OR 1.19-1.85 CI 0.96-2.92). Women who worked for more than 8 hours a day (OR 1.15, CI 1.01-1.30) and those who worked for more than five days a week (OR 1.25, CI 1.05-1.35) were more likely to have physical health issues than women who worked for 6-8 hours a day and five days e week, respectively. Also, not having flexible work timings and compensatory holidays increased the odds of having physical and psychological health issues among working women (OR 1.17-1.29, CI 1.01-1.47). Women who worked in the private sector, those employed temporarily and who worked in the non-conducive environments were more likely to have psychological health issues as compared to women in the public sector, permanent employees and those who worked in a conducive environment, respectively (OR 1.33-1.67, CI 1.09-2.91). Women who did not have poor work-life balance had reduced the odds of psychological health issues than women with poor work-life balance (OR 0.46, CI 0.25-0.84). Conclusion: Poor wellbeing significantly linked to strenuous and rigid work patterns, suggesting that modern and urban work culture may contribute to the poor wellbeing of working women. Noticing the recent decline in female workforce participation in Delhi, schemes like Flexi-timings, compensatory holidays, work-from-home and daycare facilities for young ones must be welcomed; these policies already exist in some private sector firms, and the public sectors companies should also adopt such changes to ease the dual burden as homemaker and career maker. This could encourage women in the urban areas to readily take up the jobs with less juggle to manage home and work.

Keywords: occupational characteristics, urban India, well-being, working women

Procedia PDF Downloads 201
737 Studying the Photodegradation Behavior of Microplastics Released from Agricultural Plastic Products to the Farmland

Authors: Maryam Salehi, Gholamreza Bonyadinejad

Abstract:

The application of agricultural plastic products like mulch, greenhouse covers, and silage films is increasing due to their economic benefits in providing an early and better-quality harvest. In 2015, the 4 million tons (valued a 10.6 million USD) global market for agricultural plastic films was estimated to grow by 5.6% per year through 2030. Despite the short-term benefits provided by plastic products, their long-term sustainability issues and negative impacts on soil health are not well understood. After their removal from the field, some plastic residuals remain in the soil. Plastic residuals in farmlands may fragment to small particles called microplastics (d<5mm). The microplastics' exposure to solar radiation could alter their surface chemistry and make them susceptible to fragmentation. Thus, this study examined the photodegradation of low density polyethylene as the model microplastics that are released to the agriculture farmland. The variation of plastic’s surface chemistry, morphology, and bulk characteristics were studied after accelerated UV-A radiation experiments and sampling from an agricultural field. The Attenuated Total Reflectance Fourier Transform Spectroscopy (ATR-FTIR) and X-ray Photoelectron Spectroscopy (XPS) demonstrated the formation of oxidized surface functional groups onto the microplastics surface due to the photodegradation. The Differential Scanning Calorimetry (DSC) analysis revealed an increased crystallinity for the photodegraded microplastics compared to the new samples. The gel permeation chromatography (GPC) demonstrated the reduced molecular weight for the polymer due to the photodegradation. This study provides an important opportunity to advance understanding of soil pollution. Understanding the plastic residuals’ variations as they are left in the soil is providing a critical piece of information to better estimate the microplastics' impacts on environmental biodiversity, ecosystem sustainability, and food safety.

Keywords: soil health, plastic pollution, sustainability, photodegradation

Procedia PDF Downloads 218
736 Parametric Analysis of Lumped Devices Modeling Using Finite-Difference Time-Domain

Authors: Felipe M. de Freitas, Icaro V. Soares, Lucas L. L. Fortes, Sandro T. M. Gonçalves, Úrsula D. C. Resende

Abstract:

The SPICE-based simulators are quite robust and widely used for simulation of electronic circuits, their algorithms support linear and non-linear lumped components and they can manipulate an expressive amount of encapsulated elements. Despite the great potential of these simulators based on SPICE in the analysis of quasi-static electromagnetic field interaction, that is, at low frequency, these simulators are limited when applied to microwave hybrid circuits in which there are both lumped and distributed elements. Usually the spatial discretization of the FDTD (Finite-Difference Time-Domain) method is done according to the actual size of the element under analysis. After spatial discretization, the Courant Stability Criterion calculates the maximum temporal discretization accepted for such spatial discretization and for the propagation velocity of the wave. This criterion guarantees the stability conditions for the leapfrogging of the Yee algorithm; however, it is known that for the field update, the stability of the complete FDTD procedure depends on factors other than just the stability of the Yee algorithm, because the FDTD program needs other algorithms in order to be useful in engineering problems. Examples of these algorithms are Absorbent Boundary Conditions (ABCs), excitation sources, subcellular techniques, grouped elements, and non-uniform or non-orthogonal meshes. In this work, the influence of the stability of the FDTD method in the modeling of concentrated elements such as resistive sources, resistors, capacitors, inductors and diode will be evaluated. In this paper is proposed, therefore, the electromagnetic modeling of electronic components in order to create models that satisfy the needs for simulations of circuits in ultra-wide frequencies. The models of the resistive source, the resistor, the capacitor, the inductor, and the diode will be evaluated, among the mathematical models for lumped components in the LE-FDTD method (Lumped-Element Finite-Difference Time-Domain), through the parametric analysis of Yee cells size which discretizes the lumped components. In this way, it is sought to find an ideal cell size so that the analysis in FDTD environment is in greater agreement with the expected circuit behavior, maintaining the stability conditions of this method. Based on the mathematical models and the theoretical basis of the required extensions of the FDTD method, the computational implementation of the models in Matlab® environment is carried out. The boundary condition Mur is used as the absorbing boundary of the FDTD method. The validation of the model is done through the comparison between the obtained results by the FDTD method through the electric field values and the currents in the components, and the analytical results using circuit parameters.

Keywords: hybrid circuits, LE-FDTD, lumped element, parametric analysis

Procedia PDF Downloads 149
735 Hypothesis on Annual Sea Level Variation and Increased Volume Transport in Korea Strait

Authors: Young-Taeg Kim, Gwang Ho Seo, Hyungju Oh, Ho Kyung Ha, Kuk Jin Kim

Abstract:

Kim et al., hypothesized an increase in volume transport in the Korea Strait based on the concurrent increase in water temperature and mean sea level observed by the Korea Hydrographic and Oceanographic Agency (KHOA) in the vicinity of the Korea Strait from 2000 to 2009. Since then, to our best knowledge, no definitive studies have been reported on the increase in volume transport through the Korea Strait, but the observed water temperature (2000-2021) and sea level (1989-2021) in the Korea Strait and East Sea have been found to be increasing. In particular, the rapid increase rate in the mean sea level rise (2.55~3.53 mm/y) in these areas cannot be explained by only steric effect due to the increased water temperature. It is more reasonable interpretation that the sea level rise is due to an increase in the volume transport of warm and salty currents. If the increase in the volume transport is explained by the geostrophic equation without considering the sea level rise in the Korea Strait, the current velocity should increase. However, up to now, there are no reports of an increase in current velocity from direct observations using ADCP (e.g., observations of Camellia) or from various numerical models. Therefore, the increase in volume transport cannot be explained by the geostrophic equation. Another possible explanation for the increase in the volume transport is the effect of wind. Although Korea is dominated by monsoon, it is affected by winds according to El Niño and La Niña, which have a cycle of about 3 to 4 years. During El Niño (La Niña), northerly winds (southerly winds) prevail in Korea. Consequently, it is inferred that the transported volume in the Korea Strait slowly increases interannually. However, in this study, it was difficult to find a clear correlation between annually-averaged mean sea level and El Niño (or La Niña) during 1989-2021. This is probably due to the interactions of the PDO (Pacific Decadal Oscillation) and AO (Arctic Oscillation) along with the ENSO (El niño-Southern Oscillation). However, it is clear that the interannual variability of winds is affecting the volume transport in the Korean Strait. On the other hand, the effect of global sea level rise on the volume transport in the Korea Strait is small compared to the interannual variability of the volume transport, but it seems to play a constant role.

Keywords: mean sea level, volume transport, El nino, La nina

Procedia PDF Downloads 79
734 Genetic Variation in CYP4F2 and VKORC1: Pharmacogenomics Implications for Response to Warfarin

Authors: Zinhle Cindi, Collet Dandara, Mpiko Ntsekhe, Edson Makambwa, Miguel Larceda

Abstract:

Background: Warfarin is the most commonly used drug in the management of thromboembolic disease. However, there is a huge variability in the time, number of doses or starting doses for patients to achieve the required international normalised ratio (INR) which is compounded by a narrow therapeutic index. Many genetic-association studies have reported on European and Asian populations which have led to the designing of specific algorithms that are now being used to assist in warfarin dosing. However, very few or no studies have looked at the pharmacogenetics of warfarin in African populations, yet, huge differences in dosage requirements to reach the same INR have been observed. Objective: We set out to investigate the distribution of 3 SNPs CYP4F2 c.1347C > T, VKORC1 g.-1639G > A and VKORC1 c.1173C > T among South African Mixed Ancestry (MA) and Black African patients. Methods: DNA was extracted from 383 participants and subsequently genotyped using PCR/RFLP for the CYP4F2 c.1347 (V433M) (rs2108622), VKORC1 g.-1639 (rs9923231) and VKORC1 c.1173 (rs9934438) SNPs. Results: Comparing the Black and MA groups, significant differences were observed in the distribution of the following genotypes; CYP4F2 c.1347C/T (23% vs. 39% p=0.03). All VKORC1 g.-1639G > A genotypes (p < 0.006) and all VKORC1 c.1173C > T genotypes (p < 0.007). Conclusion: CYP4F2 c.1347T (V433M) reduces CYP4F2 protein levels and therefore expected to affect the amount of warfarin needed to block vitamin k recycling. The VKORC1 g-1639A variant alters transcriptional regulation therefore affecting the function of vitamin k epoxide reductase in vitamin k production. The VKORC1 c.1173T variant reduces the enzyme activity of VKORC1 consequently enhancing the effectiveness of warfarin. These are preliminary results; more genetic characterization is required to understand all the genetic determinants affecting how patients respond to warfarin.

Keywords: algorithms, pharmacogenetics, thromboembolic disease, warfarin

Procedia PDF Downloads 254
733 Genome-Wide Assessment of Putative Superoxide Dismutases in Unicellular and Filamentous Cyanobacteria

Authors: Shivam Yadav, Neelam Atri

Abstract:

Cyanobacteria are photoautotrophic prokaryotes able to grow in diverse ecological habitats, originated 2.5 - 3.5 billion years ago and brought oxygenic photosynthesis. Since then superoxide dismutases (SODs) acquired great significance due to their ability to catalyze detoxification of byproducts of oxygenic photosynthesis, i.e. superoxide radicals. Sequence information from several cyanobacterial genomes offers a unique opportunity to conduct a comprehensive comparative analysis of the superoxide dismutases family. In the present study, we extracted information regarding SODs from species of sequenced cyanobacteria and investigated their diversity, conservation, domain structure, and evolution. 144 putative SOD homologues were identified. SODs are present in all cyanobacterial species reflecting their significant role in survival. However, their distribution varies, fewer in unicellular marine strains whereas abundant in filamentous nitrogen-fixing cyanobacteria. Motifs and invariant amino acids typical in eukaryotic SODs were conserved well in these proteins. These SODs were classified into three major families according to their domain structures. Interestingly, they lack additional domains as found in proteins of other family. Phylogenetic relationships correspond well with phylogenies based on 16S rRNA and clustering occurs on the basis of structural characteristics such as domain organization. Similar conserved motifs and amino acids indicate that cyanobacterial SODs make use of a similar catalytic mechanism as eukaryotic SODs. Gene gain-and-loss is insignificant during SOD evolution as evidenced by absence of additional domain. This study has not only examined an overall background of sequence-structure-function interactions for the SOD gene family but also revealed variation among SOD distribution based on ecophysiological and morphological characters.

Keywords: comparative genomics, cyanobacteria, phylogeny, superoxide dismutases

Procedia PDF Downloads 130
732 Variation in Total Iron and Zinc Concentration, Protein Quality, and Quantity of Maize Hybrids Grown under Abiotic Stress and Optimal Conditions

Authors: Tesfaye Walle Mekonnen

Abstract:

Maize is one of the most important staple food crops for most low-income households in the Sub-Saharan (SSA). Combined heat and drought stress is the major production threats that reduce the yield potential of biofortified maize and restrain various macro and micronutrient deficiencies highly prevalent in low-income people who rely solely on maize-based diets, SSA. This problem can be alleviated by crossing the biofortified inbred lines with different nutritional attributes, Fe, Zn, Protein, and Provitamin A, and developing agronomically superior and stable multi-nutrient maize of various genetic backgrounds. This aimed to understand the correlation between biofortified inbred lines per se and hybrid performance under combined heat and drought stress conditions (CSC). The experiment was conducted at CIMMYT, Zimbabwe, using α-lattice design with three replications. The hybrid effect was highly significant for zein fractions (α-, β-, γ- and δ-zein) zinc, (Zn), and iron (Fe) provitamin A, phytic acid, and grain yield. Under CSC, Fe, Zn concentration, provitamin A in grain and grain yield of hybrids were significantly decreased, however, the zein fraction content and phytic acid content increases in grain were increased under CSC. The phenotypic correlation between grain yield with Zn, Fe concentration, and Provitamin A in grain was strongly positive and higher under CSC than in well-watered conditions. The present investigation confirmed that under CSC, Fe, and Zn-enhanced hybrids could be forecasted to a certain scope based on the performance of and scientifically selected for desirable grain yield and related traits with CSC tolerance during hybrid development programs. In conclusion, the development of high-yielding and micronutrient-dense maize variety is possible under CSC, which could reduce the highly prevalent micronutrient in SSA.

Keywords: drought, Fe, heat, maize, protein, zein fractions, Zn

Procedia PDF Downloads 64
731 Aerodynamic Optimum Nose Shape Change of High-Speed Train by Design Variable Variation

Authors: Minho Kwak, Suhwan Yun, Choonsoo Park

Abstract:

Nose shape optimizations of high-speed train are performed for the improvement of aerodynamic characteristics. Based on the commercial train, KTX-Sancheon, multi-objective optimizations are conducted for the improvement of the side wind stability and the micro-pressure wave following the optimization for the reduction of aerodynamic drag. 3D nose shapes are modelled by the Vehicle Modeling Function. Aerodynamic drag and side wind stability are calculated by three-dimensional compressible Navier-Stokes solver, and micro pressure wave is done by axi-symmetric compressible Navier-Stokes solver. The Maxi-min Latin Hypercube Sampling method is used to extract sampling points to construct the approximation model. The kriging model is constructed for the approximation model and the NSGA-II algorithm was used as the multi-objective optimization algorithm. Nose length, nose tip height, and lower surface curvature are design variables. Because nose length is a dominant variable for aerodynamic characteristics of train nose, two optimization processes are progressed respectively with and without the design variable, nose length. Each pareto set was obtained and each optimized nose shape is selected respectively considering Honam high-speed rail line infrastructure in South Korea. Through the optimization process with the nose length, when compared to KTX Sancheon, aerodynamic drag was reduced by 9.0%, side wind stability was improved by 4.5%, micro-pressure wave was reduced by 5.4% whereas aerodynamic drag by 7.3%, side wind stability by 3.9%, micro-pressure wave by 3.9%, without the nose length. As a result of comparison between two optimized shapes, similar shapes are extracted other than the effect of nose length.

Keywords: aerodynamic characteristics, design variable, multi-objective optimization, train nose shape

Procedia PDF Downloads 344
730 Effect of Volcanic Ash and Recycled Aggregates in Concrete

Authors: Viviana Letelier, Ester Tarela, Giacomo Moriconi

Abstract:

The cement industry is responsible for around a 5% of the CO2 emissions worldwide and considering that concrete is one of the most used materials in construction its total effect is important. An alternative to reduce the environmental impact of concrete production is to incorporate certain amount of residuals in the dosing, limiting the replacement percentages to avoid significant losses in the mechanical properties of the final material. This study analyses the variation in the mechanical properties of structural concretes with recycled aggregates and volcanic ash as cement replacement to test the effect of the simultaneous use of different residuals in the same material. Analyzed concretes are dosed for a compressive strength of 30MPa. The recycled aggregates are obtained from prefabricated pipe debris with a compressive strength of 20MPa. The volcanic ash was obtained from the Ensenada (Chile) area after the Calbuco eruption in April 2015. The percentages of natural course aggregates that are replaced by recycled aggregates are of 0% and 30% and the percentages of cement replaced by volcanic ash are of 0%, 5%, 10% and 15%. The combined effect of both residuals in the mechanical properties of the concrete is evaluated through compressive strength tests after, 28 curing days, flexural strength tests after 28 days, and the elasticity modulus after 28 curing days. Results show that increasing the amount of volcanic ash used increases the losses in compressive strength. However, the use of up to a 5% of volcanic ash allows obtaining concretes with similar compressive strength to the control concrete, whether recycled aggregates are used or not. Furthermore, the pozzolanic reaction that occurs between the amorphous silica and the calcium hydroxide (Ca(OH)2) provokes an increase of a 10% in the compressive strength when a 5% of volcanic ash is combined with a 30% of recycled aggregates. Flexural strength does not show significant changes with neither of the residues. On the other hand, decreases between a 14% and a 25% in the elasticity modulus have been found. Concretes with up to a 30% of recycled aggregates and a 5% of volcanic ash as cement replacement can be produced without significant losses in their mechanical properties, reducing considerably the environmental impact of the final material.

Keywords: compressive strength of recycled concrete, mechanical properties of recycled concrete, recycled aggregates, volcanic ash as cement replacement

Procedia PDF Downloads 298
729 Child Labor and Injury Occurrence in Nicaragua: A Gender Perspective Analysis

Authors: Cristina Domínguez, Steven N. Cuadra

Abstract:

Aims: The aims of this study are: 1) to describe the occurrence and estimate the risk of suffering injuries of any kind, especially work-related injuries, in rural children working in agricultural activities and in urban children working on the street 2) to explore factors that might be associated with the occurrence of work-related injuries among child workers such as gender, school attendance, and performance of household chore. Method: We performed a crossectional study among working children in agricultural activities (120) and on the street (108) and in non-working referents (140) in 2019. We investigated self-reported injuries during the last 12 months, with focus on work-related injuries. Incidence rate, rate ratios, and 95% CI were calculated by Poisson regression. Results: Agricultural workers have a higher incidence of work-related injuries (2.1 per 1000 person-days) than children working on the street (1.8 per 1000 person-days). However, when considering girl’s unpaid work at home, girls had higher occurrence. Girls had a 30% increase on the risk of suffering work related injuries compared to boys. Performing household chore and attending school were the major predictors of injury occurrence. Discussion: Our data suggest If such partial and full-time girl’s housework is taken into account, there would be little or no variation between the sexes with regard to injuries occurrence, and the incidence rate of work related injuries among girls could even exceed that of boys A greater understanding of the interaction of factors related to how child workers spend their time, and its impact on children’s health, is needed in order to identify feasible and appropriate strategies to reduce the negative effect of work on children when elimination of child labor is not reachable in the short term. Clearly, gender aspects on child labor may allow for more effective targeting of prevention efforts.

Keywords: injuries, child labor, agricultural work, gender

Procedia PDF Downloads 121
728 DFT and SCAPS Analysis of an Efficient Lead-Free Inorganic CsSnI₃ Based Perovskite Solar Cell by Modification of Hole Transporting Layer

Authors: Seyedeh Mozhgan Seyed Talebi, Chih -Hao Lee

Abstract:

With an abrupt rise in the power conservation efficiency (PCE) of perovskite solar cells (PSCs) within a short span of time, the toxicity of lead was raised as a major hurdle in the path toward their commercialization. In the present research, a systematic investigation of the electrical and optical characteristics of the all-inorganic CsSnI₃ perovskite absorber layer was performed with the Vienna Ab Initio Simulation Package (VASP) using the projector-augmented wave method. The presence of inorganic halide perovskite offers the advantages of enhancing the degradation resistance of the device, reducing the cost of cells, and minimizing the recombination of generated carriers. The simulated standard device using a 1D simulator like solar cell capacitance simulator (SCAPS) version 3308 involves FTO/n-TiO₂/CsSnI₃ Perovskite absorber/Spiro OmeTAD HTL/Au contact layer. The variation in the device design key parameters such as the thickness and defect density of perovskite absorber, hole transport layer and electron transport layer and interfacial defects are examined with their impact on the photovoltaic characteristic parameters. The effect of an increase in operating temperature from 300 K to 400 K on the performance of CsSnI3-based perovskite devices is also investigated. The optimized standard device at room temperature shows the highest PCE of 25.18 % with FF of 75.71 %, Voc of 0.96 V, and Jsc of 34.67 mA/cm². The outcomes and interpretation of different inorganic Cu-based HTLs presence, such as CuSCN, Cu₂O, CuO, CuI, SrCu₂O₂, and CuSbS₂, here represent a critical avenue for the possibility of fabricating high PCE perovskite devices made of stable, low-cost, efficient, safe, and eco-friendly all-inorganic materials like CsSnI₃ perovskite light absorber.

Keywords: CsSnI₃, hole transporting layer (HTL), lead-free perovskite solar cell, SCAPS-1D software

Procedia PDF Downloads 82
727 Geostatistical Models to Correct Salinity of Soils from Landsat Satellite Sensor: Application to the Oran Region, Algeria

Authors: Dehni Abdellatif, Lounis Mourad

Abstract:

The new approach of applied spatial geostatistics in materials sciences, agriculture accuracy, agricultural statistics, permitted an apprehension of managing and monitoring the water and groundwater qualities in a relationship with salt-affected soil. The anterior experiences concerning data acquisition, spatial-preparation studies on optical and multispectral data has facilitated the integration of correction models of electrical conductivity related with soils temperature (horizons of soils). For tomography apprehension, this physical parameter has been extracted from calibration of the thermal band (LANDSAT ETM+6) with a radiometric correction. Our study area is Oran region (Northern West of Algeria). Different spectral indices are determined such as salinity and sodicity index, the Combined Spectral Reflectance Index (CSRI), Normalized Difference Vegetation Index (NDVI), emissivity, Albedo, and Sodium Adsorption Ratio (SAR). The approach of geostatistical modeling of electrical conductivity (salinity), appears to be a useful decision support system for estimating corrected electrical resistivity related to the temperature of surface soils, according to the conversion models by substitution, the reference temperature at 25°C (where hydrochemical data are collected with this constraint). The Brightness temperatures extracted from satellite reflectance (LANDSAT ETM+) are used in consistency models to estimate electrical resistivity. The confusions that arise from the effects of salt stress and water stress removed followed by seasonal application of the geostatistical analysis in Geographic Information System (GIS) techniques investigation and monitoring the variation of the electrical conductivity in the alluvial aquifer of Es-Sénia for the salt-affected soil.

Keywords: geostatistical modelling, landsat, brightness temperature, conductivity

Procedia PDF Downloads 435
726 Geoinformation Technology of Agricultural Monitoring Using Multi-Temporal Satellite Imagery

Authors: Olena Kavats, Dmitry Khramov, Kateryna Sergieieva, Vladimir Vasyliev, Iurii Kavats

Abstract:

Geoinformation technologies of space agromonitoring are a means of operative decision making support in the tasks of managing the agricultural sector of the economy. Existing technologies use satellite images in the optical range of electromagnetic spectrum. Time series of optical images often contain gaps due to the presence of clouds and haze. A geoinformation technology is created. It allows to fill gaps in time series of optical images (Sentinel-2, Landsat-8, PROBA-V, MODIS) with radar survey data (Sentinel-1) and use information about agrometeorological conditions of the growing season for individual monitoring years. The technology allows to perform crop classification and mapping for spring-summer (winter and spring crops) and autumn-winter (winter crops) periods of vegetation, monitoring the dynamics of crop state seasonal changes, crop yield forecasting. Crop classification is based on supervised classification algorithms, takes into account the peculiarities of crop growth at different vegetation stages (dates of sowing, emergence, active vegetation, and harvesting) and agriculture land state characteristics (row spacing, seedling density, etc.). A catalog of samples of the main agricultural crops (Ukraine) is created and crop spectral signatures are calculated with the preliminary removal of row spacing, cloud cover, and cloud shadows in order to construct time series of crop growth characteristics. The obtained data is used in grain crop growth tracking and in timely detection of growth trends deviations from reference samples of a given crop for a selected date. Statistical models of crop yield forecast are created in the forms of linear and nonlinear interconnections between crop yield indicators and crop state characteristics (temperature, precipitation, vegetation indices, etc.). Predicted values of grain crop yield are evaluated with an accuracy up to 95%. The developed technology was used for agricultural areas monitoring in a number of Great Britain and Ukraine regions using EOS Crop Monitoring Platform (https://crop-monitoring.eos.com). The obtained results allow to conclude that joint use of Sentinel-1 and Sentinel-2 images improve separation of winter crops (rapeseed, wheat, barley) in the early stages of vegetation (October-December). It allows to separate successfully the soybean, corn, and sunflower sowing areas that are quite similar in their spectral characteristics.

Keywords: geoinformation technology, crop classification, crop yield prediction, agricultural monitoring, EOS Crop Monitoring Platform

Procedia PDF Downloads 449
725 Laboratory Investigations on the Utilization of Recycled Construction Aggregates in Asphalt Mixtures

Authors: Farzaneh Tahmoorian, Bijan Samali, John Yeaman

Abstract:

Road networks are increasingly expanding all over the world. The construction and maintenance of the road pavements require large amounts of aggregates. Considerable usage of various natural aggregates for constructing roads as well as the increasing rate at which solid waste is generated have attracted the attention of many researchers in the pavement industry to investigate the feasibility of the application of some of the waste materials as alternative materials in pavement construction. Among various waste materials, construction and demolition wastes, including Recycled Construction Aggregate (RCA) constitute a major part of the municipal solid wastes in Australia. Creating opportunities for the application of RCA in civil and geotechnical engineering applications is an efficient way to increase the market value of RCA. However, in spite of such promising potentials, insufficient and inconclusive data and information on the engineering properties of RCA had limited the reliability and design specifications of RCA to date. In light of this, this paper, as a first step of a comprehensive research, aims to investigate the feasibility of the application of RCA obtained from construction and demolition wastes for the replacement of part of coarse aggregates in asphalt mixture. As the suitability of aggregates for using in asphalt mixtures is determined based on the aggregate characteristics, including physical and mechanical properties of the aggregates, an experimental program is set up to evaluate the physical and mechanical properties of RCA. This laboratory investigation included the measurement of compressive strength and workability of RCA, particle shape, water absorption, flakiness index, crushing value, deleterious materials and weak particles, wet/dry strength variation, and particle density. In addition, the comparison of RCA properties with virgin aggregates has been included as part of this investigation and this paper presents the results of these investigations on RCA, basalt, and the mix of RCA/basalt.

Keywords: asphalt, basalt, pavement, recycled aggregate

Procedia PDF Downloads 162
724 Modelling, Simulation, and Experimental Validation of the Influence of Golf-Ball-Inspired Dimpled Design in Drag Reduction and Improved Fuel Efficiency of Super-Mileage Vehicle

Authors: Bibin Sagaram, Ronith Stanly, S. S. Suneesh

Abstract:

Due to the dwindling supply of fuel reserves, engineers and designers now focus on fuel efficient designs for the solution of any problem; the transportation industry is not new to this kind of approach. Though the aerodynamic benefits of the dimples on a Golf-ball are known, it has never been scientifically tested on how such a design philosophy can improve the fuel efficiency of a real-life vehicle by imparting better aerodynamic performance. The main purpose of the paper is to establish the aerodynamic benefits of the Golf-ball-Inspired Dimpled Design in improving the fuel efficiency of a Super-mileage vehicle, constructed by Team Go Viridis for ‘Shell Eco Marathon Asia 2015’, and to predict the extent to which the results can be held valid for a road car. The body design was modeled in Autodesk Inventor and the Computational Fluid Dynamics (CFD) simulations were carried out using Ansys Fluent software. The aerodynamic parameters of designs (with and without the Golf-ball-Inspired Dimples) have been studied and the results are experimentally validated against those obtained from wind tunnel tests carried out on a 1:10 scaled-down 3D printed model. Test drives of the Super-mileage vehicle were carried out, under various conditions, to compare the variation in fuel efficiency with and without the Golf-ball-Inspired design. Primary investigations reveal an aerodynamic advantage of 25% for the vehicle with the Golf Ball Inspired Dimpled Design as opposed to the normal design. Initial tests conducted by ‘Mythbusters’ on Discovery Network using a modified road car has shown positive results which has motivated us to conduct such a research work using a custom-built experimental Super-Mileage vehicle. The content of the paper becomes relevant to the present Automotive and Energy industry where improving the fuel efficiency is of the top most priority.

Keywords: aerodynamics, CFD, fuel efficiency, golf ball

Procedia PDF Downloads 328
723 Adoption of Risk and Insurance among Aquaculture Producers in Khuzestan Province, Iran

Authors: Kiyanoush Ghalavand

Abstract:

Aquaculture production is inherently a risky business, and farmers face a variety of weather, pest, disease, inptut supply, and market related risks. There are many factors out farmers control and unpredictable. Insurance has an important role in aquaculture production and is a tool to support farmers against threats. Investigation of factors affecting aquaculture farmers' adoption of aquaculture insurance strategy was the objective of this study. The purpose of this study was determining the related factors to adoption of insurance by aquaculture farmers in Khuzestan province, Iran. The research design was a descriptive and correlation surveying method. Aquaculture farmers in Khuzestan province were the target population for this study. A random sample of aquaculture selected (N=1830, n =139). The main result of the study reveled that exist correlation between the level of education, knowledge about purpose of insurance, participation in extension course, visit with insurance organization, and contact with extension agents to the adoption of insurance by aquaculture farmers were significantly positive. By using Bartlett's test and KMO test, determine whether research variables are appropriate for factor analysis (Sig = 0.000, Bartlett test = 0.9724, KMO = 0.74). The number of factors was determined using a split plot, eigenvalue, and percent of variance. An examination of the items and their factors loadings was used to understand the nature of the nine factors. To reduce subjectivity, items with factor loading equal to or greater than 0.5 were considered most important when factors were labeled. The nine factors were labeled (1) Extension and education activities, (2) Economical characteristics, (3) Governmental support, (4) communicational channel, (5) local leaders, (6) Facilitate in given damage (7) Motivation establishing, (8) Given damage in appropriate methods and (9) Appropriate activities by insurance organization. The results obtained from the factors analysis reveal that the nine factors explain percentage75 of the variation of the adoption of insurance of the adoption of insurance by aquaculture farmers in Khuzestan province.

Keywords: aquaculture farmers, insurance, factorial analysis, Khuzestan province, risks

Procedia PDF Downloads 147
722 Predictive Pathogen Biology: Genome-Based Prediction of Pathogenic Potential and Countermeasures Targets

Authors: Debjit Ray

Abstract:

Horizontal gene transfer (HGT) and recombination leads to the emergence of bacterial antibiotic resistance and pathogenic traits. HGT events can be identified by comparing a large number of fully sequenced genomes across a species or genus, define the phylogenetic range of HGT, and find potential sources of new resistance genes. In-depth comparative phylogenomics can also identify subtle genome or plasmid structural changes or mutations associated with phenotypic changes. Comparative phylogenomics requires that accurately sequenced, complete and properly annotated genomes of the organism. Assembling closed genomes requires additional mate-pair reads or “long read” sequencing data to accompany short-read paired-end data. To bring down the cost and time required of producing assembled genomes and annotating genome features that inform drug resistance and pathogenicity, we are analyzing the performance for genome assembly of data from the Illumina NextSeq, which has faster throughput than the Illumina HiSeq (~1-2 days versus ~1 week), and shorter reads (150bp paired-end versus 300bp paired end) but higher capacity (150-400M reads per run versus ~5-15M) compared to the Illumina MiSeq. Bioinformatics improvements are also needed to make rapid, routine production of complete genomes a reality. Modern assemblers such as SPAdes 3.6.0 running on a standard Linux blade are capable in a few hours of converting mixes of reads from different library preps into high-quality assemblies with only a few gaps. Remaining breaks in scaffolds are generally due to repeats (e.g., rRNA genes) are addressed by our software for gap closure techniques, that avoid custom PCR or targeted sequencing. Our goal is to improve the understanding of emergence of pathogenesis using sequencing, comparative genomics, and machine learning analysis of ~1000 pathogen genomes. Machine learning algorithms will be used to digest the diverse features (change in virulence genes, recombination, horizontal gene transfer, patient diagnostics). Temporal data and evolutionary models can thus determine whether the origin of a particular isolate is likely to have been from the environment (could it have evolved from previous isolates). It can be useful for comparing differences in virulence along or across the tree. More intriguing, it can test whether there is a direction to virulence strength. This would open new avenues in the prediction of uncharacterized clinical bugs and multidrug resistance evolution and pathogen emergence.

Keywords: genomics, pathogens, genome assembly, superbugs

Procedia PDF Downloads 195
721 The Association between Affective States and Sexual/Health-Related Status among Men Who Have Sex with Men in China: An Exploration Study Using Social Media Data

Authors: Zhi-Wei Zheng, Zhong-Qi Liu, Jia-Ling Qiu, Shan-Qing Guo, Zhong-Wei Jia, Chun Hao

Abstract:

Objectives: The purpose of this study was to understand and examine the association between diurnal mood variation and sexual/health-related status among men who have sex with men (MSM) using data from MSM Chinese Twitter messages. The study consists of 843,745 postings of 377,610 MSM users located in Guangdong that were culled from the MSM Chinese Twitter App. Positive affect, negative affect, sexual related behaviors, and health-related status were measured using the Simplified Chinese Linguistic Inquiry and Word Count. Emotions, including joy, sadness, anger, fear, and disgust were measured using the Weibo Basic Mood Lexicon. A positive sentiment score and a positive emotions score were also calculated. Linear regression models based on a permutation test were used to assess associations between affective states and sexual/health-related status. In the results, 5,871 active MSM users and their 477,374 postings were finally selected. MSM expressed positive affect and joy at 8 a.m. and expressed negative affect and negative emotions between 2 a.m. and 4 a.m. In addition, 25.1% of negative postings were directly related to health and 13.4% reported seeking social support during that sensitive period. MSM who were senior, educated, overweight or obese, self-identified as performing a versatile sex role, and with less followers, more followers, and less chat groups mainly expressed more negative affect and negative emotions. MSM who talked more about sexual-related behaviors had a higher positive sentiment score (β=0.29, p < 0.001) and a higher positive emotions score (β = 0.16, p < 0.001). MSM who reported more on their health status had a lower positive sentiment score (β = -0.83, p < 0.001) and a lower positive emotions score (β = -0.37, p < 0.001). The study concluded that psychological intervention based on an app for MSM should be conducted, as it may improve mental health.

Keywords: affect, men who have sex with men, sexual related behavior, health-related status, social media

Procedia PDF Downloads 160
720 Commodity Factory or Food Farms an Irrational Dilemma: Reflections on the Brazilian Scenario

Authors: Monica Dantas

Abstract:

At what socio-economic costs can the food industry offer products at low prices? This research seeks to understand and to explore how we attribute competence and meaning, what enables the outcomes of agriculture and what institutions provides validation regarding food production. This study objective is to explain and interpret conditions of the present state of agriculture in Brazil centring on two distinct segments, agribusiness and family farming, as the Brazilian, rapidly changing political environment unfolds. The approach is grounded in multidisciplinary literature drawing from the politics of development, the sociology of food, the sustainability framework and the conceptual differences between agribusiness and family farming regarding the innate purpose of the two segments. In addition, a quantitative portion of the research includes secondary data analysis from statistical measurements, economic indicators, federal budget information, and census data to compare the two segments, conveying a general snapshot of the conditions investigated. The results raised questions about the perceived image of the success of agribusiness, against some contradicting economic checks and balances. Analyzing how public funds are invested in agriculture shed light on what can enable or undermine the development of food systems in Brazil. It also revealed how politics, ideology, and corporations might influence the Brazilian Federal. In the 2000-2018 observed timeline of annual federal spending on agriculture in Brazil, there is variation in the amount invested in family farming that seems to 'coincide' with the ideological direction of the federal government in power. It was also observed that significant changes in the institutional framework and financial support either promoted or purposely undermined family farming importance using public institutions to validate support for agribusiness.

Keywords: food politics, sustainability, family farming, food system, public budget

Procedia PDF Downloads 128
719 Experimental Analyses of Thermoelectric Generator Behavior Using Two Types of Thermoelectric Modules for Marine Application

Authors: A. Nour Eddine, D. Chalet, L. Aixala, P. Chessé, X. Faure, N. Hatat

Abstract:

Thermal power technology such as the TEG (Thermo-Electric Generator) arouses significant attention worldwide for waste heat recovery. Despite the potential benefits of marine application due to the permanent heat sink from sea water, no significant studies on this application were to be found. In this study, a test rig has been designed and built to test the performance of the TEG on engine operating points. The TEG device is built from commercially available materials for the sake of possible economical application. Two types of commercial TEM (thermo electric module) have been studied separately on the test rig. The engine data were extracted from a commercial Diesel engine since it shares the same principle in terms of engine efficiency and exhaust with the marine Diesel engine. An open circuit water cooling system is used to replicate the sea water cold source. The characterization tests showed that the silicium-germanium alloys TEM proved a remarkable reliability on all engine operating points, with no significant deterioration of performance even under sever variation in the hot source conditions. The performance of the bismuth-telluride alloys was 100% better than the first type of TEM but it showed a deterioration in power generation when the air temperature exceeds 300 °C. The temperature distribution on the heat exchange surfaces revealed no useful combination of these two types of TEM with this tube length, since the surface temperature difference between both ends is no more than 10 °C. This study exposed the perspective of use of TEG technology for marine engine exhaust heat recovery. Although the results suggested non-sufficient power generation from the low cost commercial TEM used, it provides valuable information about TEG device optimization, including the design of heat exchanger and the types of thermo-electric materials.

Keywords: internal combustion engine application, Seebeck, thermo-electricity, waste heat recovery

Procedia PDF Downloads 242
718 Assessing Sydney Tar Ponds Remediation and Natural Sediment Recovery in Nova Scotia, Canada

Authors: Tony R. Walker, N. Devin MacAskill, Andrew Thalhiemer

Abstract:

Sydney Harbour, Nova Scotia has long been subject to effluent and atmospheric inputs of metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) from a large coking operation and steel plant that operated in Sydney for nearly a century until closure in 1988. Contaminated effluents from the industrial site resulted in the creation of the Sydney Tar Ponds, one of Canada’s largest contaminated sites. Since its closure, there have been several attempts to remediate this former industrial site and finally, in 2004, the governments of Canada and Nova Scotia committed to remediate the site to reduce potential ecological and human health risks to the environment. The Sydney Tar Ponds and Coke Ovens cleanup project has become the most prominent remediation project in Canada today. As an integral part of remediation of the site (i.e., which consisted of solidification/stabilization and associated capping of the Tar Ponds), an extensive multiple media environmental effects program was implemented to assess what effects remediation had on the surrounding environment, and, in particular, harbour sediments. Additionally, longer-term natural sediment recovery rates of select contaminants predicted for the harbour sediments were compared to current conditions. During remediation, potential contributions to sediment quality, in addition to remedial efforts, were evaluated which included a significant harbour dredging project, propeller wash from harbour traffic, storm events, adjacent loading/unloading of coal and municipal wastewater treatment discharges. Two sediment sampling methodologies, sediment grab and gravity corer, were also compared to evaluate the detection of subtle changes in sediment quality. Results indicated that overall spatial distribution pattern of historical contaminants remains unchanged, although at much lower concentrations than previously reported, due to natural recovery. Measurements of sediment indicator parameter concentrations confirmed that natural recovery rates of Sydney Harbour sediments were in broad agreement with predicted concentrations, in spite of ongoing remediation activities. Overall, most measured parameters in sediments showed little temporal variability even when using different sampling methodologies, during three years of remediation compared to baseline, except for the detection of significant increases in total PAH concentrations noted during one year of remediation monitoring. The data confirmed the effectiveness of mitigation measures implemented during construction relative to harbour sediment quality, despite other anthropogenic activities and the dynamic nature of the harbour.

Keywords: contaminated sediment, monitoring, recovery, remediation

Procedia PDF Downloads 235
717 Status of Alien Invasive Trees on the Grassland Plateau in Nyika National Park

Authors: Andrew Kanzunguze, Sopani Sichinga, Paston Simkoko, George Nxumayo, Cosmas, V. B. Dambo

Abstract:

Early detection of plant invasions is a necessary prerequisite for effective invasive plant management in protected areas. This study was conducted to determine the distribution and abundance of alien invasive trees in Nyika National Park (NNP). Data on species' presence and abundance were collected from belt transects (n=31) in a 100 square kilometer area on the central plateau. The data were tested for normality using the Shapiro-Wilk test; Mann-Whitney test was carried out to compare frequencies and abundances between the species, and geographical information systems were used for spatial analyses. Results revealed that Black Wattle (Acacia mearnsii), Mexican Pine (Pinus patula) and Himalayan Raspberry (Rubus ellipticus) were the main alien invasive trees on the plateau. A. mearnsii was localized in the areas where it was first introduced, whereas P. patula and R. ellipticus were spread out beyond original points of introduction. R. ellipticus occurred as dense, extensive (up to 50 meters) thickets on the margins of forest patches and pine stands, whilst P. patula trees were frequent in the valleys, occurring most densely (up to 39 stems per 100 square meters) south-west of Chelinda camp on the central plateau with high variation in tree heights. Additionally, there were no significant differences in abundance between R. ellipticus (48) and P. patula (48) in the study area (p > 0.05) It was concluded that R. ellipticus and P. patula require more attention as compared to A. mearnsii. Howbeit, further studies into the invasion ecology of both P. patula and R. ellipticus on the Nyika plateau are highly recommended so as to assess the threat posed by the species on biodiversity, and recommend appropriate conservation measures in the national park.

Keywords: alien-invasive trees, Himalayan raspberry, Nyika National Park, Mexican pine

Procedia PDF Downloads 196
716 Tracing Ethnic Identity through Prehistoric Paintings and Tribal Art in Central India

Authors: Indrani Chattopadhyaya

Abstract:

This paper seeks to examine how identity – a cultural self-image of a group of people develops – how they live, they think, they celebrate and express their world view through language, gesture, symbols, and rituals. 'Culture' is a way of life and 'identity' is assertion of that cultural self-image practiced by the group. The way in which peoples live varies from time to time and from place to place. This variation is important for their identity. Archaeologists have classified these patterns of spacial variations as 'archaeological culture.' These cultures are identified 'self-consciously' with a particular social group indicating ethnicity. The ethnic identity as archaeological cultures also legitimizes the claims of modern groups to territory. In prehistoric research problems of ethnicity and multiculturalism, stylistic attributes significantly reflect both group membership and individuality. In India, anthropologists feel that though tribes have suffered relative isolation through history, they have remained an integral part of Indian civilization. The term 'tribe' calls for substitution with a more meaningful name with an indigenous flavour 'Adivasi' (original inhabitants of the land).While studying prehistoric rock paintings from central India - Sonbhadra (Uttar Pradesh) and Bhimbetka (Madhya Pradesh), one is struck by the similarity between stylistic attributes of painted motifs in the prehistoric rock shelters and the present day indigenous art of Kol and Bhil tribes in the area, who have not seen these prehistoric rock paintings, yet are carrying on with the tradition of painting and decorating their houses in the same way. They worship concretionary sandstone blocks with triangular laminae as Goddess, Devi, Shakti. This practice is going on since Upper Palaeolithic period confirmed by archaeological excavation. The past is legitimizing the role of the present groups by allowing them to trace their roots from earlier times.

Keywords: ethnic identity, hermeneutics, semiotics, Adivasi

Procedia PDF Downloads 306
715 Calculation of Fractal Dimension and Its Relation to Some Morphometric Characteristics of Iranian Landforms

Authors: Mitra Saberi, Saeideh Fakhari, Amir Karam, Ali Ahmadabadi

Abstract:

Geomorphology is the scientific study of the characteristics of form and shape of the Earth's surface. The existence of types of landforms and their variation is mainly controlled by changes in the shape and position of land and topography. In fact, the interest and application of fractal issues in geomorphology is due to the fact that many geomorphic landforms have fractal structures and their formation and transformation can be explained by mathematical relations. The purpose of this study is to identify and analyze the fractal behavior of landforms of macro geomorphologic regions of Iran, as well as studying and analyzing topographic and landform characteristics based on fractal relationships. In this study, using the Iranian digital elevation model in the form of slopes, coefficients of deposition and alluvial fan, the fractal dimensions of the curves were calculated through the box counting method. The morphometric characteristics of the landforms and their fractal dimension were then calculated for 4criteria (height, slope, profile curvature and planimetric curvature) and indices (maximum, Average, standard deviation) using ArcMap software separately. After investigating their correlation with fractal dimension, two-way regression analysis was performed and the relationship between fractal dimension and morphometric characteristics of landforms was investigated. The results show that the fractal dimension in different pixels size of 30, 90 and 200m, topographic curves of different landform units of Iran including mountain, hill, plateau, plain of Iran, from1.06in alluvial fans to1.17in The mountains are different. Generally, for all pixels of different sizes, the fractal dimension is reduced from mountain to plain. The fractal dimension with the slope criterion and the standard deviation index has the highest correlation coefficient, with the curvature of the profile and the mean index has the lowest correlation coefficient, and as the pixels become larger, the correlation coefficient between the indices and the fractal dimension decreases.

Keywords: box counting method, fractal dimension, geomorphology, Iran, landform

Procedia PDF Downloads 79