Search results for: silicon solar cell
2707 Alcoxysilanes Production from Silica and Dimethylcarbonate Promoted by Alkali Bases: A DFT Investigation of the Reaction Mechanism
Authors: Valeria Butera, Norihisa Fukaya, Jun-Chu Choi, Kazuhiko Sato, Yoong-Kee Choe
Abstract:
Several silicon dioxide sources can react with dimethyl carbonate (DMC) in presence of alkali bases catalysts to ultimately produce tetramethoxysilane (TMOS). Experimental findings suggested that the reaction proceeds through several steps in which the first molecule of DMC is converted to dimethylsilyloxide (DMOS) and CO₂. Following the same mechanistic steps, a second molecule of DMC reacts with the DMOS to afford the final product TMOS. Using a cluster model approach, a quantum-mechanical investigation of the first part of the reaction leading to DMOS formation is reported with a twofold purpose: (1) verify the viability of the reaction mechanism proposed on the basis of experimental evidences .(2) compare the behaviors of three different alkali hydroxides MOH, where M=Li, K and Cs, to determine whether diverse ionic radius and charge density can be considered responsible for the observed differences in reactivity. Our findings confirm the observed experimental trend and furnish important information about the effective role of the alkali hydroxides giving an explanation of the different catalytic activity of the three metal cations.Keywords: Alcoxysilanes production, cluster model approach, DFT, DMC conversion
Procedia PDF Downloads 2712706 Modelling of Creep in a Thick-Walled Cylindrical Vessel Subjected to Internal Pressure
Authors: Tejeet Singh, Ishvneet Singh, Vinay Gupta
Abstract:
The present study focussed on carrying out the creep analysis in an isotropic thick-walled composite cylindrical pressure vessel composed of aluminium matrix reinforced with silicon-carbide in particulate form. The creep behaviour of the composite material has been described by the threshold stress based creep law. The value of stress exponent appearing in the creep law was selected as 3, 5 and 8. The constitutive equations were developed using well known von-Mises yield criteria. Models were developed to find out the distributions of creep stresses and strain rate in thick-walled composite cylindrical pressure vessels under internal pressure. In order to obtain the stress distributions in the cylinder, the equilibrium equation of the continuum mechanics and the constitutive equations are solved together. It was observed that the radial stress, tangential stress and axial stress increases along with the radial distance. The cross-over was also obtained almost at the middle region of cylindrical vessel for tangential and axial stress for different values of stress exponent. The strain rates were also decreasing in nature along the entire radius.Keywords: creep, composite, cylindrical vessel, internal pressure
Procedia PDF Downloads 5752705 Calculating All Dark Energy and Dark Matter Effects Through Dynamic Gravity Theory
Authors: Sean Kinney
Abstract:
In 1666, Newton created the Law of Universal Gravitation. And in 1915, Einstein improved it to incorporate factors such as time dilation and gravitational lensing. But currently, there is a problem with this “universal” law. The math doesn’t work outside the confines of our solar system. And something is missing; any evidence of what gravity actually is and how it manifest. This paper explores the notion that gravity must obey the law of conservation of energy as all other forces in this universe have been shown to do. Explaining exactly what gravity is and how it manifests itself. And looking at many different implications that would be created are explained. And finally, using the math of Dynamic Gravity to calculate Dark Energy and Dark Matter effects to explain all observations without the need of exotic measures.Keywords: gravity, dynamic gravity, dark matter, dark energy
Procedia PDF Downloads 1052704 Experimental Investigation of Nanofluid Heat Transfer in a Plate Type Heat Exchanger
Authors: Eyuphan Manay
Abstract:
In this study, it was aimed to determine the convective heat transfer characteristics of water-based silicon dioxide nanofluids (SiO₂) with particle volume fractions of 0.2 and 0.4% vol. Nanofluids were tested in a plate type heat exchanger with six plates. Plate type heat exchanger was manufactured from stainless steel. Water was driven in the hot flow side, and nanofluids were driven in the cold flow side. The thermal energy of the hot water was taken by nanofluids. Effect of the inlet temperature of the hot water was investigated on heat transfer performance of the nanofluids while the inlet temperature of the nanofluids was fixed. In addition, the effects of the particle volume fraction and the cold flow rate on the performance of the system were tested. Results showed that increasing inlet temperature of the hot flow caused heat transfer to enhance. The suspended solid particles into the carrier fluid also remarkably enhanced heat transfer, and, an increase in the particle volume fraction resulted in an increase in heat transfer.Keywords: heat transfer enhancement, SiO₂-water, nanofluid, plate heat exchanger
Procedia PDF Downloads 2012703 Integrating Circular Economy Framework into Life Cycle Analysis: An Exploratory Study Applied to Geothermal Power Generation Technologies
Authors: Jingyi Li, Laurence Stamford, Alejandro Gallego-Schmid
Abstract:
Renewable electricity has become an indispensable contributor to achieving net-zero by the mid-century to tackle climate change. Unlike solar, wind, or hydro, geothermal was stagnant in its electricity production development for decades. However, with the significant breakthrough made in recent years, especially the implementation of enhanced geothermal systems (EGS) in various regions globally, geothermal electricity could play a pivotal role in alleviating greenhouse gas emissions. Life cycle assessment has been applied to analyze specific geothermal power generation technologies, which proposed suggestions to optimize its environmental performance. For instance, selecting a high heat gradient region enables a higher flow rate from the production well and extends the technical lifespan. Although such process-level improvements have been made, the significance of geothermal power generation technologies so far has not explicitly displayed its competitiveness on a broader horizon. Therefore, this review-based study integrates a circular economy framework into life cycle assessment, clarifying the underlying added values for geothermal power plants to complete the sustainability profile. The derived results have provided an enlarged platform to discuss geothermal power generation technologies: (i) recover the heat and electricity from the process to reduce the fossil fuel requirements; (ii) recycle the construction materials, such as copper, steel, and aluminum for future projects; (iii) extract the lithium ions from geothermal brine and make geothermal reservoir become a potential supplier of the lithium battery industry; (iv) repurpose the abandoned oil and gas wells to build geothermal power plants; (v) integrate geothermal energy with other available renewable energies (e.g., solar and wind) to provide heat and electricity as a hybrid system at different weather; (vi) rethink the fluids used in stimulation process (EGS only), replace water with CO2 to achieve negative emissions from the system. These results provided a new perspective to the researchers, investors, and policymakers to rethink the role of geothermal in the energy supply network.Keywords: climate, renewable energy, R strategies, sustainability
Procedia PDF Downloads 1352702 Study and Experimental Analysis of a Photovoltaic Pumping System under Three Operating Modes
Authors: Rekioua D., Mohammedi A., Rekioua T., Mehleb Z.
Abstract:
Photovoltaic water pumping systems is considered as one of the most promising areas in photovoltaic applications, the economy and reliability of solar electric power made it an excellent choice for remote water pumping. Two conventional techniques are currently in use; the first is the directly coupled technique and the second is the battery buffered photovoltaic pumping system. In this paper, we present different performances of a three operation modes of photovoltaic pumping system. The aim of this work is to determine the effect of different parameters influencing the photovoltaic pumping system performances, such as pumping head, System configuration and climatic conditions. The obtained results are presented and discussed.Keywords: batteries charge mode, photovoltaic pumping system, pumping head, submersible pump
Procedia PDF Downloads 5082701 Agarose Amplification Based Sequencing (AG-seq) Characterization Cell-free RNA in Preimplantation Spent Embryo Medium
Authors: Huajuan Shi
Abstract:
Background: The biopsy of the preimplantation embryo may increase the potential risk and concern of embryo viability. Clinically discarded spent embryo medium (SEM) has entered the view of researchers, sparking an interest in noninvasive embryo screening. However, one of the major restrictions is the extremelty low quantity of cf-RNA, which is difficult to efficiently and unbiased amplify cf-RNA using traditional methods. Hence, there is urgently need to an efficient and low bias amplification method which can comprehensively and accurately obtain cf-RNA information to truly reveal the state of SEM cf-RNA. Result: In this present study, we established an agarose PCR amplification system, and has significantly improved the amplification sensitivity and efficiency by ~90 fold and 9.29 %, respectively. We applied agarose to sequencing library preparation (named AG-seq) to quantify and characterize cf-RNA in SEM. The number of detected cf-RNAs (3533 vs 598) and coverage of 3' end were significantly increased, and the noise of low abundance gene detection was reduced. The increasing percentage 5' end adenine and alternative splicing (AS) events of short fragments (< 400 bp) were discovered by AG-seq. Further, the profiles and characterizations of cf-RNA in spent cleavage medium (SCM) and spent blastocyst medium (SBM) indicated that 4‐mer end motifs of cf-RNA fragments could remarkably differentiate different embryo development stages. Significance: This study established an efficient and low-cost SEM amplification and library preparation method. Not only that, we successfully described the characterizations of SEM cf-RNA of preimplantation embryo by using AG-seq, including abundance features fragment lengths. AG-seq facilitates the study of cf-RNA as a noninvasive embryo screening biomarker and opens up potential clinical utilities of trace samples.Keywords: cell-free RNA, agarose, spent embryo medium, RNA sequencing, non-invasive detection
Procedia PDF Downloads 902700 Expression Profiling and Immunohistochemical Analysis of Squamous Cell Carcinoma of Head and Neck (Tumor, Transition Zone, Normal) by Whole Genome Scale Sequencing
Authors: Veronika Zivicova, Petr Broz, Zdenek Fik, Alzbeta Mifkova, Jan Plzak, Zdenek Cada, Herbert Kaltner, Jana Fialova Kucerova, Hans-Joachim Gabius, Karel Smetana Jr.
Abstract:
The possibility to determine genome-wide expression profiles of cells and tissues opens a new level of analysis in the quest to define dysregulation in malignancy and thus identify new tumor markers. Toward this long-term aim, we here address two issues on this level for head and neck cancer specimen: i) defining profiles in different regions, i.e. the tumor, the transition zone and normal control and ii) comparing complete data sets for seven individual patients. Special focus in the flanking immunohistochemical part is given to adhesion/growth-regulatory galectins that upregulate chemo- and cytokine expression in an NF-κB-dependent manner, to these regulators and to markers of differentiation, i.e. keratins. The detailed listing of up- and down-regulations, also available in printed form (1), not only served to unveil new candidates for testing as marker but also let the impact of the tumor in the transition zone become apparent. The extent of interindividual variation raises a strong cautionary note on assuming uniformity of regulatory events, to be noted when considering therapeutic implications. Thus, a combination of test targets (and a network analysis for galectins and their downstream effectors) is (are) advised prior to reaching conclusions on further perspectives.Keywords: galectins, genome scale sequencing, squamous cell carcinoma, transition zone
Procedia PDF Downloads 2362699 Factor Associated with Uncertainty Undergoing Hematopoietic Stem Cell Transplantation
Authors: Sandra Adarve, Jhon Osorio
Abstract:
Uncertainty has been studied in patients with different types of cancer, except in patients with hematologic cancer and undergoing transplantation. The purpose of this study was to identify factors associated with uncertainty in adults patients with malignant hemato-oncology diseases who are scheduled to undergo hematopoietic stem cell transplantation based on Merle Mishel´s Uncertainty theory. This was a cross-sectional study with an analytical purpose. The study sample included 50 patients with leukemia, myeloma, and lymphoma selected by non-probability sampling by convenience and intention. Sociodemographic and clinical variables were measured. Mishel´s Scale of Uncertainty in Illness was used for the measurement of uncertainty. A bivariate and multivariate analyses were performed to explore the relationships and associations between the different variables and uncertainty level. For this analysis, the distribution of the uncertainty scale values was evaluated through the Shapiro-Wilk normality test to identify statistical tests to be used. A multivariate analysis was conducted through a logistic regression using step-by-step technique. Patients were 18-74 years old, with a mean age of 44.8. Over time, the disease course had a median of 9.5 months, an opportunity was found in the performance of the transplantation of < 20 days for 50% of the patients. Regarding the uncertainty scale, a mean score of 95.46 was identified. When the dimensions of the scale were analyzed, the mean score of the framework of stimuli was 25.6, of cognitive ability was 47.4 and structure providers was 22.8. Age was identified to correlate with the total uncertainty score (p=0.012). Additionally, a statistically significant difference was evidenced between different religious creeds and uncertainty score (p=0.023), education level (p=0.012), family history of cancer (p=0.001), the presence of comorbidities (p=0.023) and previous radiotherapy treatment (p=0.022). After performing logistic regression, previous radiotherapy treatment (OR=0.04 IC95% (0.004-0.48)) and family history of cancer (OR=30.7 IC95% (2.7-349)) were found to be factors associated with the high level of uncertainty. Uncertainty is present in high levels in patients who are going to be subjected to bone marrow transplantation, and it is the responsibility of the nurse to assess the levels of uncertainty and the presence of factors that may contribute to their presence. Once it has been valued, the uncertainty must be intervened from the identified associated factors, especially all those that have to do with the cognitive capacity. This implies the implementation and design of intervention strategies to improve the knowledge related to the disease and the therapeutic procedures to which the patients will be subjected. All interventions should favor the adaptation of these patients to their current experience and contribute to seeing uncertainty as an opportunity for growth and transcendence.Keywords: hematopoietic stem cell transplantation, hematologic diseases, nursing, uncertainty
Procedia PDF Downloads 1652698 Fabrication and Characterization of Glass Nanofibers through Electrospinning of Silica Sol-Gel along with in situ Synthesis of Ag Nanoparticles
Authors: Mahsa Kangazian Kangazi, Ali Akbar Ghareh Aghaji, Majid Montazer
Abstract:
Nowadays, silica nanofibers are highly regarded among the inorganic nanofibers due to the high reactivity and availability of silicon compounds in nature. Sol-gel process is required for electrospinning of silica nanofibers in which a metal alkoxide is hydrolyzed, and the viscosity is increased. In this study, silica nanofibers containing silver nanoparticles were synthesized and electrospun from a mixture of silica sol with an easy spinnable polymer (PVA) as an additive. The silica sol contains tetraethyl orthosilicate (TEOS), silver nitrate, distilled water, nitric acid, and ethanol. Nanofibers were formed through electrospinning setup. The nanofibers were calcinated to remove the solvent and additive polymer. Consequently, pure silica nanofibers were produced. FTIR analysis indicated entire removal of polyvinyl alcohol from the structure and formation of silan groups. The presence of silver, silica and oxygen was confirmed by EDX. Also, XRD patterns revealed the presence of silver nanoparticles with a mean crystal size of 18 nm. FESEM images showed that adding silver nitrate into the sol-gel, resulted in lower nanofibers diameter from 286 to 136 nm. Furthermore, the electrospun nanofibers were more resistance in acidic media than alkaline media.Keywords: in situ synthesis of silver nanoparticles, silica nanofibers, sol-gel, tetraethyl orthosilicate
Procedia PDF Downloads 1792697 Mitigating the Aggregation of Human Islet Amyloid Polypeptide with Nanomaterials
Authors: Ava Faridi, Pouya Faridi, Aleksandr Kakinen, Ibrahim Javed, Thomas P. Davis, Pu Chun Ke
Abstract:
Human islet amyloid polypeptide (IAPP) is a hormone associated with glycemic control and type 2 diabetes. Biophysically, the chirality of IAPP fibrils has been little explored with respect to the aggregation and toxicity of the peptide. Biochemically, it remains unclear as for how protein expression in pancreatic beta cells may be altered by cell exposure to the peptide, and how such changes may be mitigated by nanoparticle inhibitors for IAPP aggregation. In this study, we first demonstrated the elimination of the IAPP nucleation phase and shortening of its elongation phase by silica nanoribbons. This accelerated IAPP fibrillization translated to reduced toxicity, especially for the right-handed silica nanoribbons, as revealed by cell viability, helium ion microscopy, as well as zebrafish embryo survival, developmental and behavioral assays. We then examined the proteomes of βTC6 pancreatic beta cells exposed to the three main aggregation states of monomeric, oligomeric and amyloid fibrillar IAPP, and compared that with cellular protein expression modulated by graphene quantum dots (GQDs). A total of 29 proteins were significantly regulated by different forms of IAPP, and the majority of these proteins were nucleotide-binding proteins. A regulatory capacity of GQDs against aberrant protein expression was confirmed. These studies have demonstrated the great potential of employing nanomaterials targeting the mesoscopic enantioselectivity and protein expression dysregulation in pancreatic beta cells.Keywords: graphene quantum dots, IAPP, silica nanoribbons, protein expression, toxicity
Procedia PDF Downloads 1412696 Combined Treatment of PARP-1 Inhibitor and Carbon Ion or Gamma Exposure Reduces the Metastatic Potential in Cultured Human Cells
Authors: Priyanka Chowdhury, Asitikantha Sarma, Utpal Ghosh
Abstract:
Hadron therapy using high Linear Energy Transfer (LET) ion beam is producing promising clinical results worldwide. The major advantages are its ability to kill radio-resistant tumor and its anti-metastatic activity. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors have been widely used as radiosensitizer, but its role in metastasis is unknown. The purpose of our study was to investigate the effect of PARP-1 depletion in combination with either Carbon Ion Beam (CIB) or gamma irradiation on metastatic potential of cultured cancerous cells. A549 cells were irradiated with CIB (0-4Gy) or gamma (0, 2, 4, 6 and 10 Gy) with and without PARP-1 inhibition. The metastatic potential of the cells was determined by cell migratory assay, expression, and activity of MMP-2 and MMP-9, expression of Cadherin, Fibronectin, and Vimentin. CIB exposure reduced migratory property and activity of MMP-2 and MMP-9 significantly. CIB with PARP-1 inhibition reduced cell migration and Matrix Metalloproteinase (MMPs) activity in a synergistic manner. Expression of MMPs was also down-regulated in CIB and combined treatment. On the contrary, MMP- 2 and MMP-9 activity was significantly increased in gamma irradiated cells but decreased upon combined treatment of gamma and PARP-1 inhibitor. MMPs expression and migration was reduced when gamma irradiation was combined with PARP-1 inhibition. Thus, our study clearly demonstrates that PARP-1 inhibition in combination with either high or low LET can significantly suppress metastatic potential in cancer cells and thereby can be a promising tool in controlling metastatic cancers.Keywords: high LET, low LET, matrix metalloproteinase (MMP), PARP-1
Procedia PDF Downloads 2132695 Human Immune Response to Surgery: The Surrogate Prediction of Postoperative Outcomes
Authors: Husham Bayazed
Abstract:
Immune responses following surgical trauma play a pivotal role in predicting postoperative outcomes from healing and recovery to postoperative complications. Postoperative complications, including infections and protracted recovery, occur in a significant number of about 300 million surgeries performed annually worldwide. Complications cause personal suffering along with a significant economic burden on the healthcare system in any community. The accurate prediction of postoperative complications and patient-targeted interventions for their prevention remain major clinical provocations. Recent Findings: Recent studies are focusing on immune dysregulation mechanisms that occur in response to surgical trauma as a key determinant of postoperative complications. Antecedent studies mainly were plunging into the detection of inflammatory plasma markers, which facilitate in providing important clues regarding their pathogenesis. However, recent Single-cell technologies, such as mass cytometry or single-cell RNA sequencing, have markedly enhanced our ability to understand the immunological basis of postoperative immunological trauma complications and to identify their prognostic biological signatures. Summary: The advent of proteomic technologies has significantly advanced our ability to predict the risk of postoperative complications. Multiomic modeling of patients' immune states holds promise for the discovery of preoperative predictive biomarkers and providing patients and surgeons with information to improve surgical outcomes. However, more studies are required to accurately predict the risk of postoperative complications in individual patients.Keywords: immune dysregulation, postoperative complications, surgical trauma, flow cytometry
Procedia PDF Downloads 842694 Biomedicine, Suffering, and Sacrifice: Myths and Prototypes in Cell and Gene Therapies
Authors: Edison Bicudo
Abstract:
Cell and gene therapies (CGTs) result from the intense manipulation of cells or the use of techniques such as gene editing. They have been increasingly used to tackle rare diseases or conditions of genetic origin, such as cancer. One might expect such a complex scientific field to be dominated by scientific findings and evidence-based explanations. However, people engaged in scientific argumentation also mobilize a range of cognitive operations of which they are not fully aware, in addition to drawing on widely available oral traditions. This paper analyses how experts discussing the potentialities and challenges of CGTs have recourse to a particular kind of prototypical myth. This sociology study, conducted at the University of Sussex (UK), involved interviews with scientists, regulators, and entrepreneurs involved in the development or governance of CGTs. It was observed that these professionals, when voicing their views, sometimes have recourse to narratives where CGTs appear as promising tools for alleviating or curing diseases. This is said to involve much personal, scientific, and financial sacrifice. In his study of traditional narratives, Hogan identified three prototypes: the romantic narrative, moved by the ideal of romantic union; the heroic narrative, moved by the desire for political power; and the sacrificial narrative, where the ideal is plenty, well-being, and health. It is argued here that discourses around CGTs often involve some narratives – or myths – that have a sacrificial nature. In this sense, the development of innovative therapies is depicted as a huge sacrificial endeavor involving biomedical scientists, biotech and pharma companies, and decision-makers. These sacrificial accounts draw on oral traditions and benefit from an emotional intensification that can be easily achieved in stories of serious diseases and physical suffering. Furthermore, these accounts draw on metaphorical understandings where diseases and vectors of diseases are considered enemies or invaders while therapies are framed as shields or protections. In this way, this paper aims to unravel the cognitive underpinnings of contemporary science – and, more specifically, biomedicine – revealing how myths, prototypes, and metaphors are highly operative even when complex reasoning is at stake. At the same time, this paper demonstrates how such hidden cognitive operations underpin the construction of powerful ideological discourses aimed at defending certain ways of developing, disseminating, and governing technologies and therapies.Keywords: cell and gene therapies, myths, prototypes, metaphors
Procedia PDF Downloads 162693 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification
Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectivelyKeywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm
Procedia PDF Downloads 4792692 Dry Modifications of PCL/Chitosan/PCL Tissue Scaffolds
Authors: Ozan Ozkan, Hilal Turkoglu Sasmazel
Abstract:
Natural polymers are widely used in tissue engineering applications, because of their biocompatibility, biodegradability and solubility in the physiological medium. On the other hand, synthetic polymers are also widely utilized in tissue engineering applications, because they carry no risk of infectious diseases and do not cause immune system reaction. However, the disadvantages of both polymer types block their individual usages as tissue scaffolds efficiently. Therefore, the idea of usage of natural and synthetic polymers together as a single 3D hybrid scaffold which has the advantages of both and the disadvantages of none has been entered to the literature. On the other hand, even though these hybrid structures support the cell adhesion and/or proliferation, various surface modification techniques applied to the surfaces of them to create topographical changes on the surfaces and to obtain reactive functional groups required for the immobilization of biomolecules, especially on the surfaces of synthetic polymers in order to improve cell adhesion and proliferation. In a study presented here, to improve the surface functionality and topography of the layer by layer electrospun 3D poly-epsilon-caprolactone/chitosan/poly-epsilon-caprolactone hybrid tissue scaffolds by using atmospheric pressure plasma method, thus to improve cell adhesion and proliferation of these tissue scaffolds were aimed. The formation/creation of the functional hydroxyl and amine groups and topographical changes on the surfaces of scaffolds were realized by using two different atmospheric pressure plasma systems (nozzle type and dielectric barrier discharge (DBD) type) carried out under different gas medium (air, Ar+O2, Ar+N2). The plasma modification time and distance for the nozzle type plasma system as well as the plasma modification time and the gas flow rate for DBD type plasma system were optimized with monitoring the changes in surface hydrophilicity by using contact angle measurements. The topographical and chemical characterizations of these modified biomaterials’ surfaces were carried out with SEM and ESCA, respectively. The results showed that the atmospheric pressure plasma modifications carried out with both nozzle type plasma and DBD plasma caused topographical and functionality changes on the surfaces of the layer by layer electrospun tissue scaffolds. However, the shelf life studies indicated that the hydrophilicity introduced to the surfaces was mainly because of the functionality changes. Therefore, according to the optimized results, samples treated with nozzle type air plasma modification applied for 9 minutes from a distance of 17 cm and Ar+O2 DBD plasma modification applied for 1 minute under 70 cm3/min O2 flow rate were found to have the highest hydrophilicity compared to pristine samples.Keywords: biomaterial, chitosan, hybrid, plasma
Procedia PDF Downloads 2752691 316L Passive Film Modification During Pitting Corrosion Process
Authors: Amina Sriba
Abstract:
In this work, interactions between the chemical elements forming the passive film of welded austenitic stainless steel during pitting corrosion are studied. We pay special attention to the chemical elements chromium, molybdenum, iron, nickel, and silicon since they make up the passive film that covers the fusion zone's surface in the welded joint. Molybdenum and chromium are typically the two essential components that control the three crucial stages of pit formation. It was found that while the involvement of chromium is more prominent during the propagation of a pit that has already begun, the enrichment of the molybdenum element in the passive film becomes apparent from the first stage of pit initiation. Additionally, during the pitting corrosion process, there was a noticeable fluctuation in the quantities of the produced oxides and hydroxide species from zone to zone. Regarding the formed hydroxide species, we clearly see that Nickel hydroxides are added to those of Chromium to constitute the outer layer in the passive film of the fusion zone sample, compared to the base metal sample, where only Chromium hydroxide formed on its surface during the pitting corrosion process. This reaction is caused by the preferential dissolution of the austenite phase instead of ferrite in the fusion zone.Keywords: fusion zone, passive film, chemical elements, pit
Procedia PDF Downloads 502690 Macroscopic Evidence of the Liquidlike Nature of Nanoscale Polydimethylsiloxane Brushes
Authors: Xiaoxiao Zhao
Abstract:
We report macroscopic evidence of the liquidlike nature of surface-tethered poly(dimethylsiloxane) (PDMS) brushes by studying their adhesion to ice. Whereas ice permanently detaches from solid surfaces when subjected to sufficient shear, commonly referred to as the material’s ice adhesion strength, adhered ice instead slides over PDMS brushes indefinitely. When additionally methylated, we observe a Couette-like flow of the PDMS brushes between the ice and silicon surface. PDMS brush ice adhesion displays shear-rate-dependent shear stress and rheological behavior reminiscent of liquids and is affected by ice velocity, temperature, and brush thickness, following scaling laws akin to liquid PDMS films. This liquidlike nature allows it to detach solely by self-weight, yielding an ice adhesion strength of 0.3 kPa, 1000 times less than low surface energy, perfluorinated monolayer. The methylated PDMS brushes also display omniphobicity, repelling all liquids essentially with vanishingly small contact angle hysteresis. Methylation results in significantly higher contact angles than previously reported, nonmethylated brushes, especially for polar liquids of both high and low surface tension.Keywords: omniphobic, surface science, polymer brush, icephobic surface
Procedia PDF Downloads 662689 Strength Parameters and the Rate Process Theory Applied to Compacted Fadama Soils
Authors: Samuel Akinlabi Ola, Emeka Segun Nnochiri, Stephen Kayode Aderomose, Paul Ayesemhe Edoh
Abstract:
Fadama soils of Northern Nigeria are generally a problem soil for highway and geotechnical engineers. There has been no consistent conclusion on the effect of the strain rate on the shear strength of soils, thus necessitating the need to clarify this issue with various types of soil. Consolidated undrained tests with pore pressure measurements were conducted at optimum moisture content and maximum dry density using standard proctor compaction. Back pressures were applied to saturate the soil. The shear strength parameters were determined. Analyzing the results and model studies using the Rate Process Theory, functional relationships between the deviator stress and strain rate were determined and expressed mathematically as deviator stress = β0+ β1 log(strain rate) at each cell pressure where β0 and β1 are constants. Also, functional relationships between the pore pressure coefficient Āf and the time to failure were determined and expressed mathematically as pore pressure coefficient, Āf = ψ0+ѱ1log (time to failure) where ψ0 and ѱ1 are constants. For cell pressure between 69 – 310 kN/m2 (10 - 45psi) the constants found for Fadama soil in this study are ψ0=0.17 and ѱ1=0.18. The study also shows the dependence of the angle of friction (ø’) on the rate of strain as it increases from 22o to 25o for an increase in the rate of strain from 0.08%/min to 1.0%/min. Conclusively, the study also shows that within the strain rate utilized in the research, the deviator strength increased with the strain rate while the excess pore water pressure decreased with an increase in the rate of strain.Keywords: deviator stress, Fadama soils, pore pressure coefficient, rate process
Procedia PDF Downloads 732688 Growth Comparison and Intestinal Health in Broilers Fed Scent Leaf Meal (Ocimum gratissimum) and Synthetic Antibiotic
Authors: Adedoyin Akintunde Adedayo, Onilude Abiodun Anthony
Abstract:
The continuous usage of synthetic antibiotics in livestock production has led to the resistance of microbial pathogens. This has prompted research to find alternative sources. This study aims to compare the growth and intestinal health of broilers fed scent leaf meal (SLM) as an alternative to synthetic antibiotics. The study used a completely randomized design (CRD) with 300 one-week-old Arbor Acres broiler chicks. The chicks were divided into six treatments with five replicates of ten birds each. The feeding trial lasted 49 days, including a one-week acclimatization period. Commercial broiler diets were used. The diets included a negative control (no leaf meal or antibiotics), a positive control (0.10% oxy-tetracycline), and four diets with different levels of SLM (0.5%, 1.0%, 1.5%, and 2.0%). The supplementation of both oxy-tetracycline and SLM improved feed intake during the finisher phase. Birds fed SLM at a 1% inclusion level showed significantly (P<0.05) improved average body weight gain (ABWG), lowered feed-to-gain ratio, and cost per kilogram of weight gain compared to other diets. The mortality (2.0%) rate was significantly higher in the negative control group. White blood cell levels varied significantly (P<0.05) in birds fed SLM-supplemented diets, and the use of 2% SLM led to an increase in liver weight. However, welfare indices were not compromised.Keywords: Arbor Acres, phyto-biotic, synthetic antibiotic, white blood cell, liver weight
Procedia PDF Downloads 722687 Functional Nanomaterials for Environmental Applications
Authors: S. A. M. Sabrina, Gouget Lammel, Anne Chantal, Chazalviel, Jean Noël, Ozanam François, Etcheberry Arnaud, Tighlit Fatma Zohra, B. Samia, Gabouze Noureddine
Abstract:
The elaboration and characterization of hybrid nano materials give rise to considerable interest due to the new properties that arising. They are considered as an important category of new materials having innovative characteristics by combining the specific intrinsic properties of inorganic compounds (semiconductors) with the grafted organic species. This open the way to improved properties and spectacular applications in various and important fields, especially in the environment. In this work, nano materials based-semiconductors were elaborated by chemical route. The obtained surfaces were grafted with organic functional groups. The functionalization process was optimized in order to confer to the hybrid nano material a good stability as well as the right properties required for the subsequent applications. Different characterization techniques were used to investigate the resulting nano structures, such as SEM, UV-Visible, FTIR, Contact angle and electro chemical measurements. Finally, applications were envisaged in environmental area. The elaborated nano structures were tested for the detection and the elimination of pollutants.Keywords: hybrid materials, porous silicon, peptide, metal detection
Procedia PDF Downloads 4972686 Bi-Liquid Free Surface Flow Simulation of Liquid Atomization for Bi-Propellant Thrusters
Authors: Junya Kouwa, Shinsuke Matsuno, Chihiro Inoue, Takehiro Himeno, Toshinori Watanabe
Abstract:
Bi-propellant thrusters use impinging jet atomization to atomize liquid fuel and oxidizer. Atomized propellants are mixed and combusted due to auto-ignitions. Therefore, it is important for a prediction of thruster’s performance to simulate the primary atomization phenomenon; especially, the local mixture ratio can be used as indicator of thrust performance, so it is useful to evaluate it from numerical simulations. In this research, we propose a numerical method for considering bi-liquid and the mixture and install it to CIP-LSM which is a two-phase flow simulation solver with level-set and MARS method as an interfacial tracking method and can predict local mixture ratio distribution downstream from an impingement point. A new parameter, beta, which is defined as the volume fraction of one liquid in the mixed liquid within a cell is introduced and the solver calculates the advection of beta, inflow and outflow flux of beta to a cell. By validating this solver, we conducted a simple experiment and the same simulation by using the solver. From the result, the solver can predict the penetrating length of a liquid jet correctly and it is confirmed that the solver can simulate the mixing of liquids. Then we apply this solver to the numerical simulation of impinging jet atomization. From the result, the inclination angle of fan after the impingement in the bi-liquid condition reasonably agrees with the theoretical value. Also, it is seen that the mixture of liquids can be simulated in this result. Furthermore, simulation results clarify that the injecting condition affects the atomization process and local mixture ratio distribution downstream drastically.Keywords: bi-propellant thrusters, CIP-LSM, free-surface flow simulation, impinging jet atomization
Procedia PDF Downloads 2782685 A Comprehensive Characterization of Cell-free RNA in Spent Blastocyst Medium and Quality Prediction for Blastocyst
Authors: Huajuan Shi
Abstract:
Background: The biopsy of the preimplantation embryo may increase the potential risk and concern of embryo viability. Clinically discarded spent embryo medium (SEM) has entered the view of researchers, sparking an interest in noninvasive embryo screening. However, one of the major restrictions is the extremelty low quantity of cf-RNA, which is difficult to efficiently and unbiased amplify cf-RNA using traditional methods. Hence, there is urgently need to an efficient and low bias amplification method which can comprehensively and accurately obtain cf-RNA information to truly reveal the state of SEM cf-RNA. Result: In this present study, we established an agarose PCR amplification system, and has significantly improved the amplification sensitivity and efficiency by ~90 fold and 9.29 %, respectively. We applied agarose to sequencing library preparation (named AG-seq) to quantify and characterize cf-RNA in SEM. The number of detected cf-RNAs (3533 vs 598) and coverage of 3' end were significantly increased, and the noise of low abundance gene detection was reduced. The increasing percentage 5' end adenine and alternative splicing (AS) events of short fragments (< 400 bp) were discovered by AG-seq. Further, the profiles and characterizations of cf-RNA in spent cleavage medium (SCM) and spent blastocyst medium (SBM) indicated that 4‐mer end motifs of cf-RNA fragments could remarkably differentiate different embryo development stages. Significance: This study established an efficient and low-cost SEM amplification and library preparation method. Not only that, we successfully described the characterizations of SEM cf-RNA of preimplantation embryo by using AG-seq, including abundance features fragment lengths. AG-seq facilitates the study of cf-RNA as a noninvasive embryo screening biomarker and opens up potential clinical utilities of trace samples.Keywords: cell-free RNA, agarose, spent embryo medium, RNA sequencing, non-invasive detection
Procedia PDF Downloads 632684 GGE-Biplot Analysis of Nano-Titanium Dioxide and Nano-Silica Effects on Sunflower
Authors: Naser Sabaghnia, Mohsen Janmohammadi, Mehdi Mohebodini
Abstract:
Present investigation is performed to evaluate the effects of foliar application of salicylic acid, glycine betaine, ascorbic acid, nano-silica, and nano-titanium dioxide on sunflower. Results showed that the first two principal components were sufficient to create a two-dimensional treatment by trait biplot, and such biplot accounted percentages of 49% and 19%, respectively of the interaction between traits and treatments. The vertex treatments of polygon were ascorbic acid, glycine betaine, nano-TiO2, and control indicated that high performance in some important traits consists of number of days to seed maturity, number of seeds per head, number heads per single plant, hundred seed weight, seed length, seed yield performance, and oil content. Treatments suitable for obtaining the high seed yield were identified in the vector-view function of biplot and displayed nano-silica and nano titanium dioxide as the best treatments suitable for obtaining of high seed yield.Keywords: drought stress, nano-silicon dioxide, oil content, TiO2 nanoparticles
Procedia PDF Downloads 3362683 Micro-Ribonucleic Acid-21 as High Potential Prostate Cancer Biomarker
Authors: Regina R. Gunawan, Indwiani Astuti, H. Raden Danarto
Abstract:
Cancer is the leading cause of death worldwide. Cancer is caused by mutations that alter the function of normal human genes and give rise to cancer genes. MicroRNA (miRNA) is a small non-coding RNA that regulates the gen through complementary bond towards mRNA target and cause mRNA degradation. miRNA works by either promoting or suppressing cell proliferation. miRNA level expression in cancer may offer another value of miRNA as a biomarker in cancer diagnostic. miRNA-21 is believed to have a role in carcinogenesis by enhancing proliferation, anti-apoptosis, cell cycle progression and invasion of tumor cells. Hsa-miR-21-5p marker has been identified in Prostate Cancer (PCa) and Benign Prostatic Hyperplasia (BPH) patient’s urine. This research planned to explore the diagnostic performance of miR-21 to differentiate PCa and BPH patients. In this study, urine samples were collected from 20 PCa patients and 20 BPH patients. miR-21 relative expression against the reference gene was analyzed and compared between the two. miRNA expression was analyzed using the comparative quantification method to find the fold change. miR-21 validity in identifying PCa patients was performed by quantifying the sensitivity and specificity with the contingency table. miR-21 relative expression against miR-16 in PCa patient and in BPH patient has 12,98 differences in fold change. From a contingency table of Cq expression of miR-21 in identifying PCa patients from BPH patient, Cq miR-21 has 100% sensitivity and 75% specificity. miR-21 relative expression can be used in discriminating PCa from BPH by using a urine sample. Furthermore, the expression of miR-21 has higher sensitivity compared to PSA (Prostate specific antigen), therefore miR-21 has a high potential to be analyzed and developed more.Keywords: benign prostate hyperplasia, biomarker, miRNA-21, prostate cancer
Procedia PDF Downloads 1582682 The Value of Serum Procalcitonin in Patients with Acute Musculoskeletal Infections
Authors: Mustafa Al-Yaseen, Haider Mohammed Mahdi, Haider Ali Al–Zahid, Nazar S. Haddad
Abstract:
Background: Early diagnosis of musculoskeletal infections is of vital importance to avoid devastating complications. There is no single laboratory marker which is sensitive and specific in diagnosing these infections accurately. White blood cell count, erythrocyte sedimentation rate, and C-reactive protein are not specific as they can also be elevated in conditions other than bacterial infections. Materials Culture and sensitivity is not a true gold standard due to its varied positivity rates. Serum Procalcitonin is one of the new laboratory markers for pyogenic infections. The objective of this study is to assess the value of PCT in the diagnosis of soft tissue, bone, and joint infections. Patients and Methods: Patients of all age groups (seventy-four patients) with a diagnosis of musculoskeletal infection are prospectively included in this study. All patients were subjected to White blood cell count, erythrocyte sedimentation rate, C-reactive protein, and serum Procalcitonin measurements. A healthy non infected outpatient group (twenty-two patients) taken as a control group and underwent the same evaluation steps as the study group. Results: The study group showed mean Procalcitonin levels of 1.3 ng/ml. Procalcitonin, at 0.5 ng/ml, was (42.6%) sensitive and (95.5%) specific in diagnosing of musculoskeletal infections with (positive predictive value of 87.5% and negative predictive value of 48.3%) and (positive likelihood ratio of 9.3 and negative likelihood ratio of 0.6). Conclusion: Serum Procalcitonin, at a cut – off of 0.5 ng/ml, is a specific but not sensitive marker in the diagnosis of musculoskeletal infections, and it can be used effectively to rule in the diagnosis of infection but not to rule out it.Keywords: procalcitonin, infection, labratory markers, musculoskeletal
Procedia PDF Downloads 1622681 Surface Adjustments for Endothelialization of Decellularized Porcine Pericardium
Authors: M. Markova, E. Filova, O. Kaplan, R. Matejka, L. Bacakova
Abstract:
The porcine pericardium is used as a material for cardiac and aortic valves substitutes. Current biological aortic heart valve prosthesis have a limited lifetime period because they undergo degeneration. In order to make them more biocompatible and prolong their lifetime it is necessary to reseed the decellularized prostheses with endothelial cells and with valve interstitial cells. The endothelialization of the prosthesis-surface may be supported by suitable chemical surface modification of the prosthesis. The aim of this study is to prepare bioactive fibrin layers which would both support endothelialization of porcine pericardium and enhance differentiation and maturation of the endothelial cells seeded. As a material for surface adjustments we used layers of fibrin with/without heparin and some of them with adsorbed or chemically bound FGF2, VEGF or their combination. Fibrin assemblies were prepared in 24-well cell culture plate and were seeded with HSVEC (Human Saphenous Vein Endothelial Cells) at a density of 20,000 cells per well in EGM-2 medium with 0.5% FS and without heparin, without FGF2 and without VEGF; medium was supplemented with aprotinin (200 U/mL). As a control, surface polystyrene (PS) was used. Fibrin was also used as homogeneous impregnation of the decellularized porcine pericardium throughout the scaffolds. Morphology, density, and viability of the seeded endothelial cells were observed from micrographs after staining the samples by LIVE/DEAD cytotoxicity/viability assay kit on the days 1, 3, and 7. Endothelial cells were immunocytochemically stained for proteins involved in cell adhesion, i.e. alphaV integrin, vinculin, and VE-cadherin, markers of endothelial cells differentiation and maturation, i.e. von Willebrand factor and CD31, and for extracellular matrix proteins typically produced by endothelial cells, i.e. type IV collagen and laminin. The staining intensities were subsequently quantified using a software. HSVEC cells grew on each of the prepared surfaces better than on control surface. They reached confluency. The highest cell densities were obtained on the surface of fibrin with heparin and both grow factors used together. Intensity of alphaV integrins staining was highest on samples with remained fibrin layer, i.e. on layers with lower cell densities, i.e. on fibrin without heparin. Vinculin staining was apparent, but was rather diffuse, on fibrin with both FGF2 and VEGF and on control PS. Endothelial cells on all samples were positively stained for von Willebrand factor and CD31. VE-cadherin receptors clusters were best developed on fibrin with heparin and growth factors. Significantly stronger staining of type IV collagen was observed on fibrin with heparin and both growth factors. Endothelial cells on all samples produced laminin-1. Decellularized pericardium was homogeneously filled with fibrin structures. These fibrin-modified pericardium samples will be further seeded with cells and cultured in a bioreactor. Fibrin layers with/without heparin and with adsorbed or chemically bound FGF2, VEGF or their combination are good surfaces for endothelialization of cardiovascular prostheses or porcine pericardium based heart valves. Supported by the Ministry of Health, grants No15-29153A and 15-32497A, and the Grant Agency of the Czech Republic, project No. P108/12/G108.Keywords: aortic valves prosthesis, FGF2, heparin, HSVEC cells, VEGF
Procedia PDF Downloads 2602680 Isolation and Transplantation of Hepatocytes in an Experimental Model
Authors: Inas Raafat, Azza El Bassiouny, Waldemar L. Olszewsky, Nagui E. Mikhail, Mona Nossier, Nora E. I. El-Bassiouni, Mona Zoheiry, Houda Abou Taleb, Noha Abd El-Aal, Ali Baioumy, Shimaa Attia
Abstract:
Background: Orthotopic liver transplantation is an established treatment for patients with severe acute and end-stage chronic liver disease. The shortage of donor organs continues to be the rate-limiting factor for liver transplantation throughout the world. Hepatocyte transplantation is a promising treatment for several liver diseases and can, also, be used as a "bridge" to liver transplantation in cases of liver failure. Aim of the work: This study was designed to develop a highly efficient protocol for isolation and transplantation of hepatocytes in experimental Lewis rat model to provide satisfactory guidelines for future application on humans.Materials and Methods: Hepatocytes were isolated from the liver by double perfusion technique and bone marrow cells were isolated by centrifugation of shafts of tibia and femur of donor Lewis rats. Recipient rats were subjected to sub-lethal dose of irradiation 2 days before transplantation. In a laparotomy operation the spleen was injected by freshly isolated hepatocytes and bone marrow cells were injected intravenously. The animals were sacrificed 45 day latter and splenic sections were prepared and stained with H & E, PAS AFP and Prox1. Results: The data obtained from this study showed that the double perfusion technique is successful in separation of hepatocytes regarding cell number and viability. Also the method used for bone marrow cells separation gave excellent results regarding cell number and viability. Intrasplenic engraftment of hepatocytes and live tissue formation within the splenic tissue were found in 70% of cases. Hematoxylin and eosin stained splenic sections from 7 rats showed sheets and clusters of cells among the splenic tissues. Periodic Acid Schiff stained splenic sections from 7 rats showed clusters of hepatocytes with intensely stained pink cytoplasmic granules denoting the presence of glycogen. Splenic sections from 7 rats stained with anti-α-fetoprotein antibody showed brownish cytoplasmic staining of the hepatocytes denoting positive expression of AFP. Splenic sections from 7 rats stained with anti-Prox1 showed brownish nuclear staining of the hepatocytes denoting positive expression of Prox1 gene on these cells. Also, positive expression of Prox1 gene was detected on lymphocytes aggregations in the spleens. Conclusions: Isolation of liver cells by double perfusion technique using collagenase buffer is a reliable method that has a very satisfactory yield regarding cell number and viability. The intrasplenic route of transplantation of the freshly isolated liver cells in an immunocompromised model was found to give good results regarding cell engraftment and tissue formation. Further studies are needed to assess function of engrafted hepatocytes by measuring prothrombin time, serum albumin and bilirubin levels.Keywords: Lewis rats, hepatocytes, BMCs, transplantation, AFP, Prox1
Procedia PDF Downloads 3152679 Antioxidant Effects of C-Phycocyanin on Oxidized Astrocyte in Brain Injury Using 2D and 3D Neural Nanofiber Tissue Model
Authors: Seung Ju Yeon, Seul Ki Min, Jun Sang Park, Yeo Seon Kwon, Hoo Cheol Lee, Hyun Jung Shim, Il-Doo Kim, Ja Kyeong Lee, Hwa Sung Shin
Abstract:
In brain injury, depleting oxidative stress is the most effective way to reduce the brain infarct size. C-phycocyanin (C-Pc) is a well-known antioxidant protein that has neuroprotective effects obtained from green microalgae. Astrocyte is glial cell that supports the nerve cell such as neuron, which account for a large portion of the brain. In brain injury, such as ischemia and reperfusion, astrocyte has an important rule that overcomes the oxidative stress and protect from brain reactive oxygen species (ROS) injury. However little is known about how C-Pc regulates the anti-oxidants effects of astrocyte. In this study, when the C-Pc was treated in oxidized astrocyte, we confirmed that inflammatory factors Interleukin-6 and Interleukin-3 were increased and antioxidants enzyme, Superoxide dismutase (SOD) and catalase was upregulated, and neurotrophic factors, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) was alleviated. Also, it was confirmed to reduce infarct size of the brain in ischemia and reperfusion because C-Pc has anti-oxidant effects in middle cerebral artery occlusion (MCAO) animal model. These results show that C-Pc can help astrocytes lead neuroprotective activities in the oxidative stressed environment of the brain. In summary, the C-PC protects astrocytes from oxidative stress and has anti-oxidative, anti-inflammatory, neurotrophic effects under ischemic situations.Keywords: c-phycocyanin, astrocyte, reactive oxygen species, ischemia and reperfusion, neuroprotective effect
Procedia PDF Downloads 3182678 Therapeutical Role of Copper Oxide Nanoparticles (CuO NPs) for Breast Cancer Therapy
Authors: Dipranjan Laha, Parimal Karmakar
Abstract:
Metal oxide nanoparticles are well known to generate oxidative stress and deregulate normal cellular activities. Among these, transition metals copper oxide nanoparticles (CuO NPs) are more compelling than others and able to modulate different cellular responses. In this work, we have synthesized and characterized CuO NPs by various biophysical methods. These CuO NPs (~30 nm) induce autophagy in human breast cancer cell line, MCF7 in a time and dose-dependent manner. Cellular autophagy was tested by MDC staining, induction of green fluorescent protein light chain 3 (GFP-LC3B) foci by confocal microscopy, transfection of pBABE-puro mCherry-EGFP-LC3B plasmid and western blotting of autophagy marker proteins LC3B, beclin1, and ATG5. Further, inhibition of autophagy by 3-Methyladenine (3-MA) decreased LD50 doses of CuO NPs. Such cell death was associated with the induction of apoptosis as revealed by FACS analysis, cleavage of PARP, dephosphorylation of Bad and increased cleavage product of caspase3. siRNA-mediated inhibition of autophagy-related gene beclin1 also demonstrated similar results. Finally, induction of apoptosis by 3-MA in CuO NPs treated cells were observed by TEM. This study indicates that CuO NPs are a potent inducer of autophagy which may be a cellular defense against the CuO NPs mediated toxicity and inhibition of autophagy switches the cellular response into apoptosis. A combination of CuO NPs with the autophagy inhibitor is essential to induce apoptosis in breast cancer cells. Acknowledgments: The authors would like to acknowledge for financial support for this research work to the Department of Biotechnology (No. BT/PR14661/NNT/28/494/2010), Government of India.Keywords: nanoparticle, autophagy, apoptosis, siRNA-mediated inhibition
Procedia PDF Downloads 439