Search results for: preposition error detection
2591 Semantic Data Schema Recognition
Authors: Aïcha Ben Salem, Faouzi Boufares, Sebastiao Correia
Abstract:
The subject covered in this paper aims at assisting the user in its quality approach. The goal is to better extract, mix, interpret and reuse data. It deals with the semantic schema recognition of a data source. This enables the extraction of data semantics from all the available information, inculding the data and the metadata. Firstly, it consists of categorizing the data by assigning it to a category and possibly a sub-category, and secondly, of establishing relations between columns and possibly discovering the semantics of the manipulated data source. These links detected between columns offer a better understanding of the source and the alternatives for correcting data. This approach allows automatic detection of a large number of syntactic and semantic anomalies.Keywords: schema recognition, semantic data profiling, meta-categorisation, semantic dependencies inter columns
Procedia PDF Downloads 4212590 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters
Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar
Abstract:
Several meteorological parameters were used for the prediction of monthly average daily global solar radiation on horizontal using recurrent neural networks (RNNs). Climatological data and measures, mainly air temperature, humidity, sunshine duration, and wind speed between 1995 and 2007 were used to design and validate a feed forward and recurrent neural network based prediction systems. In this paper we present our reference system based on a feed-forward multilayer perceptron (MLP) as well as the proposed approach based on an RNN model. The obtained results were promising and comparable to those obtained by other existing empirical and neural models. The experimental results showed the advantage of RNNs over simple MLPs when we deal with time series solar radiation predictions based on daily climatological data.Keywords: recurrent neural networks, global solar radiation, multi-layer perceptron, gradient, root mean square error
Procedia PDF Downloads 4502589 1-Butyl-2,3-Dimethylimidazolium Bis (Trifluoromethanesulfonyl) Imide and Titanium Oxide Based Voltammetric Sensor for the Quantification of Flunarizine Dihydrochloride in Solubilized Media
Authors: Rajeev Jain, Nimisha Jadon, Kshiti Singh
Abstract:
Titanium oxide nanoparticles and 1-butyl-2,3-dimethylimidazolium bis (trifluoromethane- sulfonyl) imide modified glassy carbon electrode (TiO2/IL/GCE) has been fabricated for electrochemical sensing of flunarizine dihydrochloride (FRH). The electrochemical properties and morphology of the prepared nanocomposite were studied by electrochemical impedance spectroscopy (EIS) and transmission electron microscopy (TEM). The response of the electrochemical sensor was found to be proportional to the concentrations of FRH in the range from 0.5 µg mL-1 to 16 µg mL-1. The detection limit obtained was 0.03 µg mL-1. The proposed method was also applied to the determination of FRH in pharmaceutical formulation and human serum with good recoveries.Keywords: flunarizine dihydrochloride, ionic liquid, nanoparticles, voltammetry, human serum
Procedia PDF Downloads 3362588 Unsupervised Learning of Spatiotemporally Coherent Metrics
Authors: Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun
Abstract:
Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.Keywords: machine learning, pattern clustering, pooling, classification
Procedia PDF Downloads 4592587 Improved Processing Speed for Text Watermarking Algorithm in Color Images
Authors: Hamza A. Al-Sewadi, Akram N. A. Aldakari
Abstract:
Copyright protection and ownership proof of digital multimedia are achieved nowadays by digital watermarking techniques. A text watermarking algorithm for protecting the property rights and ownership judgment of color images is proposed in this paper. Embedding is achieved by inserting texts elements randomly into the color image as noise. The YIQ image processing model is found to be faster than other image processing methods, and hence, it is adopted for the embedding process. An optional choice of encrypting the text watermark before embedding is also suggested (in case required by some applications), where, the text can is encrypted using any enciphering technique adding more difficulty to hackers. Experiments resulted in embedding speed improvement of more than double the speed of other considered systems (such as least significant bit method, and separate color code methods), and a fairly acceptable level of peak signal to noise ratio (PSNR) with low mean square error values for watermarking purposes.Keywords: steganography, watermarking, time complexity measurements, private keys
Procedia PDF Downloads 1462586 Spatial and Temporal Analysis of Forest Cover Change with Special Reference to Anthropogenic Activities in Kullu Valley, North-Western Indian Himalayan Region
Authors: Krisala Joshi, Sayanta Ghosh, Renu Lata, Jagdish C. Kuniyal
Abstract:
Throughout the world, monitoring and estimating the changing pattern of forests across diverse landscapes through remote sensing is instrumental in understanding the interactions of human activities and the ecological environment with the changing climate. Forest change detection using satellite imageries has emerged as an important means to gather information on a regional scale. Kullu valley in Himachal Pradesh, India is situated in a transitional zone between the lesser and the greater Himalayas. Thus, it presents a typical rugged mountainous terrain with moderate to high altitude which varies from 1200 meters to over 6000 meters. Due to changes in agricultural cropping patterns, urbanization, industrialization, hydropower generation, climate change, tourism, and anthropogenic forest fire, it has undergone a tremendous transformation in forest cover in the past three decades. The loss and degradation of forest cover results in soil erosion, loss of biodiversity including damage to wildlife habitats, and degradation of watershed areas, and deterioration of the overall quality of nature and life. The supervised classification of LANDSAT satellite data was performed to assess the changes in forest cover in Kullu valley over the years 2000 to 2020. Normalized Burn Ratio (NBR) was calculated to discriminate between burned and unburned areas of the forest. Our study reveals that in Kullu valley, the increasing number of forest fire incidents specifically, those due to anthropogenic activities has been on a rise, each subsequent year. The main objective of the present study is, therefore, to estimate the change in the forest cover of Kullu valley and to address the various social aspects responsible for the anthropogenic forest fires. Also, to assess its impact on the significant changes in the regional climatic factors, specifically, temperature, humidity, and precipitation over three decades, with the help of satellite imageries and ground data. The main outcome of the paper, we believe, will be helpful for the administration for making a quantitative assessment of the forest cover area changes due to anthropogenic activities and devising long-term measures for creating awareness among the local people of the area.Keywords: Anthropogenic Activities, Forest Change Detection, Normalized Burn Ratio (NBR), Supervised Classification
Procedia PDF Downloads 1752585 Facial Expression Recognition Using Sparse Gaussian Conditional Random Field
Authors: Mohammadamin Abbasnejad
Abstract:
The analysis of expression and facial Action Units (AUs) detection are very important tasks in fields of computer vision and Human Computer Interaction (HCI) due to the wide range of applications in human life. Many works have been done during the past few years which has their own advantages and disadvantages. In this work, we present a new model based on Gaussian Conditional Random Field. We solve our objective problem using ADMM and we show how well the proposed model works. We train and test our work on two facial expression datasets, CK+, and RU-FACS. Experimental evaluation shows that our proposed approach outperform state of the art expression recognition.Keywords: Gaussian Conditional Random Field, ADMM, convergence, gradient descent
Procedia PDF Downloads 3582584 Size Reduction of Images Using Constraint Optimization Approach for Machine Communications
Authors: Chee Sun Won
Abstract:
This paper presents the size reduction of images for machine-to-machine communications. Here, the salient image regions to be preserved include the image patches of the key-points such as corners and blobs. Based on a saliency image map from the key-points and their image patches, an axis-aligned grid-size optimization is proposed for the reduction of image size. To increase the size-reduction efficiency the aspect ratio constraint is relaxed in the constraint optimization framework. The proposed method yields higher matching accuracy after the size reduction than the conventional content-aware image size-reduction methods.Keywords: image compression, image matching, key-point detection and description, machine-to-machine communication
Procedia PDF Downloads 4212583 Poster : Incident Signals Estimation Based on a Modified MCA Learning Algorithm
Authors: Rashid Ahmed , John N. Avaritsiotis
Abstract:
Many signal subspace-based approaches have already been proposed for determining the fixed Direction of Arrival (DOA) of plane waves impinging on an array of sensors. Two procedures for DOA estimation based neural networks are presented. First, Principal Component Analysis (PCA) is employed to extract the maximum eigenvalue and eigenvector from signal subspace to estimate DOA. Second, minor component analysis (MCA) is a statistical method of extracting the eigenvector associated with the smallest eigenvalue of the covariance matrix. In this paper, we will modify a Minor Component Analysis (MCA(R)) learning algorithm to enhance the convergence, where a convergence is essential for MCA algorithm towards practical applications. The learning rate parameter is also presented, which ensures fast convergence of the algorithm, because it has direct effect on the convergence of the weight vector and the error level is affected by this value. MCA is performed to determine the estimated DOA. Preliminary results will be furnished to illustrate the convergences results achieved.Keywords: Direction of Arrival, neural networks, Principle Component Analysis, Minor Component Analysis
Procedia PDF Downloads 4562582 Risk Assessment of Lead Element in Red Peppers Collected from Marketplaces in Antalya, Southern Turkey
Authors: Serpil Kilic, Ihsan Burak Cam, Murat Kilic, Timur Tongur
Abstract:
Interest in the lead (Pb) has considerably increased due to knowledge about the potential toxic effects of this element, recently. Exposure to heavy metals above the acceptable limit affects human health. Indeed, Pb is accumulated through food chains up to toxic concentrations; therefore, it can pose an adverse potential threat to human health. A sensitive and reliable method for determination of Pb element in red pepper were improved in the present study. Samples (33 red pepper products having different brands) were purchased from different markets in Turkey. The selected method validation criteria (linearity, Limit of Detection, Limit of Quantification, recovery, and trueness) demonstrated. Recovery values close to 100% showed adequate precision and accuracy for analysis. According to the results of red pepper analysis, all of the tested lead element in the samples was determined at various concentrations. A Perkin- Elmer ELAN DRC-e model ICP-MS system was used for detection of Pb. Organic red pepper was used to obtain a matrix for all method validation studies. The certified reference material, Fapas chili powder, was digested and analyzed, together with the different sample batches. Three replicates from each sample were digested and analyzed. The results of the exposure levels of the elements were discussed considering the scientific opinions of the European Food Safety Authority (EFSA), which is the European Union’s (EU) risk assessment source associated with food safety. The Target Hazard Quotient (THQ) was described by the United States Environmental Protection Agency (USEPA) for the calculation of potential health risks associated with long-term exposure to chemical pollutants. THQ value contains intake of elements, exposure frequency and duration, body weight and the oral reference dose (RfD). If the THQ value is lower than one, it means that the exposed population is assumed to be safe and 1 < THQ < 5 means that the exposed population is in a level of concern interval. In this study, the THQ of Pb was obtained as < 1. The results of THQ calculations showed that the values were below one for all the tested, meaning the samples did not pose a health risk to the local population. This work was supported by The Scientific Research Projects Coordination Unit of Akdeniz University. Project Number: FBA-2017-2494.Keywords: lead analyses, red pepper, risk assessment, daily exposure
Procedia PDF Downloads 1732581 Scalable UI Test Automation for Large-scale Web Applications
Authors: Kuniaki Kudo, Raviraj Solanki, Kaushal Patel, Yash Virani
Abstract:
This research mainly concerns optimizing UI test automation for large-scale web applications. The test target application is the HHAexchange homecare management WEB application that seamlessly connects providers, state Medicaid programs, managed care organizations (MCOs), and caregivers through one platform with large-scale functionalities. This study focuses on user interface automation testing for the WEB application. The quality assurance team must execute many manual users interface test cases in the development process to confirm no regression bugs. The team automated 346 test cases; the UI automation test execution time was over 17 hours. The business requirement was reducing the execution time to release high-quality products quickly, and the quality assurance automation team modernized the test automation framework to optimize the execution time. The base of the WEB UI automation test environment is Selenium, and the test code is written in Python. Adopting a compilation language to write test code leads to an inefficient flow when introducing scalability into a traditional test automation environment. In order to efficiently introduce scalability into Test Automation, a scripting language was adopted. The scalability implementation is mainly implemented with AWS's serverless technology, an elastic container service. The definition of scalability here is the ability to automatically set up computers to test automation and increase or decrease the number of computers running those tests. This means the scalable mechanism can help test cases run parallelly. Then test execution time is dramatically decreased. Also, introducing scalable test automation is for more than just reducing test execution time. There is a possibility that some challenging bugs are detected by introducing scalable test automation, such as race conditions, Etc. since test cases can be executed at same timing. If API and Unit tests are implemented, the test strategies can be adopted more efficiently for this scalability testing. However, in WEB applications, as a practical matter, API and Unit testing cannot cover 100% functional testing since they do not reach front-end codes. This study applied a scalable UI automation testing strategy to the large-scale homecare management system. It confirmed the optimization of the test case execution time and the detection of a challenging bug. This study first describes the detailed architecture of the scalable test automation environment, then describes the actual performance reduction time and an example of challenging issue detection.Keywords: aws, elastic container service, scalability, serverless, ui automation test
Procedia PDF Downloads 1112580 Bayesian Analysis of Change Point Problems Using Conditionally Specified Priors
Authors: Golnaz Shahtahmassebi, Jose Maria Sarabia
Abstract:
In this talk, we introduce a new class of conjugate prior distributions obtained from conditional specification methodology. We illustrate the application of such distribution in Bayesian change point detection in Poisson processes. We obtain the posterior distribution of model parameters using a general bivariate distribution with gamma conditionals. Simulation from the posterior is readily implemented using a Gibbs sampling algorithm. The Gibbs sampling is implemented even when using conditional densities that are incompatible or only compatible with an improper joint density. The application of such methods will be demonstrated using examples of simulated and real data.Keywords: change point, bayesian inference, Gibbs sampler, conditional specification, gamma conditional distributions
Procedia PDF Downloads 1942579 Prediction of Vapor Liquid Equilibrium for Dilute Solutions of Components in Ionic Liquid by Neural Networks
Authors: S. Mousavian, A. Abedianpour, A. Khanmohammadi, S. Hematian, Gh. Eidi Veisi
Abstract:
Ionic liquids are finding a wide range of applications from reaction media to separations and materials processing. In these applications, Vapor–Liquid equilibrium (VLE) is the most important one. VLE for six systems at 353 K and activity coefficients at infinite dilution 〖(γ〗_i^∞) for various solutes (alkanes, alkenes, cycloalkanes, cycloalkenes, aromatics, alcohols, ketones, esters, ethers, and water) in the ionic liquids (1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [EMIM][BTI], 1-hexyl-3-methyl imidazolium bis (trifluoromethylsulfonyl) imide [HMIM][BTI], 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [OMIM][BTI], and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide [BMPYR][BTI]) have been used to train neural networks in the temperature range from (303 to 333) K. Densities of the ionic liquids, Hildebrant constant of substances, and temperature were selected as input of neural networks. The networks with different hidden layers were examined. Networks with seven neurons in one hidden layer have minimum error and good agreement with experimental data.Keywords: ionic liquid, neural networks, VLE, dilute solution
Procedia PDF Downloads 3052578 A Novel PWM/PFM Controller for PSR Fly-Back Converter Using a New Peak Sensing Technique
Authors: Sanguk Nam, Van Ha Nguyen, Hanjung Song
Abstract:
For low-power applications such as adapters for portable devices and USB chargers, the primary side regulation (PSR) fly-back converter is widely used in lieu of the conventional fly-back converter using opto-coupler because of its simpler structure and lower cost. In the literature, there has been studies focusing on the design of PSR circuit; however, the conventional sensing method in PSR circuit using RC delay has a lower accuracy as compared to the conventional fly-back converter using opto-coupler. In this paper, we propose a novel PWM/PFM controller using new sensing technique for the PSR fly-back converter which can control an accurate output voltage. The conventional PSR circuit can sense the output voltage information from the auxiliary winding to regulate the duty cycle of the clock that control the output voltage. In the sensing signal waveform, there has two transient points at time the voltage equals to Vout+VD and Vout, respectively. In other to sense the output voltage, the PSR circuit must detect the time at which the current of the diode at the output equals to zero. In the conventional PSR flyback-converter, the sensing signal at this time has a non-sharp-negative slope that might cause a difficulty in detecting the output voltage information since a delay of sensing signal or switching clock may exist which brings out an unstable operation of PSR fly-back converter. In this paper instead of detecting output voltage at a non-sharp-negative slope, a sharp-positive slope is used to sense the proper information of the output voltage. The proposed PRS circuit consists of a saw-tooth generator, a summing circuit, a sample and hold circuit and a peak detector. Besides, there is also the start-up circuit which protects the chip from high surge current when the converter is turned on. Additionally, to reduce the standby power loss, a second mode which operates in a low frequency is designed beside the main mode at high frequency. In general, the operation of the proposed PSR circuit can be summarized as following: At the time the output information is sensed from the auxiliary winding, a saw-tooth signal from the saw-tooth generator is generated. Then, both of these signals are summed using a summing circuit. After this process, the slope of the peak of the sensing signal at the time diode current is zero becomes positive and sharp that make the peak easy to detect. The output of the summing circuit then is fed into a peak detector and the sample and hold circuit; hence, the output voltage can be properly sensed. By this way, we can sense more accurate output voltage information and extend margin even circuit is delayed or even there is the existence of noise by using only a simple circuit structure as compared with conventional circuits while the performance can be sufficiently enhanced. Circuit verification was carried out using 0.35μm 700V Magnachip process. The simulation result of sensing signal shows a maximum error of 5mV under various load and line conditions which means the operation of the converter is stable. As compared to the conventional circuit, we achieved very small error only used analog circuits compare with conventional circuits. In this paper, a PWM/PFM controller using a simple and effective sensing method for PSR fly-back converter has been presented in this paper. The circuit structure is simple as compared with the conventional designs. The gained results from simulation confirmed the idea of the designKeywords: primary side regulation, PSR, sensing technique, peak detector, PWM/PFM control, fly-back converter
Procedia PDF Downloads 3412577 The Application of Hellomac Rockfall Alert System in Rockfall Barriers: An Explainer
Authors: Kinjal Parmar, Matteo Lelli
Abstract:
The usage of IoT technology as a rockfall alert system is relatively new. This paper explains the potential of such an alert system called HelloMac from Maccaferri which provides transportation infrastructure asset owners the way to effectively utilize their resources in the detection of boulder impacts on rockfall barriers. This would ensure a faster assessment of the impacted barrier and subsequently facilitates the implementation of remedial works in an effective and timely manner. In addition, the HelloMac can also be integrated with another warning system to alert vehicle users of the unseen dangers ahead. HelloMac is developed to work also in remote areas, where cell coverage is not available. User gets notified when a rockfall even occurs via mobile app, SMS and email. Using such alarming systems effectively, we can reduce the risk of rockfall hazard.Keywords: rockfall, barrier, HelloMac, rockfall alert system
Procedia PDF Downloads 562576 Electrochemical Response Transductions of Graphenated-Polyaniline Nanosensor for Environmental Anthracene
Authors: O. Tovide, N. Jahed, N. Mohammed, C. E. Sunday, H. R. Makelane, R. F. Ajayi, K. M. Molapo, A. Tsegaye, M. Masikini, S. Mailu, A. Baleg, T. Waryo, P. G. Baker, E. I. Iwuoha
Abstract:
A graphenated–polyaniline (GR-PANI) nanocomposite sensor was constructed and used for the determination of anthracene. The direct electro-oxidation behavior of anthracene on the GR-PANI modified glassy carbon electrode (GCE) was used as the sensing principle. The results indicate thatthe response profile of the oxidation of anthracene on GR-PANI-modified GCE provides for the construction of sensor systems based onamperometric and potentiometric signal transductions. A dynamic linear range of 0.12- 100 µM anthracene and a detection limit of 0.044 µM anthracene were established for the sensor system.Keywords: electrochemical sensors, environmental pollutants, graphenated-polymers, polyaromatic hydrocarbon
Procedia PDF Downloads 3602575 Quantification and Detection of Non-Sewer Water Infiltration and Inflow in Urban Sewer Systems
Authors: M. Beheshti, S. Saegrov, T. M. Muthanna
Abstract:
Separated sewer systems are designed to transfer the wastewater from houses and industrial sections to wastewater treatment plants. Unwanted water in the sewer systems is a well-known problem, i.e. storm-water inflow is around 50% of the foul sewer, and groundwater infiltration to the sewer system can exceed 50% of total wastewater volume in deteriorated networks. Infiltration and inflow of non-sewer water (I/I) into sewer systems is unfavorable in separated sewer systems and can trigger overloading the system and reducing the efficiency of wastewater treatment plants. Moreover, I/I has negative economic, environmental, and social impacts on urban areas. Therefore, for having sustainable management of urban sewer systems, I/I of unwanted water into the urban sewer systems should be considered carefully and maintenance and rehabilitation plan should be implemented on these water infrastructural assets. This study presents a methodology to identify and quantify the level of I/I into the sewer system. Amount of I/I is evaluated by accurate flow measurement in separated sewer systems for specified isolated catchments in Trondheim city (Norway). Advanced information about the characteristics of I/I is gained by CCTV inspection of sewer pipelines with high I/I contribution. Achieving enhanced knowledge about the detection and localization of non-sewer water in foul sewer system during the wet and dry weather conditions will enable the possibility for finding the problem of sewer system and prioritizing them and taking decisions for rehabilitation and renewal planning in the long-term. Furthermore, preventive measures and optimization of sewer systems functionality and efficiency can be executed by maintenance of sewer system. In this way, the exploitation of sewer system can be improved by maintenance and rehabilitation of existing pipelines in a sustainable way by more practical cost-effective and environmental friendly way. This study is conducted on specified catchments with different properties in Trondheim city. Risvollan catchment is one of these catchments with a measuring station to investigate hydrological parameters through the year, which also has a good database. For assessing the infiltration in a separated sewer system, applying the flow rate measurement method can be utilized in obtaining a general view of the network condition from infiltration point of view. This study discusses commonly used and advanced methods of localizing and quantifying I/I in sewer systems. A combination of these methods give sewer operators the possibility to compare different techniques and obtain reliable and accurate I/I data which is vital for long-term rehabilitation plans.Keywords: flow rate measurement, infiltration and inflow (I/I), non-sewer water, separated sewer systems, sustainable management
Procedia PDF Downloads 3392574 Intelligent and Optimized Placement for CPLD Devices
Authors: Abdelkader Hadjoudja, Hajar Bouazza
Abstract:
The PLD/CPLD devices are widely used for logic synthesis since several decades. Based on sum of product terms (PTs) architecture, the PLD/CPLD offer a high degree of flexibility to support various application requirements. They are suitable for large combinational logic, finite state machines as well as intensive I/O designs. CPLDs offer very predictable timing characteristics and are therefore ideal for critical control applications. This paper describes how the logic synthesis techniques, such as 1) XOR detection, 2) logic doubling, 3) complement of a Boolean function are combined, applied and used to optimize the CPLDs devices architecture that is based on PAL-like macrocells. Our goal is to use these techniques for minimizing the number of macrocells required to implement a circuit and minimize the delay of mapped circuit.Keywords: CPLD, doubling, optimization, XOR
Procedia PDF Downloads 2862573 Detecting Potential Biomarkers for Ulcerative Colitis Using Hybrid Feature Selection
Authors: Mustafa Alshawaqfeh, Bilal Wajidy, Echin Serpedin, Jan Suchodolski
Abstract:
Inflammatory Bowel disease (IBD) is a disease of the colon with characteristic inflammation. Clinically IBD is detected using laboratory tests (blood and stool), radiology tests (imaging using CT, MRI), capsule endoscopy and endoscopy. There are two variants of IBD referred to as Ulcerative Colitis (UC) and Crohn’s disease. This study employs a hybrid feature selection method that combines a correlation-based variable ranking approach with exhaustive search wrapper methods in order to find potential biomarkers for UC. The proposed biomarkers presented accurate discriminatory power thereby identifying themselves to be possible ingredients to UC therapeutics.Keywords: ulcerative colitis, biomarker detection, feature selection, inflammatory bowel disease (IBD)
Procedia PDF Downloads 4062572 Structural Characterization and Hot Deformation Behaviour of Al3Ni2/Al3Ni in-situ Core-shell intermetallic in Al-4Cu-Ni Composite
Authors: Ganesh V., Asit Kumar Khanra
Abstract:
An in-situ powder metallurgy technique was employed to create Ni-Al3Ni/Al3Ni2 core-shell-shaped aluminum-based intermetallic reinforced composites. The impact of Ni addition on the phase composition, microstructure, and mechanical characteristics of the Al-4Cu-xNi (x = 0, 2, 4, 6, 8, 10 wt.%) in relation to various sintering temperatures was investigated. Microstructure evolution was extensively examined using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), and transmission electron microscopy (TEM) techniques. Initially, under sintering conditions, the formation of "Single Core-Shell" structures was observed, consisting of Ni as the core with Al3Ni2 intermetallic, whereas samples sintered at 620°C exhibited both "Single Core-Shell" and "Double Core-Shell" structures containing Al3Ni2 and Al3Ni intermetallics formed between the Al matrix and Ni reinforcements. The composite achieved a high compressive yield strength of 198.13 MPa and ultimate strength of 410.68 MPa, with 24% total elongation for the sample containing 10 wt.% Ni. Additionally, there was a substantial increase in hardness, reaching 124.21 HV, which is 2.4 times higher than that of the base aluminum. Nanoindentation studies showed hardness values of 1.54, 4.65, 21.01, 13.16, 5.52, 6.27, and 8.39GPa corresponding to α-Al matrix, Ni, Al3Ni2, Ni and Al3Ni2 interface, Al3Ni, and their respective interfaces. Even at 200°C, it retained 54% of its room temperature strength (90.51 MPa). To investigate the deformation behavior of the composite material, experiments were conducted at deformation temperatures ranging from 300°C to 500°C, with strain rates varying from 0.0001s-1 to 0.1s-1. A sine-hyperbolic constitutive equation was developed to characterize the flow stress of the composite, which exhibited a significantly higher hot deformation activation energy of 231.44 kJ/mol compared to the self-diffusion of pure aluminum. The formation of Al2Cu intermetallics at grain boundaries and Al3Ni2/Al3Ni within the matrix hindered dislocation movement, leading to an increase in activation energy, which might have an adverse effect on high-temperature applications. Two models, the Strain-compensated Arrhenius model and the Artificial Neural Network (ANN) model, were developed to predict the composite's flow behavior. The ANN model outperformed the Strain-compensated Arrhenius model with a lower average absolute relative error of 2.266%, a smaller root means square error of 1.2488 MPa, and a higher correlation coefficient of 0.9997. Processing maps revealed that the optimal hot working conditions for the composite were in the temperature range of 420-500°C and strain rates between 0.0001s-1 and 0.001s-1. The changes in the composite microstructure were successfully correlated with the theory of processing maps, considering temperature and strain rate conditions. The uneven distribution in the shape and size of Core-shell/Al3Ni intermetallic compounds influenced the flow stress curves, leading to Dynamic Recrystallization (DRX), followed by partial Dynamic Recovery (DRV), and ultimately strain hardening. This composite material shows promise for applications in the automobile and aerospace industries.Keywords: core-shell structure, hot deformation, intermetallic compounds, powder metallurgy
Procedia PDF Downloads 272571 A Neurosymbolic Learning Method for Uplink LTE-A Channel Estimation
Authors: Lassaad Smirani
Abstract:
In this paper we propose a Neurosymbolic Learning System (NLS) as a channel estimator for Long Term Evolution Advanced (LTE-A) uplink. The proposed system main idea based on Neural Network has modules capable of performing bidirectional information transfer between symbolic module and connectionist module. We demonstrate various strengths of the NLS especially the ability to integrate theoretical knowledge (rules) and experiential knowledge (examples), and to make an initial knowledge base (rules) converted into a connectionist network. Also to use empirical knowledge witch by learning will have the ability to revise the theoretical knowledge and acquire new one and explain it, and finally the ability to improve the performance of symbolic or connectionist systems. Compared with conventional SC-FDMA channel estimation systems, The performance of NLS in terms of complexity and quality is confirmed by theoretical analysis and simulation and shows that this system can make the channel estimation accuracy improved and bit error rate decreased.Keywords: channel estimation, SC-FDMA, neural network, hybrid system, BER, LTE-A
Procedia PDF Downloads 3972570 Traditional Medicines Used for the Enhancement of Male Sexual Performance among the Indigenous Populations of Madhya Pradesh, India
Authors: A. N. Sharma
Abstract:
A traditional medicine comprises a knowledge system, practices related to the cure of various ailments that developed over generations by indigenous people or populations. The indigenous populations developed a unique understanding with wild plants, herbs, etc., and earned specialized knowledge of disease pattern and curative therapy-though hard experiences, common sense, trial, and error methods. Here, an attempt has been made to study the possible aspects of traditional medicines for the enhancement of male sexual performance among the indigenous populations of Madhya Pradesh, India. Madhya Pradesh state is situated more or less in the central part of India. The data have been collected from the 305 Bharias of Patalkot, traditional health service providers of Sagar district, and other indigenous populations of Madhya Pradesh. It may be concluded that sizable traditional medicines exist in Madhya Pradesh, India, for the enhancement of male sexual performance, which still awaits for scientific exploration and intensive pharmaceutical investigations.Keywords: Bharias, indigenous, Madhya Pradesh, sexual performance, traditional medicine
Procedia PDF Downloads 1562569 Structural Evaluation of Airfield Pavement Using Finite Element Analysis Based Methodology
Authors: Richard Ji
Abstract:
Nondestructive deflection testing has been accepted widely as a cost-effective tool for evaluating the structural condition of airfield pavements. Backcalculation of pavement layer moduli can be used to characterize the pavement existing condition in order to compute the load bearing capacity of pavement. This paper presents an improved best-fit backcalculation methodology based on deflection predictions obtained using finite element method (FEM). The best-fit approach is based on minimizing the squared error between falling weight deflectometer (FWD) measured deflections and FEM predicted deflections. Then, concrete elastic modulus and modulus of subgrade reaction were back-calculated using Heavy Weight Deflectometer (HWD) deflections collected at the National Airport Pavement Testing Facility (NAPTF) test site. It is an alternative and more versatile method in considering concrete slab geometry and HWD testing locations compared to methods currently available.Keywords: nondestructive testing, pavement moduli backcalculation, finite element method, concrete pavements
Procedia PDF Downloads 1742568 FPGA Implementation of Novel Triangular Systolic Array Based Architecture for Determining the Eigenvalues of Matrix
Authors: Soumitr Sanjay Dubey, Shubhajit Roy Chowdhury, Rahul Shrestha
Abstract:
In this paper, we have presented a novel approach of calculating eigenvalues of any matrix for the first time on Field Programmable Gate Array (FPGA) using Triangular Systolic Arra (TSA) architecture. Conventionally, additional computation unit is required in the architecture which is compliant to the algorithm for determining the eigenvalues and this in return enhances the delay and power consumption. However, recently reported works are only dedicated for symmetric matrices or some specific case of matrix. This works presents an architecture to calculate eigenvalues of any matrix based on QR algorithm which is fully implementable on FPGA. For the implementation of QR algorithm we have used TSA architecture, which is further utilising CORDIC (CO-ordinate Rotation DIgital Computer) algorithm, to calculate various trigonometric and arithmetic functions involved in the procedure. The proposed architecture gives an error in the range of 10−4. Power consumption by the design is 0.598W. It can work at the frequency of 900 MHz.Keywords: coordinate rotation digital computer, three angle complex rotation, triangular systolic array, QR algorithm
Procedia PDF Downloads 4182567 The Cracks Propagation Monitoring of a Cantilever Beam Using Modal Analysis
Authors: Morteza Raki, Abolghasem Zabihollah, Omid Askari
Abstract:
Cantilever beam is a simplified sample of a lot of mechanical components used in a wide range of applications, including many industries such as gas turbine blade. Due to the nature of the operating conditions, beams are subject to variety of damages especially crack propagates. Crack propagation may lead to catastrophic failure during operation. Therefore, online detection of crack presence and its propagation is very important and may reduce possible significant cost of the whole system failure. This paper aims to investigate the effect of cracks presence and crack propagation on one end fixed beam`s vibration. A finite element model will be developed for the blade in which the modal response of the structure with and without crack will be studied.Keywords: blade, crack propagation, health monitoring, modal analysis
Procedia PDF Downloads 3502566 PM₁₀ and PM2.5 Concentrations in Bangkok over Last 10 Years: Implications for Air Quality and Health
Authors: Tin Thongthammachart, Wanida Jinsart
Abstract:
Atmospheric particulate matter particles with a diameter less than 10 microns (PM₁₀) and less than 2.5 microns (PM₂.₅) have adverse health effect. The impact from PM was studied from both health and regulatory perspective. Ambient PM data was collected over ten years in Bangkok and vicinity areas of Thailand from 2007 to 2017. Statistical models were used to forecast PM concentrations from 2018 to 2020. Monitoring monthly data averaged concentration of PM₁₀ and PM₂.₅ were used as input to forecast the monthly average concentration of PM. The forecasting results were validated by root means square error (RMSE). The predicted results were used to determine hazard risk for the carcinogenic disease. The health risk values were interpolated with GIS with ordinary kriging technique to create hazard maps in Bangkok and vicinity area. GIS-based maps illustrated the variability of PM distribution and high-risk locations. These evaluated results could support national policy for the sake of human health.Keywords: PM₁₀, PM₂.₅, statistical models, atmospheric particulate matter
Procedia PDF Downloads 1622565 Impulsive Synchronization of Periodically Forced Complex Duffing's Oscillators
Authors: Shaban Aly, Ali Al-Qahtani, Houari B. Khenous
Abstract:
Synchronization is an important phenomenon commonly observed in nature. A system of periodically forced complex Duffings oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using impulsive synchronization techniques. We derive analytical expressions for impulsive control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.Keywords: complex nonlinear oscillators, impulsive synchronization, chaotic systems, global exponential synchronization
Procedia PDF Downloads 4542564 The Perception and Integration of Lexical Tone and Vowel in Mandarin-speaking Children with Autism: An Event-Related Potential Study
Authors: Rui Wang, Luodi Yu, Dan Huang, Hsuan-Chih Chen, Yang Zhang, Suiping Wang
Abstract:
Enhanced discrimination of pure tones but diminished discrimination of speech pitch (i.e., lexical tone) were found in children with autism who speak a tonal language (Mandarin), suggesting a speech-specific impairment of pitch perception in these children. However, in tonal languages, both lexical tone and vowel are phonemic cues and integrally dependent on each other. Therefore, it is unclear whether the presence of phonemic vowel dimension contributes to the observed lexical tone deficits in Mandarin-speaking children with autism. The current study employed a multi-feature oddball paradigm to examine how vowel and tone dimensions contribute to the neural responses for syllable change detection and involuntary attentional orienting in school-age Mandarin-speaking children with autism. In the oddball sequence, syllable /da1/ served as the standard stimulus. There were three deviant stimulus conditions, representing tone-only change (TO, /da4/), vowel-only change (VO, /du1/), and change of tone and vowel simultaneously (TV, /du4/). EEG data were collected from 25 children with autism and 20 age-matched normal controls during passive listening to the stimulation. For each deviant condition, difference waveform measuring mismatch negativity (MMN) was derived from subtracting the ERP waveform to the standard sound from that to the deviant sound for each participant. Additionally, the linear summation of TO and VO difference waveforms was compared to the TV difference waveform, to examine whether neural sensitivity for TV change detection reflects simple summation or nonlinear integration of the two individual dimensions. The MMN results showed that the autism group had smaller amplitude compared with the control group in the TO and VO conditions, suggesting impaired discriminative sensitivity for both dimensions. In the control group, amplitude of the TV difference waveform approximated the linear summation of the TO and VO waveforms only in the early time window but not in the late window, suggesting a time course from dimensional summation to nonlinear integration. In the autism group, however, the nonlinear TV integration was already present in the early window. These findings suggest that speech perception atypicality in children with autism rests not only in the processing of single phonemic dimensions, but also in the dimensional integration process.Keywords: autism, event-related potentials , mismatch negativity, speech perception
Procedia PDF Downloads 2222563 Large Neural Networks Learning From Scratch With Very Few Data and Without Explicit Regularization
Authors: Christoph Linse, Thomas Martinetz
Abstract:
Recent findings have shown that Neural Networks generalize also in over-parametrized regimes with zero training error. This is surprising, since it is completely against traditional machine learning wisdom. In our empirical study we fortify these findings in the domain of fine-grained image classification. We show that very large Convolutional Neural Networks with millions of weights do learn with only a handful of training samples and without image augmentation, explicit regularization or pretraining. We train the architectures ResNet018, ResNet101 and VGG19 on subsets of the difficult benchmark datasets Caltech101, CUB_200_2011, FGVCAircraft, Flowers102 and StanfordCars with 100 classes and more, perform a comprehensive comparative study and draw implications for the practical application of CNNs. Finally, we show that VGG19 with 140 million weights learns to distinguish airplanes and motorbikes with up to 95% accuracy using only 20 training samples per class.Keywords: convolutional neural networks, fine-grained image classification, generalization, image recognition, over-parameterized, small data sets
Procedia PDF Downloads 922562 BER of the Leaky Feeder under Rayleigh Fading Multichannel Reception with Imperfect Phase Estimation
Authors: Hasan Farahneh, Xavier Fernando
Abstract:
Leaky Feeder (LF) has been a proven technology for many decades and its promises broadband wireless access in short range but being overlooked until now. The LF is a natural MIMO transceiver ideal for micro and pico cells. In this work, the LF is considered as a linear antenna array MultiInput-Single-Output (MISO) and derive the average bit error rate (BER) in Rayleigh fading channel considering ideal and independent paths (iid) which consider there is no correlation and mutual coupling between transmit antennas (slots) or receiver antenna considering QPSK modulation with imperfect phase estimation. We consider maximal ratio transmission (MRT) at the transmit end and maximal ratio combining (MRC) at the receiving end. Analytical expressions are derived for the BER with radiating cable transmitters. The effects of slot spacing and carrier frequency on the BER are also studied. Numerical evaluations show the radiating cable transmitter offer much lower BER than a single antenna transmitter with same SNR.Keywords: leaky feeder, BER, QPSK, rayleigh fading, channel gain, phase mismatch
Procedia PDF Downloads 388