Search results for: polymer modified cement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4376

Search results for: polymer modified cement

1706 Preparation and Evaluation of siRNA Loaded Polymeric Nanoparticles

Authors: Riddhi Trivedi, Shrenik Shah

Abstract:

For Si RNA to be delivered various biodegradable polymers are trialed by many researchers. One of them is Chitosan (CS) nanoparticles which have been extensively studied for siRNA delivery but the stability and efficacy of such particles are highly dependent on the types of cross-linker used. Hence the attempts are made in this study with PGA To address this issue, three common cross-linkers; Ethylene glycol diacrylate (ED) and poly-D-glutamic acid (PGA) were used to prepare siRNA loaded CS-ED/PGA nanoparticles by ionic gelation method. The nanoparticles which were obtained were compared for its characterization in terms of its physicochemical properties i.e. particle size of the resultant particles, zeta potential, its encapsulation capacity in the polymer. Among all the formulations prepared with different crosslinker PGA siRNA had the smallest particle size (ranged from 120 ± 1.7 to 500 ± 10.9 nm) with zeta potential ranged from 22.1 ± 1.5 to +32.4 ± 0.5 mV, and high entrapment ( > 91%) and binding efficiencies. Similarly, CS-ED nanoparticles showed better siRNA protection during storage at 4˚C and as determined by serum protection assay. TEM micrographs revealed the assorted morphology of CS-PGA-siRNA nanoparticles in contrast to irregular morphology displayed by CS-ED-siRNA. All siRNA loaded nanoparticles were found to give initial burst release which after some time followed by a sustained release of siRNA which were loaded inside. All the formulations showed concentration-dependent cytotoxicity with when cytotoxicity performed by HeLa and normal vero cell lines.

Keywords: chitosan, siRNA, cytotoxicity, cell line study

Procedia PDF Downloads 284
1705 Kinetic Studies of Bioethanol Production from Salt-Pretreated Sugarcane Leaves

Authors: Preshanthan Moodley, E. B. Gueguim Kana

Abstract:

This study examines the kinetics of S. cerevisiae BY4743 growth and bioethanol production from sugarcane leaf waste (SLW), utilizing two different optimized pretreatment regimes; under two fermentation modes: steam salt-alkali filtered enzymatic hydrolysate (SSA-F), steam salt-alkali unfiltered (SSA-U), microwave salt-alkali filtered (MSA-F) and microwave salt-alkali unfiltered (MSA-U). The kinetic coefficients were determined by fitting the Monod, modified Gompertz, and logistic models to the experimental data with high coefficients of determination R² > 0.97. A maximum specific growth rate (µₘₐₓ) of 0.153 h⁻¹ was obtained under SSA-F and SSA-U whereas, 0.150 h⁻¹ was observed with MSA-F and MSA-U. SSA-U gave a potential maximum bioethanol concentration (Pₘ) of 31.06 g/L compared to 30.49, 23.26 and 21.79g/L for SSA-F, MSA-F and MSA-U respectively. An insignificant difference was observed in the μmax and Pm for the filtered and unfiltered enzymatic hydrolysate for both SSA and MSA pretreatments, thus potentially reducing a unit operation. These findings provide significant insights for process scale up.

Keywords: lignocellulosic bioethanol, microwave pretreatment, sugarcane leaves, kinetics

Procedia PDF Downloads 106
1704 Effect of Compaction and Degree of Saturation on the Unconsolidated Undrained Shear Strength of Sandy Clay

Authors: Fatima Mehmood, Khalid Farooq, Rabeea Bakhtawer

Abstract:

For geotechnical engineers, one of the most important properties of soil to consider in various stability analyses is its shear strength which is governed by a number of factors. The objective of this research is to ascertain the effect of compaction and degree of saturation on the shear strength of fine-grained soil. For this purpose, three different dry densities such as in-situ, maximum standard proctor, and maximum modified proctor, were determined for the sandy clay soil. The soil samples were then prepared to keep dry density constant and varying degrees of saturation. These samples were tested for (UU) unconsolidated undrained shear strength in triaxial compression tests. The decrease in shear strength was observed with the decrease in density and increase in the saturation. The values of the angle of internal friction followed the same trend. However, the change in cohesion with the increase in saturation showed a different behavior, analogous to the compaction curve.

Keywords: compaction, degree of saturation, dry density, geotechnical investigation, laboratory testing, shear strength

Procedia PDF Downloads 122
1703 A Critical Look on Clustered Regularly Interspaced Short Palindromic Repeats Method Based on Different Mechanisms

Authors: R. Sulakshana, R. Lakshmi

Abstract:

Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR associate (CRISPR/Cas) is an adaptive immunity system found in bacteria and archaea. It has been modified to serve as a potent gene editing tool. Moreover, it has found widespread use in the field of genome research because of its accessibility and low cost. Several bioinformatics methods have been created to aid in the construction of specific single guide RNA (sgRNA), which is highly active and crucial to CRISPR/Cas performance. Various Cas proteins, including Cas1, Cas2, Cas9, and Cas12, have been used to create genome engineering tools because of their programmable sequence specificity. Class 1 and 2 CRISPR/Cas systems, as well as the processes of all known Cas proteins (including Cas9 and Cas12), are discussed in this review paper. In addition, the various CRISPR methodologies and their tools so far discovered are discussed. Finally, the challenges and issues in the CRISPR system along with future works, are presented.

Keywords: gene editing tool, Cas proteins, CRISPR, guideRNA, programmable sequence

Procedia PDF Downloads 89
1702 Improving the Performance of Gas Turbine Power Plant by Modified Axial Turbine

Authors: Hakim T. Kadhim, Faris A. Jabbar, Aldo Rona, Audrius Bagdanaviciu

Abstract:

Computer-based optimization techniques can be employed to improve the efficiency of energy conversions processes, including reducing the aerodynamic loss in a thermal power plant turbomachine. In this paper, towards mitigating secondary flow losses, a design optimization workflow is implemented for the casing geometry of a 1.5 stage axial flow turbine that improves the turbine isentropic efficiency. The improved turbine is used in an open thermodynamic gas cycle with regeneration and cogeneration. Performance estimates are obtained by the commercial software Cycle – Tempo. Design and off design conditions are considered as well as variations in inlet air temperature. Reductions in both the natural gas specific fuel consumption and in CO2 emissions are predicted by using the gas turbine cycle fitted with the new casing design. These gains are attractive towards enhancing the competitiveness and reducing the environmental impact of thermal power plant.

Keywords: axial flow turbine, computational fluid dynamics, gas turbine power plant, optimization

Procedia PDF Downloads 147
1701 Investigation of Mechanical Properties and Wear Behavior of Hot Roller Grades

Authors: Majid Mokhtari, Masoud Bahrami Alamdarlo, Babak Nazari, Hossein Zakerinya, Mehdi Salehi

Abstract:

In this study, microstructure, macro, and microhardness of phases for three grades of cast iron rolls with modified chemical composition using a light microscope (OM) and electron microscopy (SEM) were investigated. The grades were chosen from Chodan Sazan Manufacturing Co. (CSROLL) productions for finishing stands of hot strip mills. The percentage of residual austenite was determined with a ferrite scope magnetic device. Thermal susceptibility testing was also measured. The results show the best oxidation resistance at high temperatures is graphitic high chromium white cast iron alloy. In order to evaluate the final properties of these grades in rolling lines, the results of the Pin on Disk abrasion test showed the superiority of the abrasive behavior of the white chromium graphite cast iron alloy grade sample at the same hardness compared to conventional alloy grades and the enhanced grades.

Keywords: hot roller, wear, behavior, microstructure

Procedia PDF Downloads 220
1700 Modified InVEST for Whatsapp Messages Forensic Triage and Search through Visualization

Authors: Agria Rhamdhan

Abstract:

WhatsApp as the most popular mobile messaging app has been used as evidence in many criminal cases. As the use of mobile messages generates large amounts of data, forensic investigation faces the challenge of large data problems. The hardest part of finding this important evidence is because current practice utilizes tools and technique that require manual analysis to check all messages. That way, analyze large sets of mobile messaging data will take a lot of time and effort. Our work offers methodologies based on forensic triage to reduce large data to manageable sets resulting easier to do detailed reviews, then show the results through interactive visualization to show important term, entities and relationship through intelligent ranking using Term Frequency-Inverse Document Frequency (TF-IDF) and Latent Dirichlet Allocation (LDA) Model. By implementing this methodology, investigators can improve investigation processing time and result's accuracy.

Keywords: forensics, triage, visualization, WhatsApp

Procedia PDF Downloads 160
1699 Direct In-Situ Ring Opening Polymerization of E-caprolactone to Produce Biodegradable PCL/Montmorillonite Nanocomposites

Authors: Amine Harrane, Mahmoud Belalia

Abstract:

During the last decade, polymer layered silicate nanocomposites have received increasing attention from scientists and industrial researchers because they generally exhibit greatly improved mechanical, thermal, barrier and flame-retardant properties at low clay content in comparison with unfilled polymers or more conventional micro composites. Poly(ε-caprolactone) (PCL)-layered silicate nanocomposites have the advantage of adding biocompatibility and biodegradability to the traditional properties of nanocomposites. They can be prepared by in situ ring-opening polymerization of ε-caprolactone using a conventional initiator to induce polymerization in the presence of an organophilic clay, such as organomodified montmorillonite. Messersmith and Giannelis used montmorillonite exchanged with protonated 12-amino dodecanoic acid and Cr3+ exchanged fluorohectorite, a synthetic mica type of silicate. Sn-based catalysts such as tin (II) octoate and dibutyltin (IV) dimethoxide have been reported to efficiently promote the polymerization of ε-caprolactone in the presence of organomodified clays. In this work, we have used an alternative method to prepare PCL/montmorillonite nanocomposites. The cationic polymerization of ε-caprolactone was initiated directly by Maghnite-TOA, organomodified montmorillonite clay, to produce nanocomposites (Scheme 1). Resulted from nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), force atomic microscopy (AFM) and thermogravimetry.

Keywords: polycaprolactone, polycaprolactone/clay nanocomposites, biodegradables nanocomposites, Maghnite, Insitu polymeriation

Procedia PDF Downloads 63
1698 Experimental Study on Strengthening Systems of Reinforced Concrete Cantilever Slabs

Authors: Aymen H. Khalil, Ashraf M. Heniegal, Bassam A. Abdelsalam

Abstract:

There are many problems related to cantilever slabs such as the time-dependent deformation, corrosion problems of steel reinforcement, and lack of experimental studies on the strength of strengthened cantilever slabs. This paper presents an investigation to evaluate the behavior of reinforced concrete cantilever slabs after strengthening with different techniques. Six medium scale specimens, divided into three groups, were tested along with a control slab. The first group consists of two specimens which were repaired and strengthened using reinforced concrete jacket above with and without shear connector bars, whereas the second group contained two slabs which were strengthened using two strips of two layers of glass fiber reinforced polymer (GFRP) covering 60% and 90% from the cantilever length. The last group involves two specimens strengthened with two steel plates. In one specimen, the steel plates were glued to the surface using epoxy resin. The second specimen, the steel plates were affixed to the concrete surface using expansion bolts. The loading was conducted in two phases. Firstly, the samples were subjected to 40% of the ultimate load of the control slab. Secondly, the specimens reloaded after being strengthened up to failure. The load-deflection, steel strain, concrete strain, failure mode, toughness, and ductility index are discussed in this paper.

Keywords: repair, strengthened, GFRP layers, reloaded, jacketing, cantilever slabs

Procedia PDF Downloads 191
1697 The Kinks, the Solitons, and the Shocks in Series Connected Discrete Josephson Transmission Lines

Authors: Eugene Kogan

Abstract:

We analytically study the localized running waves in the discrete Josephson transmission lines (JTL), constructed from Josephson junctions (JJ) and capacitors. The quasi-continuum approximation reduces the calculation of the running wave properties to the problem of equilibrium of an elastic rod in the potential field. Making additional approximations, we reduce the problem to the motion of the fictitious Newtonian particle in the potential well. We show that there exist running waves in the form of supersonic kinks and solitons and calculate their velocities and profiles. We show that the nonstationary smooth waves, which are small perturbations on the homogeneous non-zero background, are described by Korteweg-de Vries equation, and those on zero background -by the modified Korteweg-de Vries equation. We also study the effect of dissipation on the running waves in JTL and find that in the presence of the resistors, shunting the JJ and/or in series with the ground capacitors, the only possible stationary running waves are the shock waves, whose profiles are also found.

Keywords: Josephson transmission line, shocks, solitary waves, nonlinear waves

Procedia PDF Downloads 105
1696 Separation of Copper(II) and Iron(III) by Solvent Extraction and Membrane Processes with Ionic Liquids as Carriers

Authors: Beata Pospiech

Abstract:

Separation of metal ions from aqueous solutions is important as well as difficult process in hydrometallurgical technology. This process is necessary for obtaining of clean metals. Solvent extraction and membrane processes are well known as separation methods. Recently, ionic liquids (ILs) are very often applied and studied as extractants and carriers of metal ions from aqueous solutions due to their good extractability properties for various metals. This work discusses a method to separate copper(II) and iron(III) from hydrochloric acid solutions by solvent extraction and transport across polymer inclusion membranes (PIM) with the selected ionic liquids as extractants/ion carriers. Cyphos IL 101 (trihexyl(tetradecyl)phosphonium chloride), Cyphos IL 104 (trihexyl(tetradecyl)phosphonium bis(2,4,4 trimethylpentyl)phosphi-nate), trioctylmethylammonium thiosalicylate [A336][TS] and trihexyl(tetradecyl)phosphonium thiosalicylate [PR4][TS] were used for the investigations. Effect of different parameters such as hydrochloric acid concentration in aqueous phase on iron(III) and copper(II) extraction has been investigated. Cellulose triacetate membranes with the selected ionic liquids as carriers have been prepared and applied for transport of iron(IIII) and copper(II) from hydrochloric acid solutions.

Keywords: copper, iron, ionic liquids, solvent extraction

Procedia PDF Downloads 265
1695 Application of Value Engineering Approach for Improving the Quality and Productivity of Ready-Mixed Concrete Used in Construction and Hydraulic Projects

Authors: Adel Mohamed El-Baghdady, Walid Sayed Abdulgalil, Ahmad Asran, Ibrahim Nosier

Abstract:

This paper studies the effectiveness of applying value engineering to actual concrete mixtures. The study was conducted in the State of Qatar on a number of strategic construction projects with international engineering specifications for the 2022 World Cup projects. The study examined the concrete mixtures of Doha Metro project and the development of KAHRAMAA’s (Qatar Electricity and Water Company) Abu Funtas Strategic Desalination Plant, in order to generally improve the quality and productivity of ready-mixed concrete used in construction and hydraulic projects. The application of value engineering to such concrete mixtures resulted in the following: i) improving the quality of concrete mixtures and increasing the durability of buildings in which they are used; ii) reducing the waste of excess materials of concrete mixture, optimizing the use of resources, and enhancing sustainability; iii) reducing the use of cement, thus reducing CO₂ emissions which ensures the protection of environment and public health; iv) reducing actual costs of concrete mixtures and, in turn, reducing the costs of construction projects; and v) increasing the market share and competitiveness of concrete producers. This research shows that applying the methodology of value engineering to ready-mixed concrete is an effective way to save around 5% of the total cost of concrete mixtures supplied to construction and hydraulic projects, improve the quality according to the technical requirements and as per the standards and specifications for ready-mixed concrete, improve the environmental impact, and promote sustainability.

Keywords: value management, cost of concrete, performance, optimization, sustainability, environmental impact

Procedia PDF Downloads 338
1694 Effects of Different Fiber Orientations on the Shear Strength Performance of Composite Adhesive Joints

Authors: Ferhat Kadioglu, Hasan Puskul

Abstract:

A composite material with carbon fiber and polymer matrix has been used as adherent for manufacturing adhesive joints. In order to evaluate different fiber orientations on joint performance, the adherents with the 0°, ±15°, ±30°, ±45° fiber orientations were used in the single lap joint configuration. The joints with an overlap length of 25 mm were prepared according to the ASTM 1002 specifications and subjected to tensile loadings. The structural adhesive used was a two-part epoxy to be cured at 70°C for an hour. First, mechanical behaviors of the adherents were measured using three point bending test. In the test, considerations were given to stress to failure and elastic modulus. The results were compared with theoretical ones using rule of mixture. Then, the joints were manufactured in a specially prepared jig, after a proper surface preparation. Experimental results showed that the fiber orientations of the adherents affected the joint performance considerably; the joints with ±45° adherents experienced the worst shear strength, half of those with 0° adherents, and in general, there was a great relationship between the fiber orientations and failure mechanisms. Delamination problems were observed for many joints, which were thought to be due to peel effects at the ends of the overlap. It was proved that the surface preparation applied to the adherent surface was adequate. For further explanation of the results, a numerical work should be carried out using a possible non-linear analysis.

Keywords: composite materials, adhesive bonding, bonding strength, lap joint, tensile strength

Procedia PDF Downloads 355
1693 Characterization and Design of a Crumb Rubber Modified Asphalt Mix Formulation

Authors: H. Al-Baghli

Abstract:

Laboratory trial results of mixing crumb rubber produced from discarded tires with 60/70 pen grade Kuwaiti bitumen are presented on this paper. PG grading and multiple stress creep recovery tests were conducted on Kuwaiti bitumen blended with 15% and 18% crumb rubber at temperatures ranging from 40 to 70 °C. The results from elastic recovery and non-recoverable creep presented optimum performance at 18% rubber content. The optimum rubberized-bitumen mix was next transformed into a pelletized form (PelletPave®), and was used as a partial replacement to the conventional bitumen in the manufacture of continuously graded hot mix asphalts at a number of binder contents. The trialed PelletPave® contents were at 2.5%, 3.0%, and 3.5% by mass of asphalt mix. In this investigation, it was not possible to utilize the results of standard Marshall method of mix design (i.e. volumetric, stability and flow tests) and subsequently additional assessment of mix compactability was carried out using gyratory compactor in order to determine the optimum PelletPave® and total binder contents.

Keywords: crumb rubber, Marshall mix design, PG grading, rubberized-bitumen

Procedia PDF Downloads 205
1692 Thermodynamics of Random Copolymers in Solution

Authors: Maria Bercea, Bernhard A. Wolf

Abstract:

The thermodynamic behavior for solutions of poly (methyl methacrylate-ran-t-butyl methacrylate) of variable composition as compared with the corresponding homopolymers was investigated by light scattering measurements carried out for dilute solutions and vapor pressure measurements of concentrated solutions. The complex dependencies of the Flory Huggins interaction parameter on concentration and copolymer composition in solvents of different polarity (toluene and chloroform) can be understood by taking into account the ability of the polymers to rearrange in a response to changes in their molecular surrounding. A recent unified thermodynamic approach was used for modeling the experimental data, being able to describe the behavior of the different solutions by means of two adjustable parameters, one representing the effective number of solvent segments and another one accounting for the interactions between the components. Thus, it was investigated how the solvent quality changes with the composition of the copolymers through the Gibbs energy of mixing as a function of polymer concentration. The largest reduction of the Gibbs energy at a given composition of the system was observed for the best solvent. The present investigation proves that the new unified thermodynamic approach is a general concept applicable to homo- and copolymers, independent of the chain conformation or shape, molecular and chemical architecture of the components and of other dissimilarities, such as electrical charges.

Keywords: random copolymers, Flory Huggins interaction parameter, Gibbs energy of mixing, chemical architecture

Procedia PDF Downloads 270
1691 Time/Temperature-Dependent Finite Element Model of Laminated Glass Beams

Authors: Alena Zemanová, Jan Zeman, Michal Šejnoha

Abstract:

The polymer foil used for manufacturing of laminated glass members behaves in a viscoelastic manner with temperature dependence. This contribution aims at incorporating the time/temperature-dependent behavior of interlayer to our earlier elastic finite element model for laminated glass beams. The model is based on a refined beam theory: each layer behaves according to the finite-strain shear deformable formulation by Reissner and the adjacent layers are connected via the Lagrange multipliers ensuring the inter-layer compatibility of a laminated unit. The time/temperature-dependent behavior of the interlayer is accounted for by the generalized Maxwell model and by the time-temperature superposition principle due to the Williams, Landel, and Ferry. The resulting system is solved by the Newton method with consistent linearization and the viscoelastic response is determined incrementally by the exponential algorithm. By comparing the model predictions against available experimental data, we demonstrate that the proposed formulation is reliable and accurately reproduces the behavior of the laminated glass units.

Keywords: finite element method, finite-strain Reissner model, Lagrange multipliers, generalized Maxwell model, laminated glass, Newton method, Williams-Landel-Ferry equation

Procedia PDF Downloads 417
1690 The Effect of Surface Modifiers on the Mechanical and Morphological Properties of Waste Silicon Carbide Filled High-Density Polyethylene

Authors: R. Dangtungee, A. Rattanapan, S. Siengchin

Abstract:

Waste silicon carbide (waste SiC) filled high-density polyethylene (HDPE) with and without surface modifiers were studied. Two types of surface modifiers namely; high-density polyethylene-grafted-maleic anhydride (HDPE-g-MA) and 3-aminopropyltriethoxysilane have been used in this study. The composites were produced using a two roll mill, extruder and shaped in a hydraulic compression molding machine. The mechanical properties of polymer composites such as flexural strength and modulus, impact strength, tensile strength, stiffness and hardness were investigated over a range of compositions. It was found that, flexural strength and modulus, tensile modulus and hardness increased, whereas impact strength and tensile strength decreased with the increasing in filler contents, compared to the neat HDPE. At similar filler content, the effect of both surface modifiers increased flexural modulus, impact strength, tensile strength and stiffness but reduced the flexural strength. Morphological investigation using SEM revealed that the improvement in mechanical properties was due to enhancement of the interfacial adhesion between waste SiC and HDPE.

Keywords: high-density polyethylene, HDPE-g-MA, mechanical properties, morphological properties, silicon carbide, waste silicon carbide

Procedia PDF Downloads 352
1689 Rheological Model for Describing Spunlace Nonwoven Behavior

Authors: Sana Ridene, Soumaya Sayeb, Houda Helali, Mohammed Ben Hassen

Abstract:

Nonwoven structures have a range of applications which include Medical, filtration, geotextile and recently this unconventional fabric is finding a niche in fashion apparel. In this paper, a modified form of Vangheluwe rheological model is used to describe the mechanical behavior of nonwovens fabrics in uniaxial tension. This model is an association in parallel of three Maxwell elements characterized by damping coefficients η1, η2 and η3 and E1, E2, E3 elastic modulus and a nonlinear spring C. The model is verified experimentally with two types of nonwovens (50% viscose /50% Polyester) and (40% viscose/60% Polyester) and a range of three square weights values. Comparative analysis of the theoretical model and the experimental results of tensile test proofs a high correlation between them. The proposed model can fairly well replicate the behavior of nonwoven fabrics during relaxation and sample traction. This allowed us to predict the mechanical behavior in tension and relaxation of fabrics starting only from their technical parameters (composition and weight).

Keywords: mechanical behavior, tensile strength, relaxation, rheological model

Procedia PDF Downloads 395
1688 Fabrication of Cellulose Acetate/Polyethylene Glycol Membranes Blended with Silica and Carbon Nanotube for Desalination Process

Authors: Siti Nurkhamidah, Yeni Rahmawati, Fadlilatul Taufany, Eamor M. Woo, I Made P. A. Merta, Deffry D. A. Putra, Pitsyah Alifiyanti, Krisna D. Priambodo

Abstract:

Cellulose acetate/polyethylene glycol (CA/PEG) membrane was modified with varying amount of silica and carbon nanotube (CNT) to enhance its separation performance in the desalination process. These composite membranes were characterized for their hydrophilicity, morphology and permeation properties. The experiment results show that hydrophilicity of CA/PEG/Silica membranes increases with the increasing of silica concentration and the decreasing particle size of silica. From Scanning Electron Microscopy (SEM) image, it shows that pore structure of CA/PEG membranes increases with the addition of silica. Membrane performance analysis shows that permeate flux, salt rejection, and permeability of membranes increase with the increasing of silica concentrations. The effect of CNT on the hydrophylicity, morphology, and permeation properties was also discussed.

Keywords: carbon nanotube, cellulose acetate, desalination, membrane, PEG

Procedia PDF Downloads 308
1687 A Survey on Frequency of Cryptosporidiosis and Giardiasis in Horses in Ahvaz South-West of Iran

Authors: Ali R. Ghadrdan-Mashhadi, Hosein Hamidi-Nejat, Parisa Alizadehnia

Abstract:

Cryptosporidia and Giardia are protozoan parasites that have worldwide distribution and infect a variety of animals. Although, the infection to these parasites rarely caused to illness in horses, but some veterinarian recorded the clinical signs (such as diarrhea and malabsorbtion) especially in foals. In present study, the frequency of Cryptosporidiosis and Giardiasis in horses in Ahvaz investigated. The feces samples were taken from 100 horses that keep in seven horse breeding clubs, during spring and summer. The ages of horses were from 1 month to 27 years old. Fecal samples were stained by modified Ziehl-Neelsen and Tri-chrome methods. Results were analyzed with Chi-square Test and Fisher’s exact test. The results showed that the rate of infection to Cryptosporidium and Giardia were 18% and 40%, respectively. There weren't significant differences between infection to Cryptosporidium and Giardia with sex, age and fecal constancy. Although, the rate of infection to Cryptosporidium in studied horses is very similar to other studies but it seems, the rate of infection to Giardia is high in compare to other studies were done in the other countries.

Keywords: Ahvaz, cryptosporidium, giardia, horse

Procedia PDF Downloads 344
1686 The Effect of Potassium Hydroxide on Fine Soil Treated with Olivine

Authors: Abdelmaoula Mahamoud Tahir, Sedat Sert

Abstract:

The possibility of improving the shear strength of unsaturated clayey soil with the addition of olivine was investigated in this paper. Unconsolidated undrained triaxial tests (UU), under different cell pressures (namely: 100 kPa and 200 kPa), with varying percentages of olivine (10% and 20% by weight) and with one day, 28 days, and 56 days curing times, were performed to determine the shear strength of the soil. The increase in strength was observed as a function of the increase in olivine content. An olivine content of 25% was determined as the optimum value to achieve the targeted improvement for both cure times. A comparative study was also conducted between clay samples treated with only olivine and others in the presence of potassium hydroxide (KOH). Clay samples treated with olivine and activated with potassium hydroxide (KOH) had higher shear strength than non-activated olivine-treated samples. It was determined that the strength of the clay samples treated with only olivine did not increase over time and added resistance only with the high specific gravity of olivine. On the other hand, the samples activated with potassium hydroxide (KOH) added to the resistance with high specific gravity and the chemical bonds of olivine. Morphological and mineralogical analyzes were carried out in this study to see and analyze the chemical bonds formed after the reaction. The main components of this improvement were the formation of magnesium-aluminate-hydrate and magnesium-silicate-hydrate. Compared to older methods such as cement addition, these results show that in stabilizing clayey soils, olivine additive offers an energy-efficient alternative for reducing carbon dioxide emissions.

Keywords: ground stabilization, clay, olivine additive, KOH, microstructure

Procedia PDF Downloads 103
1685 Structural Magnetic Properties of Multiferroic (BiFeO3)1−x(PbTiO3)x Ceramics

Authors: Mohammad Shariq, Davinder Kaur

Abstract:

A series of multiferroic (BiFeO3)1−x(PbTiO3)x [x= 0, 0.1, 0.2, 0.3, 0.4 and 0.5] solid solution ceramics were synthesised by conventional solid-state reaction method. Well crystalline phase has been optimized at sintering temperature of 950°C for 2 hours. X rays diffraction studies of these ceramics revealed the existence of a morphotropic phase boundary (MPB) region in this system, which exhibits co-existence of rhombohedral and tetragonal phase with a large tetragonality (c/a ratio) in the tetragonal phase region. The average grain size of samples was found to be between 1-1.5 µm. The M-H curve revealed the BiFeO3 (BFO) as antiferromanetic material whereas, induced weak ferromagnetism was observed for (BiFeO3)1−x(PbTiO3)x composites with x=0.1, 0.2, 0.3, 0.4 and 0.5 at temperature of 5 K. The results evidenced the destruction of a space-modulated spin structure in bulk materials, via substituent effects, releasing a latent magnetization locked within the cycloid. Relative to unmodified BiFeO3, modified BiFeO3-PbTiO3 -based ceramics revealed enhancement in the electric-field-induced polarization.

Keywords: BiFeO3)1−x(PbTiO3)x ceramic, multiferroic, SQUID, magnetic properties

Procedia PDF Downloads 333
1684 Investigation of Optical, Film Formation and Magnetic Properties of PS Lates/MNPs Composites

Authors: Saziye Ugur

Abstract:

In this study, optical, film formation, morphological and the magnetic properties of a nanocomposite system, composed of polystyrene (PS) latex polymer and core-shell magnetic nanoparticles (MNPs) is presented. Nine different mixtures were prepared by mixing of PS latex dispersion with different amount of MNPs in the range of (0- 100 wt%). PS/MNPs films were prepared from these mixtures on glass substrates by drop casting method. After drying at room temperature, each film sample was separately annealed at temperatures from 100 to 250 °C for 10 min. In order to monitor film formation process, the transmittance of these composites was measured after each annealing step as a function of MNPs content. Below a critical MNPs content (30 wt%), it was found that PS percolates into the MNPs hard phase and forms an interconnected network upon annealing. The transmission results showed above this critical value, PS latexes were no longer film forming at all temperatures. Besides, the PS/MNPs composite films also showed excellent magnetic properties. All composite films showed superparamagnetic behaviors. The saturation magnetisation (Ms) first increased up to 0.014 emu in the range of (0-50) wt% MNPs content and then decreased to 0.010 emu with increasing MNPs content. The highest value of Ms was approximately 0.020 emu and was obtained for the film filled with 85 wt% MNPs content. These results indicated that the optical, film formation and magnetic properties of PS/MNPs composite films can be readily tuned by varying loading content of MNPs nanoparticles.

Keywords: composite film, film formation, magnetic nanoparticles, ps latex, transmission

Procedia PDF Downloads 242
1683 Comparative Study of Soliton Collisions in Uniform and Nonuniform Magnetized Plasma

Authors: Renu Tomar, Hitendra K. Malik, Raj P. Dahiya

Abstract:

Similar to the sound waves in air, plasmas support the propagation of ion waves, which evolve into the solitary structures when the effect of non linearity and dispersion are balanced. The ion acoustic solitary waves have been investigated in details in homogeneous plasmas, inhomogeneous plasmas, and magnetized plasmas. The ion acoustic solitary waves are also found to reflect from a density gradient or boundary present in the plasma after propagating. Another interesting feature of the solitary waves is their collision. In the present work, we carry out analytical calculations for the head-on collision of solitary waves in a magnetized plasma which has dust grains in addition to the ions and electrons. For this, we employ Poincar´e-Lighthill-Kuo (PLK) method. To lowest nonlinear order, the problem of colliding solitary waves leads to KdV (modified KdV) equations and also yields the phase shifts that occur in the interaction. These calculations are accomplished for the uniform and nonuniform plasmas, and the results on the soliton properties are discussed in detail.

Keywords: inhomogeneous magnetized plasma, dust charging, soliton collisions, magnetized plasma

Procedia PDF Downloads 458
1682 Management of Myofascial Temporomandibular Disorder in Secondary Care: A Quality Improvement Project

Authors: Rishana Bilimoria, Selina Tang, Sajni Shah, Marianne Henien, Christopher Sproat

Abstract:

Temporomandibular disorders (TMD) may affect up to a third of the general population, and there is evidence demonstrating the majority of Myofascial TMD cases improve after education and conservative measures. In 2015 our department implemented a modified care pathway for myofascial TMD patients in an attempt to improve the patient journey. This involved the use of an interactive group therapy approach to deliver education, reinforce conservative measures and promote self-management. Patient reported experience measures from the new group clinic revealed 71% patient satisfaction. This service is efficient in improving aspects of health status while reducing health-care costs and redistributing clinical time. Since its’ establishment, 52 hours of clinical time, resources and funding have been redirected effectively. This Quality Improvement Project was initiated because it was felt that this new service was being underutilised by our surgical teams. The ‘Plan-Do-Study-Act cycle’ (PDSA) framework was employed to analyse utilisation of the service: The ‘plan’ stage involved outlining our aims: to raise awareness amongst clinicians of the unified care pathway and to increase referral to this clinic. The ‘do’ stage involved collecting data from a sample of 96 patients over 4 month period to ascertain the proportion of Myofascial TMD patients who were correctly referred to the designated clinic. ‘Suitable’ patients who weren’t referred were identified. The ‘Study’ phase involved analysis of results, which revealed that 77% of suitable patients weren’t referred to the designated clinic. They were reviewed on other clinics, which are often overbooked, or managed by junior staff members. This correlated with our original prediction. Barriers to referral included: lack of awareness of the clinic, individual consultant treatment preferences and patient, reluctance to be referred to a ‘group’ clinic. The ‘Act’ stage involved presenting our findings to the team at a clinical governance meeting. This included demonstration of the clinical effectiveness of the care-pathway and explaining the referral route and criteria. In light of the evaluation results, it was decided to keep the group clinic and maximize utilisation. The second cycle of data collection following these changes revealed that of 66 Myofascial TMD patients over a 4 month period, only 9% of suitable patients were not seen via the designated pathway; therefore this QIP was successful in meeting the set objectives. Overall, employing the PDSA cycle in this QIP resulted in appropriate utilisation of the modified care pathway for patients with myofascial TMD in Guy’s Oral Surgery Department. In turn, this leads to high patient satisfaction with the service and effectively redirected 52 hours of clinical time. It permitted adoption of a collaborative working style with oral surgery colleagues to investigate problems, identify solutions, and collectively raise standards of clinical care to ensure we adopt a unified care pathway in secondary care management of Myofascial TMD patients.

Keywords: myofascial, quality Improvement, PDSA, TMD

Procedia PDF Downloads 127
1681 Carbonation of Wollastonite (001) competing Hydration: Microscopic Insights from Ion Spectroscopy and Density Functional Theory

Authors: Peter Thissen

Abstract:

In this work, we report about the influence of the chemical potential of water on the carbonation reaction of wollastonite (CaSiO3) as model surface of cement and concrete. Total energy calculations based on density functional theory (DFT) combined with kinetic barrier predictions based on nudge elastic band (NEB) method show that the exposure of the water-free wollastonite surface to CO2 results in a barrier-less carbonation. CO2 reacts with the surface oxygen and forms carbonate (CO32-) complexes together with a major reconstruction of the surface. The reaction comes to a standstill after one carbonate monolayer has been formed. In case one water monolayer is covering the wollastonite surface, the carbonation is no more barrier-less, yet ending in a localized monolayer. Covered with multilayers of water, the thermodynamic ground state of the wollastonite completely changes due to a metal-proton exchange reaction (MPER, also called early stage hydration) and Ca2+ ions are partially removed from solid phase into the H2O/wollastonite interface. Mobile Ca2+ react again with CO2 and form carbonate complexes, ending in a delocalized layer. By means of high resolution time-of-flight secondary-ion mass-spectroscopy images (ToF-SIMS), we confirm that hydration can lead to a partially delocalization of Ca2+ ions on wollastonite surfaces. Finally, we evaluate the impact of our model surface results by means of Low Energy Ion Scattering (LEIS) spectroscopy combined with careful discussion about the competing reactions of carbonation vs. hydration.

Keywords: Calcium-silicate, carbonation, hydration, metal-proton exchange reaction

Procedia PDF Downloads 349
1680 Graphene-Reinforced Silicon Oxycarbide Composite with Lamellar Structures Prepared by the Phase Transfer Method

Authors: Min Yu, Olivier T. Picot, Theo Graves Saunders, Ivo Dlouhy, Amit Mahajan, Michael J. Reece

Abstract:

Graphene was successfully introduced into a polymer-derived silicon oxycarbide (SiOC) matrix by phase transfer of graphene oxide (GO) from an aqueous (GO dispersed in water) to an organic phase (copolymer as SiOC precursor in diethyl ether). With GO concentrations increasing up to 2 vol%, graphene-containing flakes self-assembled into a lamellar structure in the matrix leading to composite with the anisotropic property. Spark plasma sintering (SPS) was applied to densify the composites with four different GO concentrations (0, 0.5, 1 and 2 vol%) up to ~2.3 g/cm3. The fracture toughness of SiOC-2 vol% GO composites was significantly increased by ~91% (from 0.70 to 1.34 MPa·m¹/²), at the expense of a decrease in the flexural strength (from 85MPa to 55MPa), compared to SiOC-0 vol% GO composites. Moreover, the electrical conductivity in the perpendicular direction (σ┴=3×10⁻¹ S/cm) in SiOC-2 vol% GO composite was two orders of magnitude higher than the parallel direction (σ║=4.7×10⁻³ S/cm) owing to the self-assembled lamellar structure of graphene in the SiOC matrix. The composites exhibited increased electrical conductivity (σ┴) from 8.4×10⁻³ to 3×10⁻¹ S/cm, with the increasing GO content from 0.5 to 2 vol%. The SiOC-2 vol% GO composites further showed the better electrochemical performance of oxygen reduction reaction (ORR) than pure graphene, exhibiting a similar onset potential (~0.75V vs. RHE) and more positive half-wave potential (~0.6V vs. RHE).

Keywords: composite, fracture toughness, flexural strength, electrical conductivity, electrochemical performance

Procedia PDF Downloads 154
1679 Mudlogging, a Key Tool in Effective Well Delivery: A Case Study of Bisas Field Niger Delta, Nigeria

Authors: Segun Steven Bodunde

Abstract:

Mudlogging is the continuous analysis of rock cuttings and drilling fluids to ascertain the presence or absence of oil and gas from the formation penetrated by the drilling bit. This research highlighted a case study of Well BSS-99ST from ‘Bisas Field’, Niger Delta, with depth extending from 1950m to 3640m (Measured Depth). It was focused on identifying the lithologies encountered at specified depth intervals and to accurately delineate the targeted potential reservoir on the field and prepare the lithology and Master log. Equipment such as the Microscope, Fluoroscope, spin drier, oven, and chemicals, which includes: hydrochloric acid, chloroethene, and phenolphthalein, were used to check the cuttings for their calcareous nature, for oil show and for the presence of Cement respectively. Gas analysis was done using the gas chromatograph and the Flame Ionization Detector, which was connected to the Total Hydrocarbon Analyzer (THA). Drilling Parameters and Gas concentration logs were used alongside the lithology log to predict and accurately delineate the targeted reservoir on the field. The result showed continuous intercalation of sand and shale, with the presence of small quantities of siltstone at a depth of 2300m. The lithology log was generated using Log Plot software. The targeted reservoir was identified between 3478m to 3510m after inspection of the gas analysis, lithology log, electric logs, and the drilling parameters. Total gas of about 345 units and five Alkane Gas components were identified in the specific depth range. A comparative check with the Gamma ray log from the well further confirmed the lithologic sequence and the accurate delineation of the targeted potential reservoir using mudlogging.

Keywords: mudlogging, chromatograph, drilling fluids, calcareous

Procedia PDF Downloads 140
1678 A Mathematical Description of a Growing Cell Colony Based on the Mechanical Bidomain Model

Authors: Debabrata Auddya, Bradley J. Roth

Abstract:

The mechanical bidomain model is used to describe a colony of cells growing on a substrate. Analytical expressions are derived for the intracellular and extracellular displacements. Mechanotransduction events are driven by the difference between the displacements in the two spaces, corresponding to the force acting on integrins. The equation for the displacement consists of two terms: one proportional to the radius that is the same in the intracellular and extracellular spaces (the monodomain term) and one that is proportional to a modified Bessel function that is responsible for mechanotransduction (the bidomain term). The model predicts that mechanotransduction occurs within a few length constants of the colony’s edge, and an expression for the length constant contains the intracellular and extracellular shear moduli and the spring constant of the integrins coupling the two spaces. The model predictions are qualitatively consistent with experiments on human embryonic stem cell colonies, in which differentiation is localized near the edge.

Keywords: cell colony, integrin, mechanical bidomain model, stem cell, stress-strain, traction force

Procedia PDF Downloads 229
1677 Magnetic Field Induced Mechanical Behavior of Fluid Filled Carbon Nanotube Foam

Authors: Siva Kumar Reddy, Anwesha Mukherjee, Abha Misra

Abstract:

Excellent energy absorption capability in carbon nanotubes (CNT) is shown in their bulk structure that behaves like super compressible foam. Furthermore, a tunable mechanical behavior of CNT foam is achieved using several methods like changing the concentration of precursors, polymer impregnation, non covalent functionalization of CNT microstructure etc. Influence of magnetic field on compressive behavior of magnetic CNT demonstrated an enhanced peak stress and energy absorption capability, which does not require any surface and structural modification of the foam. This presentation discusses the mechanical behavior of micro porous CNT foam that is impregnated in magnetic field responsive fluid. Magnetic particles are dispersed in a nonmagnetic fluid so that alignment of both particles and CNT could play a crucial role in controlling the stiffness of the overall structure. It is revealed that the compressive behavior of CNT foam critically depends on the fluid viscosity as well as magnetic field intensity. Both peak Stress and energy absorption in CNT foam followed a power law behavior with the increase in the magnetic field intensity. However, in the absence of magnetic field, both peak stress and energy absorption capability of CNT foam presented a linear dependence on the fluid viscosity. Hence, this work demonstrates the role magnetic filed in controlling the mechanical behavior of the foams prepared at nanoscale.

Keywords: carbon nanotubes, magnetic field, energy absorption capability and viscosity

Procedia PDF Downloads 285