Search results for: 1H nuclear magnetic resonance spectroscopy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4215

Search results for: 1H nuclear magnetic resonance spectroscopy

1545 Isolation and Characterization of Chromium Tolerant Staphylococcus aureus from Industrial Wastewater and Their Potential Use to Bioremediate Environmental Chromium

Authors: Muhammad Tariq, Muhammad Waseem, Muhammad Hidayat Rasool

Abstract:

Isolation and characterization of chromium tolerant Staphylococcus aureus from industrial wastewater and their potential use to bioremediate environmental chromium. Objectives: Chromium with its great economic importance in industrial use is major metal pollutant of the environment. Chromium are used in different industries for various applications such as textile, dyeing and pigmentation, wood preservation, manufacturing pulp and paper, chrome plating, steel and tanning. The release of untreated chromium in industrial effluents causes serious threat to environment and human health, therefore, the current study designed to isolate chromium tolerant Staphylococcus aureus for removal of chromium prior to their final discharge into the environment due to its cost effective and beneficial advantage over physical and chemical methods. Methods: Wastewater samples were collected from discharge point of different industries. Heavy metal analysis by atomic absorption spectrophotometer and microbiological analysis such as total viable count, total coliform, fecal coliform and Escherichia coli were conducted. Staphylococcus aureus was identified through gram’s staining, biomeriux vitek 2 microbial identification system and 16S rRNA gene amplification by polymerase chain reaction. Optimum growth conditions with respect to temperature, pH, salt concentrations and effect of chromium on the growth of bacteria, resistance to other heavy metal ions, minimum inhibitory concentration and chromium uptake ability of Staphylococcus aureus strain K1 was determined by spectrophotometer. Antibiotic sensitivity pattern was also determined by disc diffusion method. Furthermore, chromium uptake ability was confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope equipped with Oxford Energy Dipersive X-ray (EDX) micro analysis system. Results: The results presented that optimum temperature was 35ᵒC, pH was 8.0 and salt concentration was 0.5% for growth of Staphylococcus aureus K1. The maximum uptake ability of chromium by bacteria was 20mM than other heavy metal ions. The antibiotic sensitivity pattern revealed that Staphylococcus aureus was vancomycin and methicillin sensitive. Non hemolytic activity on blood agar and negative coagulase reaction showed that it was non-pathogenic. Furthermore, the growth of bacteria decreases in the presence of chromium and maximum chromium uptake by bacteria observed at optimum growth conditions. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and Energy dispersive X-ray (EDX) analysis confirmed the presence of chromium uptake by Staphylococcus aureus K1. Conclusion: The study revealed that Staphylococcus aureus K1 have the potential to bio-remediate chromium toxicity from wastewater. Gradually, this biological treatment becomes more important due to its advantage over physical and chemical methods to protect environment and human health.

Keywords: wastewater, staphylococcus, chromium, bioremediation

Procedia PDF Downloads 164
1544 Process Modified Geopolymer Concrete: A Sustainable Material for Green Construction Technology

Authors: Dibyendu Adak, Saroj Mandal

Abstract:

The fly ash based geopolymer concrete generally requires heat activation after casting, which has been considered as an important limitation for its practical application. Such limitation can be overcome by a modification in the process at the time of mixing of ingredients (fly and activator fluid) for geopolymer concrete so that curing can be made at ambient temperature. This process modified geopolymer concrete shows an appreciable improvement in structural performance compared to conventional heat cured geopolymer concrete and control cement concrete. The improved durability performance based on water absorption, sulphate test, and RCPT is also noted. The microstructural properties analyzed through Field Emission Scanning Electron Microscope (FESEM) with Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD) techniques show the better interaction of fly ash and activator solution at early ages for the process modified geopolymer concrete. This accelerates the transformation of the amorphous phase of fly ash to the crystalline phase.

Keywords: fly ash, geopolymer concrete, process modification, structural properties, durability, micro-structures

Procedia PDF Downloads 158
1543 The Potential of Renewable Energy in Tunisia and Its Impact on Economic Growth

Authors: Assaad Ghazouani

Abstract:

Tunisia is ranked among the countries with low energy diversification, but this configuration makes the country too dependent on fossil fuel exporting countries and therefore extremely sensitive to any oil crises, many measures to diversify electricity production must be taken in making use of other forms of renewable and nuclear energy. One of the solutions required to escape this dependence is the liberalization of the electricity industry which can lead to an improvement of supply, energy diversification, and reducing some of the negative effects of the trade balance. This paper examines the issue of renewable electricity and economic growth in Tunisia consumption. The main objective is to study and analyze the causal link between renewable energy consumption and economic growth in Tunisia over the period 1980-2010. To examine the relationship in the short and in the long terms, we used a multidimensional approach to cointegration based on recent advances in time series econometrics (test Zivot - Andrews, Test of Cointegration Johannsen, Granger causality test, error correction model (ECM)).

Keywords: renewable electricity, economic growth, VECM, cointegration, Tunisia

Procedia PDF Downloads 536
1542 An Experimental and Numerical Study on the Pultruded GFRP I-Sections Beams

Authors: Parinaz Arashnia, Farzad Hatami, Saeed Ghaffarpour Jahromi

Abstract:

Using steel in bridges’ construction because of their desired tensile and compressive strength and light weight especially in large spans was widely popular. Disadvantages of steel such as corrosion, buckling and weaknesses in high temperature and unsuitable weld could be solve with using Fibres Reinforced Polymer (FRP) profiles. The FRP is a remarkable class of composite polymers that can improve structural elements behaviour like corrosion resistance, fir resistance with good proofing and electricity and magnetic non-conductor. Nowadays except FRP reinforced bars and laminates, FRP I-beams are made and studied. The main reason for using FRP profiles is, prevent of corrosion and increase the load carrying capacity and durability, especially in large spans in bridges’ deck. In this paper, behaviour of I-section glass fibres reinforced polymer (GFRP) beam is discussed under point loads with numerical models and results has been compared and verified with experimental tests.

Keywords: glass fibres reinforced polymer, composite, I-section beam, durability, finite element method, numerical model

Procedia PDF Downloads 253
1541 Comparison of Structure and Corrosion Properties of Titanium Oxide Films Prepared by Thermal Oxidation, DC Plasma Oxidation, and by the Sol-Gel

Authors: O. Çomaklı, M. Yazıcı, T. Yetim, A. F. Yetim, A. Çelik

Abstract:

In this work, TiO₂ films were deposited on Cp-Ti substrates by thermal oxidation, DC plasma oxidation, and by the sol-gel method. Microstructures of uncoated and TiO₂ film coated samples were examined by X-ray diffraction and SEM. Thin oxide film consisting of anatase (A) and rutile (R) TiO₂ structures was observed on the surface of CP-Ti by under three different treatments. Also, the more intense anatase and rutile peaks appeared at samples plasma oxidized at 700˚C. The thicknesses of films were about 1.8 μm at the TiO₂ film coated samples by sol-gel and about 2.7 μm at thermal oxidated samples, while it was measured as 3.9 μm at the plasma oxidated samples. Electrochemical corrosion behaviour of uncoated and coated specimens was mainly carried out by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF) solution. Results showed that at the plasma oxidated samples exhibited a better resistance property to corrosion than that of other treatments.

Keywords: TiO₂, CP-Ti, corrosion properties, thermal oxidation, plasma oxidation, sol-gel

Procedia PDF Downloads 279
1540 Nonequilibrium Effects in Photoinduced Ultrafast Charge Transfer Reactions

Authors: Valentina A. Mikhailova, Serguei V. Feskov, Anatoly I. Ivanov

Abstract:

In the last decade the nonequilibrium charge transfer have attracted considerable interest from the scientific community. Examples of such processes are the charge recombination in excited donor-acceptor complexes and the intramolecular electron transfer from the second excited electronic state. In these reactions the charge transfer proceeds predominantly in the nonequilibrium mode. In the excited donor-acceptor complexes the nuclear nonequilibrium is created by the pump pulse. The intramolecular electron transfer from the second excited electronic state is an example where the nuclear nonequilibrium is created by the forward electron transfer. The kinetics of these nonequilibrium reactions demonstrate a number of peculiar properties. Most important from them are: (i) the absence of the Marcus normal region in the free energy gap law for the charge recombination in excited donor-acceptor complexes, (ii) extremely low quantum yield of thermalized charge separated state in the ultrafast charge transfer from the second excited state, (iii) the nonexponential charge recombination dynamics in excited donor-acceptor complexes, (iv) the dependence of the charge transfer rate constant on the excitation pulse frequency. This report shows that most of these kinetic features can be well reproduced in the framework of stochastic point-transition multichannel model. The model involves an explicit description of the nonequilibrium excited state formation by the pump pulse and accounts for the reorganization of intramolecular high-frequency vibrational modes, for their relaxation as well as for the solvent relaxation. The model is able to quantitatively reproduce complex nonequilibrium charge transfer kinetics observed in modern experiments. The interpretation of the nonequilibrium effects from a unified point of view in the terms of the multichannel point transition stochastic model allows to see similarities and differences of electron transfer mechanism in various molecular donor-acceptor systems and formulates general regularities inherent in these phenomena. The nonequilibrium effects in photoinduced ultrafast charge transfer which have been studied for the last 10 years are analyzed. The methods of suppression of the ultrafast charge recombination, similarities and dissimilarities of electron transfer mechanism in different molecular donor-acceptor systems are discussed. The extremely low quantum yield of the thermalized charge separated state observed in the ultrafast charge transfer from the second excited state in the complex consisting of 1,2,4-trimethoxybenzene and tetracyanoethylene in acetonitrile solution directly demonstrates that its effectiveness can be close to unity. This experimental finding supports the idea that the nonequilibrium charge recombination in the excited donor-acceptor complexes can be also very effective so that the part of thermalized complexes is negligible. It is discussed the regularities inherent to the equilibrium and nonequilibrium reactions. Their fundamental differences are analyzed. Namely the opposite dependencies of the charge transfer rates on the dynamical properties of the solvent. The increase of the solvent viscosity results in decreasing the thermal rate and vice versa increasing the nonequilibrium rate. The dependencies of the rates on the solvent reorganization energy and the free energy gap also can considerably differ. This work was supported by the Russian Science Foundation (Grant No. 16-13-10122).

Keywords: Charge recombination, higher excited states, free energy gap law, nonequilibrium

Procedia PDF Downloads 320
1539 Nonlinear Propagation of Acoustic Soliton Waves in Dense Quantum Electron-Positron Magnetoplasma

Authors: A. Abdikian

Abstract:

Propagation of nonlinear acoustic wave in dense electron-positron (e-p) plasmas in the presence of an external magnetic field and stationary ions (to neutralize the plasma background) is studied. By means of the quantum hydrodynamics model and applying the reductive perturbation method, the Zakharov-Kuznetsov equation is derived. Using the bifurcation theory of planar dynamical systems, the compressive structure of electrostatic solitary wave and periodic travelling waves is found. The numerical results show how the ion density ratio, the ion cyclotron frequency, and the direction cosines of the wave vector affect the nonlinear electrostatic travelling waves. The obtained results may be useful to better understand the obliquely nonlinear electrostatic travelling wave of small amplitude localized structures in dense magnetized quantum e-p plasmas and may be applicable to study the particle and energy transport mechanism in compact stars such as the interior of massive white dwarfs etc.

Keywords: bifurcation theory, phase portrait, magnetized electron-positron plasma, the Zakharov-Kuznetsov equation

Procedia PDF Downloads 238
1538 Applying Bowen’s Theory to Intern Supervision

Authors: Jeff A. Tysinger, Dawn P. Tysinger

Abstract:

The aim of this paper is to theoretically apply Bowen’s understanding of triangulation and triads to school psychology intern supervision so that it can assist in the conceptualization of the dynamics of intern supervision and provide some key methods to address common issues. The school psychology internship is the capstone experience for the school psychologist in training. It involves three key participants whose relationships will determine the success of the internship.  To understand the potential effect, Bowen’s family systems theory can be applied to the supervision relationship. He describes a way to resolve stress between two people by triangulating or binging in a third person. He applies this to a nuclear family, but school psychology intern supervision requires the marriage of an intern, field supervisor, and university supervisor; thus, setting all up for possible triangulation. The consequences of triangulation can apply to standards and requirements, direct supervision, and intern evaluation. Strategies from family systems theory to decrease the negative impact of supervision triangulation.

Keywords: family systems theory, intern supervision, school psychology training, triangulation

Procedia PDF Downloads 119
1537 The Key Role of Yttrium Oxide on Devitrification Resilience of Barium Gallo-germanate Glasses: Physicochemical Properties and Crystallization Study

Authors: Samar Aoujia, Théo Guérineaub, Rayan Zaitera, Evelyne Fargina, Younès Messaddeqb, Thierry Cardinala

Abstract:

Two barium gallo-germanate glass series were elaborated to investigate the effect of the yttrium introduction on the glass physicochemical properties and crystallization behavior. One to twenty mol% of YO3/2 were either added into the glass matrix or substituted for gallium oxide. The glass structure was studied by Raman spectroscopy, and the thermal, optical, thermo-mechanical and physical properties are examined. The introduction of yttrium ions in both glass series increases the glass transition temperature, crystallization temperature, softening temperature, coefficient of linear thermal expansion and density. Through differential scanning calorimetry and X-ray diffraction analyses, it was found that competition occurs between the gallo-germanate zeolite-type phase and the yttrium-containing phase. From 13 mol% of YO3/2, the yttrium introduction impedes the formation of surface crystallization in these glasses.

Keywords: photonic, heavy-metal oxide, glass, crystallization

Procedia PDF Downloads 140
1536 Investigation of Polymer Composite for High Dose Dosimetry

Authors: Esther Lorrayne M. Pereira, Adriana S. M. Batista, Fabíola A. S. Ribeiro, Adelina P. Santos, Luiz O. Faria

Abstract:

In this work we have prepared nanocomposites made by mixing Poli (vinilidene fluoride) (PVDF), zirconium oxide (ZrO₂) and multi–walled carbon nanotubes (MWCNTs) aiming to find dosimetric properties for applications in high dose dosimetry. The samples were irradiated with a Co-60 source at constant dose rate (16.7 kGy/h), with doses ranging from 100 to 2750 kGy. The UV-Vis and FTIR spectrophotometry have been used to monitor the appearing of C=C conjugated bonds and radio-oxidation of carbon (C=O). FTIR spectrometry has that the absorbance intensities at 1715 cm⁻¹ and 1730 cm⁻¹ can be used for high dosimetry purposes for gamma doses ranging from 500 to 2750 kGy. In this range, it is possible to observe a linear relationship between Abs & Dose. Fading of signal was evaluated for one month and reproducibility in 2000 kGy dose. Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) was used for evaluated the dispersion ZrO₂ and MWCNT in the matrix of the PVDF.

Keywords: polymer, composite, high dose dosimetry, PVDF/ZrO₂/MWCNT

Procedia PDF Downloads 282
1535 Time Series Analysis of Radon Concentration at Different Depths in an Underground Goldmine

Authors: Theophilus Adjirackor, Frederic Sam, Irene Opoku-Ntim, David Okoh Kpeglo, Prince K. Gyekye, Frank K. Quashie, Kofi Ofori

Abstract:

Indoor radon concentrations were collected monthly over a period of one year in 10 different levels in an underground goldmine, and the data was analyzed using a four-moving average time series to determine the relationship between the depths of the underground mine and the indoor radon concentration. The detectors were installed in batches within four quarters. The measurements were carried out using LR115 solid-state nuclear track detectors. Statistical models are applied in the prediction and analysis of the radon concentration at various depths. The time series model predicted a positive relationship between the depth of the underground mine and the indoor radon concentration. Thus, elevated radon concentrations are expected at deeper levels of the underground mine, but the relationship was insignificant at the 5% level of significance with a negative adjusted R2 (R2 = – 0.021) due to an appropriate engineering and adequate ventilation rate in the underground mine.

Keywords: LR115, radon concentration, rime series, underground goldmine

Procedia PDF Downloads 38
1534 Zero Voltage Switched Full Bridge Converters for the Battery Charger of Electric Vehicle

Authors: Rizwan Ullah, Abdar Ali, Zahid Ullah

Abstract:

This paper illustrates the study of three isolated zero voltage switched (ZVS) PWM full bridge (FB) converters to charge the high voltage battery in the charger of electric vehicle (EV). EV battery chargers have several challenges such as high efficiency, high reliability, low cost, isolation, and high power density. The cost of magnetic and filter components in the battery charger is reduced when switching frequency is increased. The increase in the switching frequency increases switching losses. ZVS is used to reduce switching losses and to operate the converter in the battery charger at high frequency. The performance of each of the three converters is evaluated on the basis of ZVS range, dead times of the switches, conduction losses of switches, circulating current stress, circulating energy, duty cycle loss, and efficiency. The limitations and merits of each PWM FB converter are reviewed. The converter with broader ZVS range, high efficiency and low switch stresses is selected for battery charger applications in EV.

Keywords: electric vehicle, PWM FB converter, zero voltage switching, circulating energy

Procedia PDF Downloads 431
1533 The Effect of Ni/Dolomite Catalyst for Production of Hydrogen from NaBH₄

Authors: Burcu Kiren, Alattin CAkan, Nezihe Ayas

Abstract:

Hydrogen will be arguably the best fuel in the future as it is the most abundant element in the universe. Hydrogen, as a fuel, is notably environmentally benign, sustainable and has high energy content compared to other sources of energy. It can be generated from both conventional and renewable sources. The hydrolysis reaction of metal hydrides provides an option for hydrogen production in the presence of a catalyst. In this study, Ni/dolomite catalyst was synthesized by the wet impregnation method for hydrogen production by hydrolysis reaction of sodium borohydride (NaBH4). Besides, the synthesized catalysts characterizations were examined by means of thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer –Emmett – Teller (BET) and scanning electron microscopy (SEM). The influence of reaction temperature (25-75 °C), reaction time (15-60 min.), amount of catalyst (50-250 mg) and active metal loading ratio (20,30,40 wt.%) were investigated. The catalyst prepared with 30 wt.% Ni was noted as the most suitable catalyst, achieving of 35.18% H₂ and hydrogen production rate of 19.23 mL/gcat.min at 25 °C at reaction conditions of 5 mL of 0.25 M NaOH and 100 mg NaBH₄, 100 mg Ni/dolomite.

Keywords: sodium borohydride, hydrolysis, catalyst, Ni/dolomite, hydrogen

Procedia PDF Downloads 156
1532 Zinc (II) Complexes of Nitrogen, Oxygen and Sulfur Coordination Modes: Synthesis, Spectral Studies and Antibacterial Activities

Authors: Ayodele Odularu, Peter Ajibade, Albert Bolhuis

Abstract:

This study aimed at assessing the antibacterial activities of four zinc (II) complexes. Zinc (II) complexes of nitrogen, oxygen and sulfur coordination modes were synthesized using direct substitution reaction. The characterization techniques involved physicochemical properties (molar conductivity) and spectroscopic techniques. The molar conductivity gave the non-electrolytic nature of zinc (II) complexes. The spectral studies of zinc (II) complexes were done using electronic spectra (UV-Vis) and Fourier Transform Infra-red Spectroscopy (FT-IR). Spectral data from the spectroscopic studies confirmed the coordination of the mixed ligands with zinc (II) ion. The antibacterial activities of zinc(II) complexes of were all in supportive of Overtone’s concept and Tweedy’s theory of chelation for bacterial strains of S. aureus MRSA252 and E coli MC4100 because the zones of inhibition were greater than the corresponding ligands. In summary, all zinc (II) complexes of ZEPY, ZE1PH, ZE1PY and ZE135PY all have potentials for antibacterial activities.

Keywords: antibacterial activities, spectral studies, syntheses, zinc(II) complexes

Procedia PDF Downloads 271
1531 Study of Biodegradable Composite Materials Based on Polylactic Acid and Vegetal Reinforcements

Authors: Manel Hannachi, Mustapha Nechiche, Said Azem

Abstract:

This study focuses on biodegradable materials made from Poly-lactic acid (PLA) and vegetal reinforcements. Three materials are developed from PLA, as a matrix, and : (i) olive kernels (OK); (ii) alfa (α) short fibers and (iii) OK+ α mixture, as reinforcements. After processing of PLA pellets and olive kernels in powder and alfa stems in short fibers, three mixtures, namely PLA-OK, PLA-α, and PLA-OK-α are prepared and homogenized in Turbula®. These mixtures are then compacted at 180°C under 10 MPa during 15 mn. Scanning Electron Microscopy (SEM) examinations show that PLA matrix adheres at surface of all reinforcements and the dispersion of these ones in matrix is good. X-ray diffraction (XRD) analyses highlight an increase of PLA inter-reticular distances, especially for the PLA-OK case. These results are explained by the dissociation of some molecules derived from reinforcements followed by diffusion of the released atoms in the structure of PLA. This is consistent with Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) analysis results.

Keywords: alfa short fibers, biodegradable composite, olive kernels, poly-lactic acid

Procedia PDF Downloads 143
1530 Synthesis, Characterization and Antibacterial Screening of 3-Hydroxy-2-[3-(2/3/4-Methoxybenzoyl)Thioureido]Butyric Acid

Authors: M. S. M. Yusof, R. Ramli, S. K. C. Soh, N. Ismail, N. Ngah

Abstract:

This study presents the synthesis of a series of methoxybenzoylthiourea amino acid derivatives. The compounds were obtained from the reactions between 2/3/4-methoxybenzoyl isothiocyanate with threonine. All of the compounds were characterized via mass spectrometry, 1H and 13C NMR spectrometry, UV-Vis spectrophotometer and FT-IR spectroscopy. Mass spectra for all of the compounds showed the presence of molecular ion [M]+ peaks at m/z 312, which are in agreement to the calculated molecular weight. For 1H NMR spectra, the presence of OCH3, C=S-NH and C=O-NH protons were observed within range of δH 3.8-4.0 ppm, 11.1-11.5 ppm and 10.0-11.5 ppm, respectively. 13C NMR spectra in all compounds displayed the presence of OCH3, C=O-NH, C=O-OH and C=S carbon resonances within range of δC 55.0-57.0 ppm, 165.0-168.0 ppm, 170.0-171.0 ppm and 180.0-182.0 ppm, respectively. In UV spectra, two absorption bands have been observed and both were assigned to the n-π* and π-π* transitions. Six vibrational modes of v(N-H), v(O-H), v(C=O-OH), v(C=O-NH), v(C=C) aromatic and v(C=S) appeared in the FT-IR spectra within the range of 3241-3467 cm-1, 2976-3302 cm-1, 1720-1768 cm-1, 1655-1672 cm-1, 1519-1525 cm-1 and 754-763 cm-1, respectively. The antibacterial activity for all of the compounds was screened against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella typhimurium and Escherichia coli. However, no activity was observed.

Keywords: methoxybenzoyl isothiocyanate, amino acid, threonine, antibacterial

Procedia PDF Downloads 327
1529 Systematic Taxonomy and Phylogenetic of Commercial Fish Species of Family Nemipetridae from Malaysian Waters and Neighboring Seas

Authors: Ayesha Imtiaz, Darlina Md. Naim

Abstract:

Family Nemipteridae is among the most abundantly distributed family in Malaysian fish markets due to its high contribution to landing sites of Malaysia. Using an advanced molecular approach that used two mitochondrial (Cytochrome oxidase c I and Cytochrome oxidase b) and one nuclear gene (Recombination activating gene, RAGI) to expose cryptic diversity and phylogenetic relationships among commercially important species of family Nemipteridae. Our research covered all genera (including 31 species out total 45 species) of family Nemipteridae, distributed in Malaysia. We also found certain type of geographical barriers in the South China sea that reduces dispersal and stops a few species to intermix. Northside of the South China Sea (near Vietnam) does not allow genetic diversity to mix with the Southern side of the South China sea (Sarawak) and reduces dispersal. Straits of Malacca reduce the intermixing genetic diversity of South China Sea and the Indian Ocean.

Keywords: Nemipteridae, RAG I, south east Asia, Malaysia

Procedia PDF Downloads 139
1528 Low Temperature Powders Synthesis of la1-xMgxAlO3 through Sol-Gel Method

Authors: R. Benakcha, M. Omari

Abstract:

Powders of La1-xMgxAlO3 (0 ≤ x ≤ 5) oxides, with large surface areas were synthesized by sol-gel process, utilizing citric acid. Heating of a mixed solution of CA, EtOH, and nitrates of lanthanum, aluminium and magnesium at 70°C gave transparent gel without any precipitation. The formation of pure perovskite La1-xMgxAlO3, occurred when the precursor was heat-treated at 800°C for 6 h. No X-ray diffraction evidence for the presence of crystalline impurities was obtained. The La1-xMgxAlO3 powders prepared by the sol-gel method have a considerably large surface area in the range of 12.9–20 m^2.g^-1 when compared with 0.3 m^2.g^-1 for the conventional solid-state reaction of LaAlO3. The structural characteristics were examined by means of conventional techniques namely X-ray diffraction, infrared spectroscopy, thermogravimetry and differential thermal (TG-DTA) and specific surface SBET. Pore diameters and crystallite sizes are in the 8.8-11.28 nm and 25.4-30.5 nm ranges, respectively. The sol-gel method is a simple technique that has several advantages. In addition to that of not requiring high temperatures, it has the potential to synthesize many kinds of mixed oxides and obtain other materials homogeneous and large purities. It also allows formatting a variety of materials: very fine powders, fibers and films.

Keywords: aluminate, lanthan, perovskite, sol-gel

Procedia PDF Downloads 275
1527 Characterization of Electrospun Carbon Nanofiber Doped Polymer Composites

Authors: Atilla Evcin, Bahri Ersoy, Süleyman Akpınar, I. Sinan Atlı

Abstract:

Ceramic, polymer and composite nanofibers are nowadays begun to be utilized in many fields of nanotechnology. By the means of dimensions, these fibers are as small as nano scale but because of having large surface area and microstructural characteristics, they provide unique mechanic, optical, magnetic, electronic and chemical properties. In terms of nanofiber production, electrospinning has been the most widely used technique in recent years. In this study, carbon nanofibers have been synthesized from solutions of Polyacrylonitrile (PAN)/ N,N-dimethylformamide (DMF) by electrospinning method. The carbon nanofibers have been stabilized by oxidation at 250 °C for 2 h in air and carbonized at 750 °C for 1 h in H2/N2. Images of carbon nanofibers have been taken with scanning electron microscopy (SEM). The images have been analyzed to study the fiber morphology and to determine the distribution of the fiber diameter using FibraQuant 1.3 software. Then polymer composites have been produced from mixture of carbon nanofibers and silicone polymer. The final polymer composites have been characterized by X-ray diffraction method and scanning electron microscopy (SEM) energy dispersive X-ray (EDX) measurements. These results have been reported and discussed. At result, homogeneous carbon nanofibers with 100-167 nm of diameter were obtained with optimized electrospinning conditions.

Keywords: electrospinning, characterization, composites, nanofiber

Procedia PDF Downloads 389
1526 Electrochemical Performance of Carbon Nanotube Based Supercapacitor

Authors: Jafar Khan Kasi, Ajab Khan Kasi, Muzamil Bokhari

Abstract:

Carbon nanotube is one of the most attractive materials for the potential applications of nanotechnology due to its excellent mechanical, thermal, electrical and optical properties. In this paper we report a supercapacitor made of nickel foil electrodes, coated with multiwall carbon nanotubes (MWCNTs) thin film using electrophoretic deposition (EPD) method. Chemical vapor deposition method was used for the growth of MWCNTs and ethanol was used as a hydrocarbon source. High graphitic multiwall carbon nanotube was found at 750 C analyzing by Raman spectroscopy. We observed the electrochemical performance of supercapacitor by cyclic voltammetry. The electrodes of supercapacitor fabricated from MWCNTs exhibit considerably small equivalent series resistance (ESR), and a high specific power density. Electrophoretic deposition is an easy method in fabricating MWCNT electrodes for high performance supercapacitor.

Keywords: carbon nanotube, chemical vapor deposition, catalyst, charge, cyclic voltammetry

Procedia PDF Downloads 556
1525 Nanocomposite Metal Material: Study of Antimicrobial and Catalytic Properties

Authors: Roman J. Jedrzejczyk, Damian K. Chlebda, Anna Dziedzicka, Rafal Wazny, Agnieszka Domka, Maciej Sitarz, Przemyslaw J. Jodlowski

Abstract:

The aim of this study was to obtain antimicrobial material based on thin zirconium dioxide coatings on structured reactors doped with metal nanoparticles using the sonochemical sol-gel method. As a result, dense, uniform zirconium dioxide films were obtained on the kanthal sheets which can be used as support materials in antimicrobial converters with sophisticated shapes. The material was characterised by physicochemical methods, such as AFM, SEM, EDX, XRF, XRD, XPS and in situ Raman and DRIFT spectroscopy. In terms of antimicrobial activity, the material was tested by ATP/AMP method using model microbes isolated from the real systems. The results show that the material can be potentially used in the market as a good candidate for active package and as active bulkheads of climatic systems. The mechanical tests showed that the developed method is an efficient way to obtain durable converters with high antimicrobial activity against fungi and bacteria.

Keywords: antimicrobial properties, kanthal steel, nanocomposite, zirconium oxide

Procedia PDF Downloads 195
1524 Automated Buffer Box Assembly Cell Concept for the Canadian Used Fuel Packing Plant

Authors: Dimitrie Marinceu, Alan Murchison

Abstract:

The Canadian Used Fuel Container (UFC) is a mid-size hemispherical headed copper coated steel container measuring 2.5 meters in length and 0.5 meters in diameter containing 48 used fuel bundles. The contained used fuel produces significant gamma radiation requiring automated assembly processes to complete the assembly. The design throughput of 2,500 UFCs per year places constraints on equipment and hot cell design for repeatability, speed of processing, robustness and recovery from upset conditions. After UFC assembly, the UFC is inserted into a Buffer Box (BB). The BB is made from adequately pre-shaped blocks (lower and upper block) and Highly Compacted Bentonite (HCB) material. The blocks are practically ‘sandwiching’ the UFC between them after assembly. This paper identifies one possible approach for the BB automatic assembly cell and processes. Automation of the BB assembly will have a significant positive impact on nuclear safety, quality, productivity, and reliability.

Keywords: used fuel packing plant, automatic assembly cell, used fuel container, buffer box, deep geological repository

Procedia PDF Downloads 268
1523 Synthesis and Characterization of Nano-Alumina Using Neem Oil as the Template for Efficient Hydrogen Generation via Photo-Hydrolysis of Sodium Borohydride

Authors: Dina M. Abd El-Aty, D. Aman, E. G. Zaki, Heba M. Salem

Abstract:

A friendly environmental source of energy as hydrogen was produced by photo-hydrolysis of hydrogen storage material as sodium borohydride (NaBH4), which is non-toxic and stores a high percentage of hydrogen. The photoreaction was produced under visible light and nano-alumina as a catalyst. In this study, we use more economical and friendly environmental oil as a template to produce a nano-catalyst. The prepared catalyst was characterized by X-Ray diffraction, N2-adsorption-desorption, Fourier Transforms Infrared, Scanning Electron microscope and X-Ray Photoelectron Spectroscopy. Different parameters such as catalyst weight, NaBH4 weight and time of irradiation were studied to obtain a highly efficient photo-hydrolysis reaction. The reaction is pseudo-first order and the hydrogen production rate was determined as 1500 ml min-1 g-1 at the optimum conditions.

Keywords: photo-reaction, nano-alumina, hydrogen production, sodium borohydride, visible light

Procedia PDF Downloads 79
1522 Extraction of Polystyrene from Styrofoam Waste: Synthesis of Novel Chelating Resin for the Enrichment and Speciation of Cr(III)/Cr(vi) Ions in Industrial Effluents

Authors: Ali N. Siyal, Saima Q. Memon, Latif Elçi, Aydan Elçi

Abstract:

Polystyrene (PS) was extracted from Styrofoam (expanded polystyrene foam) waste, so called white pollutant. The PS was functionalized with N, N- Bis(2-aminobenzylidene)benzene-1,2-diamine (ABA) ligand through an azo spacer. The resin was characterized by FT-IR spectroscopy and elemental analysis. The PS-N=N-ABA resin was used for the enrichment and speciation of Cr(III)/Cr(VI) ions and total Cr determination in aqueous samples by Flame Atomic Absorption Spectrometry (FAAS). The separation of Cr(III)/Cr(VI) ions was achieved at pH 2. The recovery of Cr(VI) ions was achieved ≥ 95.0% at optimum parameters: pH 2; resin amount 300 mg; flow rates 2.0 mL min-1 of solution and 2.0 mL min-1 of eluent (2.0 mol L-1 HNO3). Total Cr was determined by oxidation of Cr(III) to Cr(VI) ions using H2O2. The limit of detection (LOD) and quantification (LOQ) of Cr(VI) were found to be 0.40 and 1.20 μg L-1, respectively with preconcentration factor of 250. Total saturation and breakthrough capacitates of the resin for Cr(IV) ions were found to be 0.181 and 0.531 mmol g-1, respectively. The proposed method was successfully applied for the preconcentration/speciation of Cr(III)/Cr(VI) ions and determination of total Cr in industrial effluents.

Keywords: styrofoam waste, polymeric resin, preconcentration, speciation, Cr(III)/Cr(VI) ions, FAAS

Procedia PDF Downloads 287
1521 Dimethyl fumarate Alleviates Valproic Acid-Induced Autism in Wistar Rats via Activating NRF-2 and Inhibiting NF-κB Pathways

Authors: Sandy Elsayed, Aya Mohamed, Noha Nassar

Abstract:

Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social deficits and repetitive behavior. Multiple studies suggest that oxidative stress and neuroinflammation are key factors in the etiology of ASD and often associated with worsening of ASD-related behaviors. Nuclear factor erythroid 2-related factor 2 (NRF-2) is a transcription factor that promotes expression of antioxidant response element genes in oxidative stress. In ASD subjects, decreased expression of NRF-2 in frontal cortex shifted the redox homeostasis towards oxidative stress, and resulted in inflammation evidenced by elevation of nuclear factor kappa B (NF-κB) transcriptional activity. Dimethyl fumarate (DMF) is a NRF-2 activator that is used in the treatment of psoriasis and multiple sclerosis. It participates in the transcriptional control of inflammatory factors via inhibition of NF-κB and its downstream targets. This study aimed to investigate the role of DMF in alleviating the cognitive impairments and behavior deficits associated with ASD through mitigation of oxidative stress and inflammation in prenatal valproic acid (VPA) rat model of autism. Methods: Pregnant female Wistar rats received a single intraperitoneal injection of VPA (600 mg/kg) to induce autistic-like-behavioral and neurobiological alterations in their offspring. Chronic oral gavage of DMF (150mg/kg/day) started from postnatal day (PND) 24 till PND62 (39 days). Prenatal VPA exposure elicited autistic behaviors including decreased social interaction and stereotyped behavior. Social interaction was evaluated using three-chamber sociability test and calculation of sociability index (SI), while stereotyped repetitive behavior and anxiety associated with ASD were assessed using marble burying test (MBT). Biochemical analyses were done on prefrontal cortex homogenates including NRF-2, and NF-κB expression. Moreover, inducible nitric oxide synthase (iNOS) gene expression and tumor necrosis factor (TNF-) protein expression were evaluated as markers of inflammation. Results: Prenatal VPA elicited decreased social interaction shown by decreased SI compared to control group (p < 0.001) and DMF enhanced SI (p < 0.05). In MBT, prenatal injection of VPA manifested stereotyped behavior and enhanced number of buried marbles compared to control (p < 0.05) and DMF reduced the anxiety-related behavior in rats exhibiting ASD-like behaviors (p < 0.05). In prefrontal cortex, NRF-2 expression was downregulated in prenatal VPA model (p < 0.0001) and DMF reversed this effect (p < 0.0001). The inflammatory transcription factor NF-κB was elevated in prenatal VPA model (p < 0.0001) and reduced (p < 0.0001) upon NRF-2 activation by DMF. Prenatal VPA expressed higher levels of proinflammatory cytokine TNF- compared to control group (p < 0.0001) and DMF reduced it (p < 0.0001). Finally, the gene expression of iNOS was downregulated upon NRF-2 activation by DMF (p < 0.01). Conclusion: This study proposes that DMF is a potential agent that can be used to ameliorate autistic-like-changes through NRF-2 activation along with NF-κB downregulation and therefore, it is a promising novel therapy for ASD.

Keywords: autism spectrum disorders, dimethyl fumarate, neuroinflammation, NRF-2

Procedia PDF Downloads 34
1520 Design of Cartesian Robot for Electric Vehicle Wireless Charging Systems

Authors: Kaan Karaoglu, Raif Bayir

Abstract:

In this study, a cartesian robot is developed to improve the performance and efficiency of wireless charging of electric vehicles. The cartesian robot has three axes, each of which moves linearly. Magnetic positioning is used to align the cartesian robot transmitter charging pad. There are two different wireless charging methods, static and dynamic, for charging electric vehicles. The current state of charge information (SOC State of Charge) and location information are received wirelessly from the electric vehicle. Based on this information, the power to be transmitted is determined, and the transmitter and receiver charging pads are aligned for maximum efficiency. With this study, a fully automated cartesian robot structure will be used to charge electric vehicles with the highest possible efficiency. With the wireless communication established between the electric vehicle and the charging station, the charging status will be monitored in real-time. The cartesian robot developed in this study is a fully automatic system that can be easily used in static wireless charging systems with vehicle-machine communication.

Keywords: electric vehicle, wireless charging systems, energy efficiency, cartesian robot, location detection, trajectory planning

Procedia PDF Downloads 67
1519 The BNCT Project Using the Cf-252 Source: Monte Carlo Simulations

Authors: Marta Błażkiewicz-Mazurek, Adam Konefał

Abstract:

The project can be divided into three main parts: i. modeling the Cf-252 neutron source and conducting an experiment to verify the correctness of the obtained results, ii. design of the BNCT system infrastructure, iii. analysis of the results from the logical detector. Modeling of the Cf-252 source included designing the shape and size of the source as well as the energy and spatial distribution of emitted neutrons. Two options were considered: a point source and a cylindrical spatial source. The energy distribution corresponded to various spectra taken from specialized literature. Directionally isotropic neutron emission was simulated. The simulation results were compared with experimental values determined using the activation detector method using indium foils and cadmium shields. The relative fluence rate of thermal and resonance neutrons was compared in the chosen places in the vicinity of the source. The second part of the project related to the modeling of the BNCT infrastructure consisted of developing a simulation program taking into account all the essential components of this system. Materials with moderating, absorbing, and backscattering properties of neutrons were adopted into the project. Additionally, a gamma radiation filter was introduced into the beam output system. The analysis of the simulation results obtained using a logical detector located at the beam exit from the BNCT infrastructure included neutron energy and their spatial distribution. Optimization of the system involved changing the size and materials of the system to obtain a suitable collimated beam of thermal neutrons.

Keywords: BNCT, Monte Carlo, neutrons, simulation, modeling

Procedia PDF Downloads 22
1518 Structural, Optical and Electrical Properties of Gd Doped ZnO Thin Films Prepared by a Sol-Gel Method

Authors: S. M. AL-Shomar, N. B. Ibrahim, Sahrim Hj. Ahmad

Abstract:

ZnO thin films with various Gd doping concentration (0, 0.01, 0.03 and 0.05 mol/L) have been synthesized by sol–gel method on quartz substrates at annealing temperature of 600 ºC. X-ray analysis reveals that ZnO(Gd) films have hexagonal wurtzite structure. No peaks that correspond to Gd metal clusters or gadolinium acetylacetonate are detected in the patterns. The position of the main peak (101) shifts to higher angles after doping. The surface morphologies studied using a field emission scanning electron microscope (FESEM) showed that the grain size and the films thickness reduced gradually with the increment of Gd concentration. The roughness of ZnO film investigated by an atomic force microscopy (AFM) showed that the films are smooth and high dense grain. The roughness of doped films decreased from 6.05 to 4.84 rms with the increment of dopant concentration.The optical measurements using a UV-Vis-NIR spectroscopy showed that the Gd doped ZnO thin films have high transmittance (above 80%) in the visible range and the optical band gap increase with doping concentration from 3.13 to 3.39 eV. The doped films show low electrical resistivity 2.6 × 10-3Ω.cm.at high doping concentration.

Keywords: Gd doped ZnO, electric, optics, microstructure

Procedia PDF Downloads 468
1517 Binding Ability of Carbazolylphenyl Dendrimers with Zinc (II) Tetraphenylporphyrin Core towards Cryptands

Authors: Galina Mamardashvili, Nugzar Mamardashvili, Win Dehaen

Abstract:

The processes of complexation of the Zn-tetraarylporphyrins with eight 4-(4-(3,6-bis(t-butyl)carbazol-9-yl-phenyl)-1,2,3-triazole (ZnP1) and eight 4-(4-(3,6-di-tert-butyl-9-H-carbazol-9-yl)phenoxy)methyl)-2,4,6-trimethylphenyl (ZnP2)with the 1,10-diaza-4,7,13,18tetraoxabicyclo[8.5.5]eicosane (L1),1,10-diaza-4,7,13,16,21,24-hexaoxabicyclo[8.8.8]hexacosane (L2)and 1,10-diaza-5,6,14,15-dibenzo-4,7,13,16,21,24 hexaoxabicyclo[8.8.8] hexacosane (L3) were investigated by the method of spectrophotometric titration and 1H NMR-spectroscopy. We determined the structures of the host-guest complexes, and their stability constants in toluene were calculated. It was found out that the ZnP1 interacts with the guest molecules L1, L2 with the formation of stable "nest" type complexes and does not form similar complexes with the L3 (presumably due to the fact that the L3 does not match the size of the porphyrin ZnP(1) cavity). On the other hand, the porphyrin ZnP2 binds all of the ligands L1-L3, however complexes thus formed are less stable than complexes ZnP1-L1, ZnP1-L2. In the report, we will also discuss the influence of the alkali cations additives on the stability of the complexes between the porphyrin ZnP1, ZnP2 hosts and guest molecules of the ligands L1-L3.

Keywords: porphyrin, cryptand, cation, complex guest-host

Procedia PDF Downloads 216
1516 Effect of Radiation on MHD Mixed Convection Stagnation Point Flow towards a Vertical Plate in a Porous Medium with Convective Boundary Condition

Authors: H. Niranjan, S. Sivasankaran, Zailan Siri

Abstract:

This study investigates mixed convection heat transfer about a thin vertical plate in the presence of magnetohydrodynamic (MHD) and heat transfer effects in the porous medium. The fluid is assumed to be steady, laminar, incompressible and in two-dimensional flow. The nonlinear coupled parabolic partial differential equations governing the flow are transformed into the non-similar boundary layer equations, which are then solved numerically using the shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.

Keywords: MHD, porous medium, soret/dufour, stagnation-point

Procedia PDF Downloads 367