Search results for: mathematical learning activities
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14063

Search results for: mathematical learning activities

11393 Effect of Different Porous Media Models on Drug Delivery to Solid Tumors: Mathematical Approach

Authors: Mostafa Sefidgar, Sohrab Zendehboudi, Hossein Bazmara, Madjid Soltani

Abstract:

Based on findings from clinical applications, most drug treatments fail to eliminate malignant tumors completely even though drug delivery through systemic administration may inhibit their growth. Therefore, better understanding of tumor formation is crucial in developing more effective therapeutics. For this purpose, nowadays, solid tumor modeling and simulation results are used to predict how therapeutic drugs are transported to tumor cells by blood flow through capillaries and tissues. A solid tumor is investigated as a porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multi scale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. In this work, the mathematical model in our previous studies is developed by considering two model of momentum equation for porous media: Darcy and Brinkman. The mathematical method involves processes such as fluid flow through solid tumor as porous media, extravasation of blood flow from vessels, blood flow through vessels and solute diffusion, convective transport in extracellular matrix. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model does.

Keywords: solid tumor, porous media, Darcy model, Brinkman model, drug delivery

Procedia PDF Downloads 306
11392 Relationship of Religious Coping with Occupational Stress and the Quality of Working Life of Midwives in Maternity Hospitals in Zahedan

Authors: Fatemeh Roostaee, Zahra Nikmanesh

Abstract:

This study was done to investigate the role of religious coping components on occupational stress and the quality of working life of midwives. The method of study was descriptive-correlation. The sample was comprised of all midwives in maternity hospitals in Zahedan during 1393. Participants were selected through applying census method. The instruments of data collection were three questionnaires: the quality of working life, occupational stress, and religious opposition. For statistical analysis, Pearson correlation and step by step regression analysis methods were used. The results showed that there is a significant negative relationship between the component of religious activities (r=-0/454) and occupational stress, and regression analysis was also shown that the variable of religious activities has been explained 45% of occupational stress variable changes. The Pearson correlation test showed that there isn't any significant relationship between religious opposition components and the quality of life. Therefore, it is necessary to present essential trainings on (the field of) strengthening compatibility strategies and religious activities to reduce occupational stress.

Keywords: the quality of working life, occupational stress, religious, midwife

Procedia PDF Downloads 581
11391 Business and Psychological Principles Integrated into Automated Capital Investment Systems through Mathematical Algorithms

Authors: Cristian Pauna

Abstract:

With few steps away from the 2020, investments in financial markets is a common activity nowadays. In the electronic trading environment, the automated investment software has become a major part in the business intelligence system of any modern financial company. The investment decisions are assisted and/or made automatically by computers using mathematical algorithms today. The complexity of these algorithms requires computer assistance in the investment process. This paper will present several investment strategies that can be automated with algorithmic trading for Deutscher Aktienindex DAX30. It was found that, based on several price action mathematical models used for high-frequency trading some investment strategies can be optimized and improved for automated investments with good results. This paper will present the way to automate these investment decisions. Automated signals will be built using all of these strategies. Three major types of investment strategies were found in this study. The types are separated by the target length and by the exit strategy used. The exit decisions will be also automated and the paper will present the specificity for each investment type. A comparative study will be also included in this paper in order to reveal the differences between strategies. Based on these results, the profit and the capital exposure will be compared and analyzed in order to qualify the investment methodologies presented and to compare them with any other investment system. As conclusion, some major investment strategies will be revealed and compared in order to be considered for inclusion in any automated investment system.

Keywords: Algorithmic trading, automated investment systems, limit conditions, trading principles, trading strategies

Procedia PDF Downloads 194
11390 The Role of Artificial Intelligence Algorithms in Psychiatry: Advancing Diagnosis and Treatment

Authors: Netanel Stern

Abstract:

Artificial intelligence (AI) algorithms have emerged as powerful tools in the field of psychiatry, offering new possibilities for enhancing diagnosis and treatment outcomes. This article explores the utilization of AI algorithms in psychiatry, highlighting their potential to revolutionize patient care. Various AI algorithms, including machine learning, natural language processing (NLP), reinforcement learning, clustering, and Bayesian networks, are discussed in detail. Moreover, ethical considerations and future directions for research and implementation are addressed.

Keywords: AI, software engineering, psychiatry, neuroimaging

Procedia PDF Downloads 116
11389 Experimental Activity on the Photovoltaic Effect

Authors: Salomão Manuel Francisco, Manuel António Salgueiro Da Silva, Bento Filipe Barreiras Pinto Cavadas, Teresa Monteiro Seixas

Abstract:

In bachelor's degrees in Physics Education framework in Angola, and to a certain extent, within the community of Portuguese language countries (CPLP), teaching methodologies rely heavily on theoretical memorization and mathematical demonstrations. This approach often discourages students, particularly the female population, as the reliance on theoretical mathematical demonstrations generates the perception of Physics as an arduous, challenging discipline. To address this challenge and recognize the value of practical application as an evaluative criterion of material truth, we propose a practical activity in Environmental Physics that will be shared with Angolan higher education teachers, who will receive full scaffolding and support from the authors. These teachers, adopting and developing similar activities in a classroom setting, will contribute to the environmental education framework as well. Additionally, this work aligns with different goals of UNESCO's 2030 agenda, namely, specifically, goals 4, 5, 7, 11, 13, and 17. The experimental activity developed in this work is centered around the demonstration of the photovoltaic effect and its application for renewable energy production. The first objective of the activity is to study the variation of electrical power supplied by a photovoltaic system (PV) to an electrical circuit as the angle of light incidence changes. Students can observe that the power supplied to the circuit is greater when light rays fall perpendicularly on the PV. However, as the angle of incidence increases, resulting in a larger area covered by the light rays, the power supplied to the circuit decreases due to lower irradiance. The second objective is to demonstrate that the power output can be maximized by adjusting the circuit load resistance at each irradiance value. In these two parts of the activity, students can analyze experimental data taking into account the irradiance law and the equivalent circuit description of a PV cell. Through detailed data analysis, students are also expected to assess the effects of temperature on PV efficiency degradation and the efficiency enhancement provided by light concentration mechanisms. As a third objective, students can explore how the color of incident light affects the PV output power, considering the quantum nature of light and its interaction with the PV system.

Keywords: experiments, irradiation law, physic teaching, photovoltaic effect

Procedia PDF Downloads 83
11388 Information Technology Outsourcing and Knowledge Transfer: Achieving Strategic Alignment through Organizational Learning

Authors: M. Kolotylo, H. Zheng, R. Parente, R. Dahiya

Abstract:

Large number of organizations, frequently motivated by budget and cost cuts, outsource their Information Technology (IT) positions every year. Although the objective of reduction in financial obligations is often not accomplished, many buyer companies still manage to benefit from outsourcing projects. Knowledge Transfer (KT), being one of the major processes that take place during IT outsourcing partnership, may exert a strong impact on the performance of the parties involved, particularly that of the buyer. Research, however, lacks strong conceptual basis for the possible benefits that KT from supplier may bring to the buyer; and for the mechanisms that may be adopted by the buyer to maximize such benefit. This paper aims to fill this gap by proposing a conceptual framework of organizational learning and development of dynamic capabilities enabled by KT from the supplier to the buyer. The study examines buyer-supplier relationships in the context of IT outsourcing transactions, and theorizes how KT from the supplier to the buyer helps the performance of the buyer. It warrants that more research is carried out in order to explicate and provide evidence regarding the role that KT plays in strategic improvements for the buyer. The paper proposes to take up a two-fold approach to the research: conceptual development that utilizes logical argumentation and interpretive historical research, as well as a qualitative case study which aims to capture and understand the complex processes involved. Thus, the study provides a comprehensive visualization of the dynamics of the conditions under which participation in IT outsourcing partnership might be of benefit to the buyer company. The framework demonstrates the mechanisms involved in buyer’s achievement of strategic alignment through organizational learning enabled by KT from the supplier. It highlights that organizational learning involves a balance between exploitation of assets and exploration of new possibilities, and further notes that the dynamic capabilities mediate the effect of organizational learning on firm performance. The paper explicates in what ways managers can leverage outsourcing projects to execute strategy, which would enable their organization achieve better performance. The study concludes that organizational learning enables the firm to develop IT capabilities of strategic planning, IT integration, and IT relationships in the outsourcing context, and that IT capabilities developed through the organizational learning would help the firm in achieving strategic alignment.

Keywords: dynamic capabilities, it outsourcing, knowledge transfer, organizational learning, strategic alignment

Procedia PDF Downloads 439
11387 Compositional Analysis and Antioxidant Activities of the Chocolate Fermented by Lactobacillus plantarum CK10

Authors: Hye Rim Kang, So Yae Koh, Ji-Yeon Ryu, Chang Kyu Lee, Ji Hee Lim, Hyeon A. Kim, Geun Hyung Im, Somi Kim Cho

Abstract:

In this study, antioxidant properties and compositional analysis of fermented chocolate were examined. Chocolate was fermented with Lactobacillus plantarum CK10. As fermentation time went by, pH was decreased (5.26±0.02 to 3.98±0.06) while titratable acidity was increased (5.36±0.19 to 13.31±0.34). The total polyphenol contents were maintained through the fermentation. The contents of total polyphenol were slightly increased at 8 hr (6.34±0.12 mg GAE (Gallic acid equivalent)/g), and it reached to comparable levels of the control at 24 hr (control, 5.47±0.36 mg GAE/g); 24 hr, 5.19±0.23 mg GAE/g). Similarly, the total flavonoid contents were not significantly changed during fermentation. The pronounced radical scavenging activities of chocolate, against DPPH-, ABTS-, and Alkyl radical, were observed. The levels of antioxidant activities were not dramatically altered in the course of fermentation. By gas chromatography-mass spectrometry analysis, the increase in lactic acid was measured and four major compounds, HMF, xanthosine, caffeine, and theobromine, were identified. The relative peak area of caffeine and theobromine was considerably changed during fermentation. However, no significant difference in the levels of caffeine and theobromine were observed by high-performance liquid chromatography analysis.

Keywords: antioxidant, chocolate, compositional analysis, fermentation, Lactobaillus plantarum

Procedia PDF Downloads 287
11386 A Mathematical Agent-Based Model to Examine Two Patterns of Language Change

Authors: Gareth Baxter

Abstract:

We use a mathematical model of language change to examine two recently observed patterns of language change: one in which most speakers change gradually, following the mean of the community change, and one in which most individuals use predominantly one variant or another, and change rapidly if they change at all. The model is based on Croft’s Utterance Selection account of language change, which views language change as an evolutionary process, in which different variants (different ‘ways of saying the same thing’) compete for usage in a population of speakers. Language change occurs when a new variant replaces an older one as the convention within a given population. The present model extends a previous simpler model to include effects related to speaker aging and interspeaker variation in behaviour. The two patterns of individual change (one more centralized and the other more polarized) were recently observed in historical language changes, and it was further observed that slower changes were more associated with the centralized pattern, while quicker changes were more polarized. Our model suggests that the two patterns of change can be explained by different balances between the preference of speakers to use one variant over another and the degree of accommodation to (propensity to adapt towards) other speakers. The correlation with the rate of change appears naturally in our model, and results from the fact that both differential weighting of variants and the degree of accommodation affect the time for change to occur, while also determining the patterns of change. This work represents part of an ongoing effort to examine phenomena in language change through the use of mathematical models. This offers another way to evaluate qualitative explanations that cannot be practically tested (or cannot be tested at all) in a real-world, large-scale speech community.

Keywords: agent based modeling, cultural evolution, language change, social behavior modeling, social influence

Procedia PDF Downloads 235
11385 Mental Contrasting with Implementation Intentions: A Metacognitive Strategy on Educational Context

Authors: Paula Paulino, Alzira Matias, Ana Margarida Veiga Simão

Abstract:

Self-regulated learning (SRL) directs students in analyzing proposed tasks, setting goals and designing plans to achieve those goals. The literature has suggested a metacognitive strategy for goal attainment known as Mental Contrasting with Implementation Intentions (MCII). This strategy involves Mental Contrasting (MC), in which a significant goal and an obstacle are identified, and Implementation Intentions (II), in which an "if... then…" plan is conceived and operationalized to overcome that obstacle. The present study proposes to assess the MCII process and whether it promotes students’ commitment towards learning goals during school tasks in sciences subjects. In this investigation, we intended to study the MCII strategy in a systemic context of the classroom. Fifty-six students from middle school and secondary education attending a public school in Lisbon (Portugal) participated in the study. The MCII strategy was explicitly taught in a procedure that included metacognitive modeling, guided practice and autonomous practice of strategy. A mental contrast between a goal they wanted to achieve and a possible obstacle to achieving that desire was instructed, and then the formulation of plans in order to overcome the obstacle identified previously. The preliminary results suggest that the MCII metacognitive strategy, applied to the school context, leads to more sophisticated reflections, the promotion of learning goals and the elaboration of more complex and specific self-regulated plans. Further, students achieve better results on school tests and worksheets after strategy practice. This study presents important implications since the MCII has been related to improved outcomes and increased attendance. Additionally, MCII seems to be an innovative process that captures students’ efforts to learn and enhances self-efficacy beliefs during learning tasks.

Keywords: implementation intentions, learning goals, mental contrasting, metacognitive strategy, self-regulated learning

Procedia PDF Downloads 241
11384 SAP-Reduce: Staleness-Aware P-Reduce with Weight Generator

Authors: Lizhi Ma, Chengcheng Hu, Fuxian Wong

Abstract:

Partial reduce (P-Reduce) has set a state-of-the-art performance on distributed machine learning in the heterogeneous environment over the All-Reduce architecture. The dynamic P-Reduce based on the exponential moving average (EMA) approach predicts all the intermediate model parameters, which raises unreliability. It is noticed that the approximation trick leads the wrong way to obtaining model parameters in all the nodes. In this paper, SAP-Reduce is proposed, which is a variant of the All-Reduce distributed training model with staleness-aware dynamic P-Reduce. SAP-Reduce directly utilizes the EMA-like algorithm to generate the normalized weights. To demonstrate the effectiveness of the algorithm, the experiments are set based on a number of deep learning models, comparing the single-step training acceleration ratio and convergence time. It is found that SAP-Reduce simplifying dynamic P-Reduce outperforms the intermediate approximation one. The empirical results show SAP-Reduce is 1.3× −2.1× faster than existing baselines.

Keywords: collective communication, decentralized distributed training, machine learning, P-Reduce

Procedia PDF Downloads 33
11383 Strategies for Enhancing Academic Honesty as an Ethical Concern in Electronic Learning (E-learning) among University Students: A Philosophical Perspective

Authors: Ekeh Greg

Abstract:

Learning has been part of human existence from time immemorial. The aim of every learning is to know the truth. In education, it is desirable that true knowledge is imparted and imbibed. For this to be achieved, there is need for honesty, in this context, academic honesty among students, especially in e-learning. This is an ethical issue since honesty bothers on human conduct. However, research findings have shown that academic honesty has remained a big challenge to online learners, especially among the university students. This is worrisome since the university education is the final education system and a gateway to life in the wider society after schooling. If they are practicing honesty in their academic life, it is likely that they will practice honesty in the in the society, thereby bringing positive contributions to the society wherever they find themselves. With this in mind, the significance of this study becomes obvious. On grounds of this significance, this paper focuses on strategies that are adjudged certain to enhance the practice of honesty in e-learning so as to enable learners to be well equipped to contribute to the society through honest ways. The aim of the paper is to contribute to the efforts of instilling the consciousness and practice of honesty in the minds and hearts of learners. This will, in turn, promote effective teaching and learning, academic high standard, competence and self-confidence in university education. Philosophical methods of conceptual analysis, clarification, description and prescription are adopted for the study. Philosophical perspective is chosen so as to ground the paper on the basis of rationality rather than emotional sentiments and biases emanating from cultural, religious and ethnic differences and orientations. Such sentiments and biases can becloud objective reasoning and sound judgment. A review of related literature is also carried out. The findings show that academic honesty in e-learning is a cherished value, but it is bedeviled by some challenges, such as care-free attitude on the part of students and absence of monitoring. The findings also show that despite the challenges facing academic honesty, strategies such as self-discipline, determination, hard work, imbibing ethical and philosophical principles, among others, can certainly enhance the practice of honesty in e-learning among university students. The paper, therefore, concludes that these constitute strategies for enhancing academic honesty among students. Consequently, it is suggested that instructors, school counsellors and other stakeholders should endeavour to see that students are helped to imbibe these strategies and put them into practice. Students themselves are enjoined to cherish honesty in their academic pursuit and avoid short-cuts. Short-cuts can only lead to mediocrity and incompetence on the part of the learners, which may have long adverse consequences, both on themselves and others.

Keywords: academic, ethical, philosophical, strategies

Procedia PDF Downloads 76
11382 Cryptographic Resource Allocation Algorithm Based on Deep Reinforcement Learning

Authors: Xu Jie

Abstract:

As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decision-making problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security) by modeling the multi-job collaborative cryptographic service scheduling problem as a multi-objective optimized job flow scheduling problem and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real-time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing and effectively solves the problem of complex resource scheduling in cryptographic services.

Keywords: cloud computing, cryptography on-demand service, reinforcement learning, workflow scheduling

Procedia PDF Downloads 15
11381 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: big data, machine learning, smart city, social cost, transportation network

Procedia PDF Downloads 260
11380 Quality Assessment of New Zealand Mānuka Honeys Using Hyperspectral Imaging Combined with Deep 1D-Convolutional Neural Networks

Authors: Hien Thi Dieu Truong, Mahmoud Al-Sarayreh, Pullanagari Reddy, Marlon M. Reis, Richard Archer

Abstract:

New Zealand mānuka honey is a honeybee product derived mainly from Leptospermum scoparium nectar. The potent antibacterial activity of mānuka honey derives principally from methylglyoxal (MGO), in addition to the hydrogen peroxide and other lesser activities present in all honey. MGO is formed from dihydroxyacetone (DHA) unique to L. scoparium nectar. Mānuka honey also has an idiosyncratic phenolic profile that is useful as a chemical maker. Authentic mānuka honey is highly valuable, but almost all honey is formed from natural mixtures of nectars harvested by a hive over a time period. Once diluted by other nectars, mānuka honey irrevocably loses value. We aimed to apply hyperspectral imaging to honey frames before bulk extraction to minimise the dilution of genuine mānuka by other honey and ensure authenticity at the source. This technology is non-destructive and suitable for an industrial setting. Chemometrics using linear Partial Least Squares (PLS) and Support Vector Machine (SVM) showed limited efficacy in interpreting chemical footprints due to large non-linear relationships between predictor and predictand in a large sample set, likely due to honey quality variability across geographic regions. Therefore, an advanced modelling approach, one-dimensional convolutional neural networks (1D-CNN), was investigated for analysing hyperspectral data for extraction of biochemical information from honey. The 1D-CNN model showed superior prediction of honey quality (R² = 0.73, RMSE = 2.346, RPD= 2.56) to PLS (R² = 0.66, RMSE = 2.607, RPD= 1.91) and SVM (R² = 0.67, RMSE = 2.559, RPD=1.98). Classification of mono-floral manuka honey from multi-floral and non-manuka honey exceeded 90% accuracy for all models tried. Overall, this study reveals the potential of HSI and deep learning modelling for automating the evaluation of honey quality in frames.

Keywords: mānuka honey, quality, purity, potency, deep learning, 1D-CNN, chemometrics

Procedia PDF Downloads 139
11379 The Effects of Three Pre-Reading Activities (Text Summary, Vocabulary Definition, and Pre-Passage Questions) on the Reading Comprehension of Iranian EFL Learners

Authors: Leila Anjomshoa, Firooz Sadighi

Abstract:

This study investigated the effects of three types of pre-reading activities (vocabulary definitions, text summary and pre-passage questions) on EFL learners’ English reading comprehension. On the basis of the results of a placement test administered to two hundred and thirty English students at Kerman Azad University, 200 subjects (one hundred intermediate and one hundred advanced) were selected.Four texts, two of them at intermediate level and two of them at advanced level were chosen. The data gathered was subjected to the statistical procedures of ANOVA. A close examination of the results through Tukey’s HSD showed the fact that the experimental groups performed better than the control group, highlighting the effect of the treatment on them. Also, the experimental group C (text summary), performed remarkably better than the other three groups (both experimental & control). Group B subjects, vocabulary definitions, performed better than groups A and D. The pre-passage questions group’s (D) performance showed higher scores than the control condition.

Keywords: pre-reading activities, text summary, vocabulary definition, and pre-passage questions, reading comprehension

Procedia PDF Downloads 339
11378 Trust and Conflict Resolution: Relationship Building for Learning

Authors: Jeff Dickie

Abstract:

This research paper combined grounded coding and research questions with the objective to investigate conflict resolution in the classroom. The students’ answers concerning teaching were coded according to phrasal meanings which revealed concepts. These concept codes then became input data into theoretical frameworks. The investigation indicated two conflicts: whether the information was valid and whether to make the study effort which was discussed as perceptions of teacher’s competence in helping to learn. The relevant factors in helping to learn were predominately emotional. These factors were important in the negotiation process to develop relationships. Information validity seemed to be the motivator to begin and participate effectively with the learning process. In effect, confidence in the learning negotiation process with the focus towards relationship building with the subject matter seemed to be the motivator to make the study effort.

Keywords: coding, confidence, competence, conflict resolution, risk, trust, relationship building

Procedia PDF Downloads 431
11377 Depth of Field: Photographs, Narrative and Reflective Learning Resource for Health Professions Educators

Authors: Gabrielle Brand, Christopher Etherton-Beer

Abstract:

The learning landscape of higher education environment is changing, with an increased focus over the past decade on how educators might begin to cultivate reflective skills in health professions students. In addition, changing professional requirements demand that health professionals are adequately prepared to practice in today’s complex Australian health care systems, including responding to changing demographics of population ageing. To counteract a widespread perception of health professions students’ disinterest in caring for older persons, the authors will report on an exploratory, mixed method research study that used photographs, narrative and small group work to enhance medical and nursing students’ reflective learning experience. An innovative photo-elicitation technique and reflective questioning prompts were used to increase engagement, and challenge students to consider new perspectives (around ageing) by constructing shared storylines in small groups. The qualitative themes revealed how photographs, narratives and small group work created learning spaces for reflection whereby students could safely explore their own personal and professional values, beliefs and perspectives around ageing. By providing the space for reflection, the students reported how they found connection and meaning in their own learning through a process of self-exploration that often challenged their assumptions of both older people and themselves as future health professionals. By integrating cognitive and affective elements into the learning process, this research demonstrates the importance of embedding visual methodologies that enhance reflection and transformative learning. The findings highlight the importance of integrating the arts into predominantly empirically driven health professional curricula and can be used as a catalyst for individual and/or collective reflection which can potentially enhance empathy, insight and understanding of the lived experiences of older patients. Based on these findings, the authors have developed ‘Depth of Field: Exploring Ageing’ an innovative, interprofessional, digital reflective learning resource that uses Prezi Inc. software (storytelling tool that presents ideas on a virtual canvas) to enhance students’ reflective capacity in the higher education environment.

Keywords: narrative, photo-elicitation, reflective learning, qualitative research

Procedia PDF Downloads 285
11376 New Approaches to the Determination of the Time Costs of Movements

Authors: Dana Kristalova

Abstract:

This article deals with geographical conditions in terrain and their effect on the movement of vehicles, their effect on speed and safety of movement of people and vehicles. Finding of the optimal routes outside the communication is studied in the army environment, but it occur in civilian as well, primarily in crisis situation, or by the provision of assistance when natural disasters such as floods, fires, storms, etc. have happened. These movements require the optimization of routes when effects of geographical factors should be included. The most important factor is surface of the terrain. It is based on several geographical factors as are slopes, soil conditions, micro-relief, a type of surface and meteorological conditions. Their mutual impact has been given by coefficient of deceleration. This coefficient can be used for commander´s decision. New approaches and methods of terrain testing, mathematical computing, mathematical statistics or cartometric investigation are necessary parts of this evaluation.

Keywords: surface of a terrain, movement of vehicles, geographical factor, optimization of routes

Procedia PDF Downloads 462
11375 Analysis of Street Utilization Patterns in Makurdi, Benue State, Nigeria

Authors: I. D. Mngutyo, T. T. Gyuse, D. S. A. Alaci, J. Atser

Abstract:

Streets are public spaces that are meaningful to all people because of lack of restriction on streets. Studies show that conditions, activities and people contribute to the success of public spaces. Also, self-organization potential in activity patterns offers a prospect for the revitalization of an urban area. This potential is mostly ignored hence many African streets appear disorganized giving African urban areas an unplanned look. Therefore, this study aims to analyze street utilization patterns and explore the relationship between the pattern of street use and condition of streets in Makurdi.These activity patterns form a data base for the revitalization of public space. Three major and minor arterials streets in nine out of the eleven wards that make up the built up part of Makurdi were purposively selected as units for measurement. A street activity audit was done on streets for activities that can be observed. For activities that cannot be easily observed 4 questionnaires were randomly administered on each of the three streets giving a total of 108 questionnaires. Multivariate statistical tools such as factor analysis and regression will be used to show emerging streets activity patterns and spatial variation among the nine wards.

Keywords: streets, utilization patterns, revitalization, urban design, urban, areas, developing countries

Procedia PDF Downloads 441
11374 Assessing the Self-Directed Learning Skills of the Undergraduate Nursing Students in a Medical University in Bahrain: A Quantitative Study

Authors: Catherine Mary Abou-Zaid

Abstract:

This quantitative study discusses the concerns with the self-directed learning (SDL) skills of the undergraduate nursing students in a medical university in Bahrain. The nursing undergraduate student SDL study was conducted taking all 4 years and compiling data collected from the students themselves by survey questionnaire. The aim of the study is to understand and change the attitudes of self-directed learning among the undergraduate students. The SDL of the undergraduate student nurses has been noticed to be lacking and motivation to actually perform without supervision while out-with classrooms are very low. Their use of the resources available on the virtual learning environment and also within the university is not as good as it should be for a university student at this level. They do not use them to their own advantage. They are not prepared for the transition from high school to an academic environment such as a university or college. For some students it is the first time in their academic lives that they have faced sharing a classroom with the opposite sex. For some this is a major issue and we as academics need to be aware of all issues that they come to higher education with. Design Methodology: The design methodology that was chosen was a quantitative design using convenience sampling of the students who would be asked to complete survey questionnaire. This sampling method was chosen because of the time constraint. This was completed by the undergraduate students themselves while in class. The questionnaire was analyzed by the statistical package for social sciences (SPSS), the results interpreted by the researcher and the findings published in the paper. The analyzed data will also be reported on and from this information we as educators will be able to see the student’s weaknesses regarding self-directed learning. The aims and objectives of the research will be used as recommendations for the improvement of resources for the students to improve their SDL skills. Conclusion: The results will be able to give the educators an insight to how we can change the self-directed learning techniques of the students and enable them to embrace the skills and to focus more on being self-directed in their studies rather than having to be put on to a SDL pathway from the educators themselves. This evidence will come from the analysis of the statistical data. It may even change the way in which the students are selected for the nursing programme. These recommendations will be reported to the head of school and also to the nursing faculty.

Keywords: self-directed learning, undergraduate students, transition, statistical package for social sciences (SPSS), higher education

Procedia PDF Downloads 315
11373 Mathematical Modeling for the Break-Even Point Problem in a Non-homogeneous System

Authors: Filipe Cardoso de Oliveira, Lino Marcos da Silva, Ademar Nogueira do Nascimento, Cristiano Hora de Oliveira Fontes

Abstract:

This article presents a mathematical formulation for the production Break-Even Point problem in a non-homogeneous system. The optimization problem aims to obtain the composition of the best product mix in a non-homogeneous industrial plant, with the lowest cost until the breakeven point is reached. The problem constraints represent real limitations of a generic non-homogeneous industrial plant for n different products. The proposed model is able to solve the equilibrium point problem simultaneously for all products, unlike the existing approaches that propose a resolution in a sequential way, considering each product in isolation and providing a sub-optimal solution to the problem. The results indicate that the product mix found through the proposed model has economical advantages over the traditional approach used.

Keywords: branch and bound, break-even point, non-homogeneous production system, integer linear programming, management accounting

Procedia PDF Downloads 211
11372 Construction of an Assessment Tool for Early Childhood Development in the World of DiscoveryTM Curriculum

Authors: Divya Palaniappan

Abstract:

Early Childhood assessment tools must measure the quality and the appropriateness of a curriculum with respect to culture and age of the children. Preschool assessment tools lack psychometric properties and were developed to measure only few areas of development such as specific skills in music, art and adaptive behavior. Existing preschool assessment tools in India are predominantly informal and are fraught with judgmental bias of observers. The World of Discovery TM curriculum focuses on accelerating the physical, cognitive, language, social and emotional development of pre-schoolers in India through various activities. The curriculum caters to every child irrespective of their dominant intelligence as per Gardner’s Theory of Multiple Intelligence which concluded "even students as young as four years old present quite distinctive sets and configurations of intelligences". The curriculum introduces a new theme every week where, concepts are explained through various activities so that children with different dominant intelligences could understand it. For example: The ‘Insects’ theme is explained through rhymes, craft and counting corner, and hence children with one of these dominant intelligences: Musical, bodily-kinesthetic and logical-mathematical could grasp the concept. The child’s progress is evaluated using an assessment tool that measures a cluster of inter-dependent developmental areas: physical, cognitive, language, social and emotional development, which for the first time renders a multi-domain approach. The assessment tool is a 5-point rating scale that measures these Developmental aspects: Cognitive, Language, Physical, Social and Emotional. Each activity strengthens one or more of the developmental aspects. During cognitive corner, the child’s perceptual reasoning, pre-math abilities, hand-eye co-ordination and fine motor skills could be observed and evaluated. The tool differs from traditional assessment methodologies by providing a framework that allows teachers to assess a child’s continuous development with respect to specific activities in real time objectively. A pilot study of the tool was done with a sample data of 100 children in the age group 2.5 to 3.5 years. The data was collected over a period of 3 months across 10 centers in Chennai, India, scored by the class teacher once a week. The teachers were trained by psychologists on age-appropriate developmental milestones to minimize observer’s bias. The norms were calculated from the mean and standard deviation of the observed data. The results indicated high internal consistency among parameters and that cognitive development improved with physical development. A significant positive relationship between physical and cognitive development has been observed among children in a study conducted by Sibley and Etnier. In Children, the ‘Comprehension’ ability was found to be greater than ‘Reasoning’ and pre-math abilities as indicated by the preoperational stage of Piaget’s theory of cognitive development. The average scores of various parameters obtained through the tool corroborates the psychological theories on child development, offering strong face validity. The study provides a comprehensive mechanism to assess a child’s development and differentiate high performers from the rest. Based on the average scores, the difficulty level of activities could be increased or decreased to nurture the development of pre-schoolers and also appropriate teaching methodologies could be devised.

Keywords: child development, early childhood assessment, early childhood curriculum, quantitative assessment of preschool curriculum

Procedia PDF Downloads 362
11371 Freedom and the Value of Games: How to Overcome the Challenges in the Gamification of Necessary Learning Tasks

Authors: Jonathan May

Abstract:

This paper argues that the value of games relates to the sensation of freedom they create, and this in turn results from their nature as voluntary, non-necessary tasks. Attempts to gamify necessary learning tasks are therefore challenged to create this sensation of freedom and so they often fail to create the pleasure and value found in traditional games. It then demonstrates a route to creating this sensation of freedom through the maximization of varied and creative solutions to such problems.

Keywords: gamification, games, philosophy of games, freedom, voluntary action, necessity, motivation, value of games

Procedia PDF Downloads 176
11370 Elderly Health Care Process by Community Participation: A Sub-District in the Lower Northern Region of Thailand

Authors: Amaraporn Puraya, Roongtiva Boonpracom, Somsak Thojampa, Sirikanok Klankhajhon, Kittisak Kumpeera

Abstract:

The objective of this qualitative research was to study the elderly health care process by community participation. Data were collected by quality research methods, including secondary data study, observation, in-depth interviews, and focus group discussions and analyzed by content analysis, reflection and review of information. The research results pointed out that the important elderly health care process by community participation consisted of 2 parts, namely the community participation development process in elderly health care and the outcomes from the participation development process. The community participation development process consisted of 4 steps as follows: 1) Building the leadership team, an important social capital of the community, which started from searching for both formal and informal leaders by giving the opportunity for public participation and creating clear agreements defining roles, duties and responsibilities; 2) investigating the problems and the needs of the community, 3) designing the elderly health care activities under the concept of self-care potential development of the elderly through participation in community forums and meetings to exchange knowledge with common goals, plans and operation and 4) the development process of sustainable health care agreement at the local level, starting from opening communication channels to create awareness and participation in various activities at both individual and group levels as well as pushing activities/projects into the community development plan consistent with the local administration policy. The outcomes from the participation development process were as follows. 1) There was the integration of the elderly for doing the elderly health care activities/projects in the community managed by the elderly themselves. 2) The service system was changed from the passive to the proactive one, focusing on health promotion rather than treating diseases or illnesses. 3) The registered nurses / the public health officers can provide care for the elderly with chronic illnesses through the implementation of activities/projects of elderly health care so that the elderly can access the services more. 4) The local government organization became the main mechanism in driving the elderly health care process by community participation.

Keywords: elderly health care process, community participation, elderly, Thailand

Procedia PDF Downloads 213
11369 Influence of Social Media on Perceived Learning Outcome of Agricultural Students in Tertiary Institutions in Oyo State, Nigeria

Authors: Adedoyin Opeyemi Osokoya

Abstract:

The study assesses the influence of social media on perceived learning outcome of agricultural science students in tertiary institutions in Oyo state, Nigeria. The four-stage sampling procedure was used to select participants. All students in the seven tertiary institutions that offer agriculture science as a course of study in Oyo State was the population. A university, a college of agriculture and a college of education were sampled, and a department from each was randomly selected. Twenty percent of the students’ population in the respective selected department gave a sample size of 165. Questionnaire was used to collect information on respondents’ personal characteristics and information related to access to social media. Data were analysed using descriptive statistics, chi-square, correlation, and multiple regression at the 0.05 confidence level. Age and household size were 21.13 ± 2.64 years and 6 ± 2.1 persons respectively. All respondents had access to social media, majority (86.1%) owned Android phone, 57.6% and 52.7% use social media for course work and entertainment respectively, while the commonly visited sites were WhatsApp, Facebook, Google, Opera mini. Over half (53.9%) had an unfavourable attitude towards the use of social media for learning; benefits of the use of social media for learning was high (56.4%). Removal of information barrier created by distance (x̄=1.58) was the most derived benefit, while inadequate power supply (x̄=2.36), was the most severe constraints. Age (β=0.23), sex (β=0.37), ownership of Android phone (β=-1.29), attitude (β=0.37), constraints (β =-0.26) and use of social media (β=0.23) were significant predictors of influence on perceived learning outcomes.

Keywords: use of social media, agricultural science students, undergraduates of tertiary institutions, Oyo State of Nigeria

Procedia PDF Downloads 140
11368 Enriched Education: The Classroom as a Learning Network through Video Game Narrative Development

Authors: Wayne DeFehr

Abstract:

This study is rooted in a pedagogical approach that emphasizes student engagement as fundamental to meaningful learning in the classroom. This approach creates a paradigmatic shift, from a teaching practice that reinforces the teacher’s central authority to a practice that disperses that authority among the students in the classroom through networks that they themselves develop. The methodology of this study about creating optimal conditions for learning in the classroom includes providing a conceptual framework within which the students work, as well as providing clearly stated expectations for work standards, content quality, group methodology, and learning outcomes. These learning conditions are nurtured in a variety of ways. First, nearly every class includes a lecture from the professor with key concepts that students need in order to complete their work successfully. Secondly, students build on this scholarly material by forming their own networks, where students face each other and engage with each other in order to collaborate their way to solving a particular problem relating to the course content. Thirdly, students are given short, medium, and long-term goals. Short term goals relate to the week’s topic and involve workshopping particular issues relating to that stage of the course. The medium-term goals involve students submitting term assignments that are evaluated according to a well-defined rubric. And finally, long-term goals are achieved by creating a capstone project, which is celebrated and shared with classmates and interested friends on the final day of the course. The essential conclusions of the study are drawn from courses that focus on video game narrative. Enthusiastic student engagement is created not only with the dynamic energy and expertise of the instructor, but also with the inter-dependence of the students on each other to build knowledge, acquire skills, and achieve successful results.

Keywords: collaboration, education, learning networks, video games

Procedia PDF Downloads 115
11367 Canadian Undergraduate and Graduate Nursing Students: Interest in Education in Medical and Recreational Cannabis for Practice and Career Development

Authors: Margareth S. Zanchetta, Kateryna Metersky, Valerie Tan, Charissa Cordon, Stephanie Lucchese, Yana Siganevich, Prasha Sivasundaram, Truong Binh Nguyen, Imran Qureshi

Abstract:

Due to a new area of practice, Canadian nurses possess knowledge gaps regarding the use of cannabis-based therapies by clients/patients. Education related to medical cannabis (MC) and recreational cannabis (RC) is required to promote nurses’ competency and confidence in supporting clients/patients using MC/RC toward the improvement of health outcomes. A team composed of nursing researchers and undergraduate/graduate students implemented a national survey to explore this theme with the population of undergraduate, graduate (MN and NP), and Post-Diploma (RN Bridging) nursing students enrolled in Canadian Universities Nursing Programs. Upon Research Ethics Board approval, survey recruitment was supported by major nursing stakeholders. The research questions were : (a) Which are the most preferred sources of information on MC/RC for nursing students? (b) Which are the factors and preferred learning modalities that could increase interest in learning about MC/RC, and (c) What are the future career plans among nursing students, and how would they consider the prospective use of cannabis in their practice? The survey was available from Sept. 2022 to Feb. 2023, hosted by a remote platform. An original questionnaire (English-French) was composed of 18 multiple choice questions and 2 open-ended questions. Sociodemographic information and closed-ended responses were compiled as descriptive statistics, while narrative accounts will be analysed through thematic analysis. Respondents (n=153) were from 7 Canadian provinces, national (99%) and international students (1%); the majority of respondents (61%) were in the age range of 21-30 years old. Results indicated that respondents perceive a gap in the undergraduate curriculum on the topics of MC/RC (91%) and that their learning needs include regulations (90%), data on effectiveness (88%), dosing best practices (86%), contraindications (83%), and clinical and medical indications (76%). Respondents reported motivation to learn more about MC/RC through online lectures/videos (65%), e-learning modules or online interactive training (61%), workshops (51%), webinars (36%), and social media (35%). Their primary career-related motivations regarding MC/RC knowledge include enhancing nursing practice (76%), learning about this growing scope of practice (61%), keeping up-to-date responding to scientific curiosity (59%), learning about evidence-based practice (59%), and utilizing alternative forms of medical treatment (37%). Respondents indicated that the integration of topics on cannabis in any course in the undergraduate and/or graduate curriculum would increase their desire to learn about MC/RC as equally as exposure within a clinical setting (75%). The emerging trend in the set of narrative responses (n=130) suggests that respondents believe educational MC/RC content should be integrated into core nursing courses. Respondents also urged educators to be well-informed about evidence-based practice related to MC/RC and to reflect upon stigma and biases surrounding its use. Future knowledge dissemination and translation activities include scholarly products and presentations to stimulate discussion amongst nursing faculty and students, as well as nurses in clinical settings. The goal is to mobilise talents and build collaboration for the development of a socially responsive curriculum on MC/RC competency to address the education-related expectations of all these social actors.

Keywords: Canada, medical cannabis, nursing education, nursing graduate student, nursing undergraduate student, online survey, recreational cannabis

Procedia PDF Downloads 90
11366 Loan Repayment Prediction Using Machine Learning: Model Development, Django Web Integration and Cloud Deployment

Authors: Seun Mayowa Sunday

Abstract:

Loan prediction is one of the most significant and recognised fields of research in the banking, insurance, and the financial security industries. Some prediction systems on the market include the construction of static software. However, due to the fact that static software only operates with strictly regulated rules, they cannot aid customers beyond these limitations. Application of many machine learning (ML) techniques are required for loan prediction. Four separate machine learning models, random forest (RF), decision tree (DT), k-nearest neighbour (KNN), and logistic regression, are used to create the loan prediction model. Using the anaconda navigator and the required machine learning (ML) libraries, models are created and evaluated using the appropriate measuring metrics. From the finding, the random forest performs with the highest accuracy of 80.17% which was later implemented into the Django framework. For real-time testing, the web application is deployed on the Alibabacloud which is among the top 4 biggest cloud computing provider. Hence, to the best of our knowledge, this research will serve as the first academic paper which combines the model development and the Django framework, with the deployment into the Alibaba cloud computing application.

Keywords: k-nearest neighbor, random forest, logistic regression, decision tree, django, cloud computing, alibaba cloud

Procedia PDF Downloads 136
11365 Breast Cancer Diagnosing Based on Online Sequential Extreme Learning Machine Approach

Authors: Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Fahad Taha Al-Dhief, Mohammad Kamrul Hasan

Abstract:

Breast Cancer (BC) is considered one of the most frequent reasons of cancer death in women between 40 to 55 ages. The BC is diagnosed by using digital images of the FNA (Fine Needle Aspirate) for both benign and malignant tumors of the breast mass. Therefore, this work proposes the Online Sequential Extreme Learning Machine (OSELM) algorithm for diagnosing BC by using the tumor features of the breast mass. The current work has used the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, which contains 569 samples (i.e., 357 samples for benign class and 212 samples for malignant class). Further, numerous measurements of assessment were used in order to evaluate the proposed OSELM algorithm, such as specificity, precision, F-measure, accuracy, G-mean, MCC, and recall. According to the outcomes of the experiment, the highest performance of the proposed OSELM was accomplished with 97.66% accuracy, 98.39% recall, 95.31% precision, 97.25% specificity, 96.83% F-measure, 95.00% MCC, and 96.84% G-Mean. The proposed OSELM algorithm demonstrates promising results in diagnosing BC. Besides, the performance of the proposed OSELM algorithm was superior to all its comparatives with respect to the rate of classification.

Keywords: breast cancer, machine learning, online sequential extreme learning machine, artificial intelligence

Procedia PDF Downloads 111
11364 Influence and Dissemination of Solecism among Moroccan High School and University Students

Authors: Rachid Ed-Dali, Khalid Elasri

Abstract:

Mass media seem to provide a rich content for language acquisition. Exposure to television, the Internet, the mobile phone and other technological gadgets and devices helps enrich the student’s lexicon positively as well as negatively. The difficulties encountered by students while learning and acquiring second languages in addition to their eagerness to comprehend the content of a particular program prompt them to diversify their methods so as to achieve their targets. The present study highlights the significance of certain media channels and their involvement in language acquisition with the employment of the Natural Approach to further grasp whether students, especially secondary and high school students, learn and acquire errors through watching subtitled television programs. The chief objective is investigating the deductive and inductive relevance of certain programs beside the involvement of peripheral learning while acquiring mistakes.

Keywords: errors, mistakes, Natural Approach, peripheral learning, solecism

Procedia PDF Downloads 117