Search results for: surface free energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15973

Search results for: surface free energy

15733 Influence of Machining Process on Surface Integrity of Plasma Coating

Authors: T. Zlámal, J. Petrů, M. Pagáč, P. Krajkovič

Abstract:

For the required function of components with the thermal spray coating, it is necessary to perform additional machining of the coated surface. The paper deals with assessing the surface integrity of Metco 2042, a plasma sprayed coating, after its machining. The selected plasma sprayed coating serves as an abradable sealing coating in a jet engine. Therefore, the spray and its surface must meet high quality and functional requirements. Plasma sprayed coatings are characterized by lamellar structure, which requires a special approach to their machining. Therefore, the experimental part involves the set-up of special cutting tools and cutting parameters under which the applied coating was machined. For the assessment of suitably set machining parameters, selected parameters of surface integrity were measured and evaluated during the experiment. To determine the size of surface irregularities and the effect of the selected machining technology on the sprayed coating surface, the surface roughness parameters Ra and Rz were measured. Furthermore, the measurement of sprayed coating surface hardness by the HR 15 Y method before and after machining process was used to determine the surface strengthening. The changes of strengthening were detected after the machining. The impact of chosen cutting parameters on the surface roughness after the machining was not proven.

Keywords: machining, plasma sprayed coating, surface integrity, strengthening

Procedia PDF Downloads 234
15732 The Analysis of the Challenge China’s Energy Transition Faces and Proposed Solutions

Authors: Yuhang Wang

Abstract:

As energy is vital to industrial productivity and human existence, ensuring energy security becomes a critical government responsibility. The Chinese government has implemented the energy transition to safeguard China’s energy security. Throughout this progression, the Chinese government has faced numerous obstacles. This article seeks to describe the causes of China’s energy transition barriers and the steps taken by the Chinese government to overcome them.

Keywords: energy transition, energy market, fragmentation, path dependency

Procedia PDF Downloads 64
15731 A Review on the Hydrodynamic Characteristics of Caisson Breakwater

Authors: T. J. Jemi Jeya, V. Sriram, V. Sundar

Abstract:

Caisson breakwaters are gravity structures resting on the seabed and piercing the free surface sunk in coastal waters to break the energy in the waves and protect the water area behind them by creating tranquil conditions on its lee side for the purpose of berthing of vessels. A number of formula and methodologies have been proposed for calculating the forces on caissons due to waves, most of which being evolved through intensive laboratory and field measurements. The reflection of waves from such breakwaters often generates clapotis, leading to an amplification of waves in its vicinity. This result in increased pressures and forces, forcing researchers to modify its seaside shape as well as placing dissipaters in the form of screens. Apart from the above aspects, this paper also discusses the other important phenomena, like overtopping that dictates the stability of caisson breakwaters.

Keywords: caisson breakwater, Jarlan type breakwater, screens, circular breakwater

Procedia PDF Downloads 347
15730 Comprehensive Study of Renewable Energy Resources and Present Scenario in India

Authors: Aparna Bhat, Rajeshwari Hegde

Abstract:

Renewable energy sources also called non-conventional energy sources that are continuously replenished by natural processes. For example, solar energy, wind energy, bio-energy- bio-fuels grown sustain ably), hydropower etc., are some of the examples of renewable energy sources. A renewable energy system converts the energy found in sunlight, wind, falling-water, sea-waves, geothermal heat, or biomass into a form, we can use such as heat or electricity. Most of the renewable energy comes either directly or indirectly from sun and wind and can never be exhausted, and therefore they are called renewable. This paper presents a review about conventional and renewable energy scenario of India. The paper also presents current status, major achievements and future aspects of renewable energy in India and implementing renewable for the future is also been presented.

Keywords: solar energy, renewabe energy, wind energy, bio-diesel, biomass, feedin

Procedia PDF Downloads 578
15729 Energy Certification Labels and Comfort Assessment for Dwellings Located in a Mild Climate

Authors: Silvia A. Magalhaes, Vasco P. De Freitas, Jose L. Alexandre

Abstract:

Most of the European literature concerning energy efficiency and thermal comfort of dwellings assumes permanent heating and focuses on energy-saving measures. European National regulations are designed for those permanent comfort conditions. On the other hand, very few studies focus on the effect of the improvement measures in comfort reduction, for free-floating conditions or intermittent heating, in fuel poverty vulnerable countries. In Portugal, only 21% of the household energy consumptions (and 10% of the cost) are spent in space heating, while, on average European bills, this value rises to 67%. The mild climate, but mainly fuel poverty and cultural background, justifies these low heating practices. This study proposes a “passive discomfort” index definition, considering free-floating temperatures or with intermittent heating profiles (more realistic conditions), putting the focus on comfort rather than energy consumption (which is low for these countries). The aim is to compare both energy (regarding the legal framework of national regulation) and comfort (considering realistic conditions of use) to identify some correlation. It was developed an experimental campaign of indoor thermal conditions in a 19th building located in Porto with several apartments. One dwelling was chosen as a case study to carry out a sensitivity analysis. The results are discussed comparing both theoretical energy consumption (energy rates from national regulation) and discomfort (new index defined), for different insulation thicknesses, orientations, and intermittent heating profiles. The results show that the different passive options (walls insulation and glazing options) have a small impact on winter discomfort, which is always high for low heating profiles. Moreover, it was shown that the insulation thickness on walls has no influence, and the minimum insulation thickness considered is enough to achieve the same impact on discomfort reduction. Plus, for these low heating profiles, other conditions are critical, as the orientation. Finally, there isn’t an unequivocal relation between the energy label and the discomfort index. These and other results are surprising when compared with the most usual approaches, which assume permanent heating.

Keywords: dwellings in historical buildings, low-heating countries, mild climates, thermal comfort

Procedia PDF Downloads 104
15728 Stabilizing Effect of Magnetic Field in a Thermally Modulated Porous Layer

Authors: M. Meenasaranya, S. Saravanan

Abstract:

Nonlinear stability analysis is carried out to determine the effect of surface temperature modulation in an infinite horizontal porous layer heated from below. The layer is saturated by an electrically conducting, viscous, incompressible and Newtonian fluid. The Brinkman model is used for momentum equation, and the Boussinesq approximation is invoked. The system is assumed to be bounded by rigid boundaries. The energy theory is implemented to find the global exponential stability region of the considered system. The results are analysed for arbitrary values of modulation frequency and amplitude. The existence of subcritical instability region is confirmed by comparing the obtained result with the known linear result. The vertical magnetic field is found to stabilize the system.

Keywords: Brinkman model, energy method, magnetic field, surface temperature modulation

Procedia PDF Downloads 369
15727 Developing Soil Accumulation Effect Correction Factor for Solar Photovoltaic Module

Authors: Kelebaone Tsamaase, Rapelang Kemoabe, Japhet Sakala, Edward Rakgati, Ishmael Zibani

Abstract:

Increasing demand for energy, depletion of non-renewable energy, effects of climate change, the abundance of renewable energy such as solar energy have increased the interest in investing in renewable energies, in particular solar photovoltaic (PV) energy. Solar photovoltaic energy systems as part of clean technology are considered to be environmentally friendly, freely available, offer clean production systems, long term costs benefits as opposed to conventional sources, and are the attractive power source for a wide range of applications in remote areas where there is no easy access to the national grid. To get maximum electrical power, maximum solar power should penetrate the module and be converted accordingly. However, some environmental and other geographical related factors reduce the electrical power. One of them is dust which accumulates on the surface of the module and forming a dust layer and in the process obstructing the solar power from penetrating PV module. This study intends to improve the performance of solar photovoltaic (PV) energy modules by establishing soil accumulation effects correction factor from dust characteristics and properties, and also from dust accumulation and retention pattern on PV module surface. The non-urban dry deposition flux model was adapted to determine monthly and yearly dust accumulation pattern. Consideration was done on prevailing environmental and other geographical conditions. Preliminary results showed that cumulative dust settlement increased during the months of July to October leading to a higher drop in module electrical output power.

Keywords: dust, electrical power output, PV module, soil correction factor

Procedia PDF Downloads 110
15726 Traction Behavior of Linear Piezo-Viscous Lubricants in Rough Elastohydrodynamic Lubrication Contacts

Authors: Punit Kumar, Niraj Kumar

Abstract:

The traction behavior of lubricants with the linear pressure-viscosity response in EHL line contacts is investigated numerically for smooth as well as rough surfaces. The analysis involves the simultaneous solution of Reynolds, elasticity and energy equations along with the computation of lubricant properties and surface temperatures. The temperature modified Doolittle-Tait equations are used to calculate viscosity and density as functions of fluid pressure and temperature, while Carreau model is used to describe the lubricant rheology. The surface roughness is assumed to be sinusoidal and it is present on the nearly stationary surface in near-pure sliding EHL conjunction. The linear P-V oil is found to yield much lower traction coefficients and slightly thicker EHL films as compared to the synthetic oil for a given set of dimensionless speed and load parameters. Besides, the increase in traction coefficient attributed to surface roughness is much lower for the former case. The present analysis emphasizes the importance of employing realistic pressure-viscosity response for accurate prediction of EHL traction.

Keywords: EHL, linear pressure-viscosity, surface roughness, traction, water/glycol

Procedia PDF Downloads 368
15725 The Pressure Distribution on the Rectangular and Trapezoidal Storage Tanks' Perimeters Due to Liquid Sloshing Impact

Authors: Hassan Saghi, Gholam Reza Askarzadeh Garmroud, Seyyed Ali Reza Emamian

Abstract:

Sloshing phenomenon is a complicated free surface flow problem that increases the dynamic pressure on the sidewalls and the bottom of the storage tanks. When the storage tanks are partially filled, it is essential to be able to evaluate the fluid dynamic loads on the tank’s perimeter. In this paper, a numerical code was developed to determine the pressure distribution on the rectangular and trapezoidal storage tanks’ perimeters due to liquid sloshing impact. Assuming the fluid to be inviscid, the Laplace equation and the nonlinear free surface boundary conditions are solved using coupled BEM-FEM. The code performance for sloshing modeling is validated against available data. Finally, this code is used for partially filled rectangular and trapezoidal storage tanks and the pressure distribution on the tanks’ perimeters due to liquid sloshing impact is estimated. The results show that the maximum pressure on the perimeter of the rectangular and trapezoidal storage tanks was decreased along the sidewalls from the top to the bottom. Furthermore, the period of the pressure distribution is different for different points on the tank’s perimeter and it is bigger in the trapezoidal tanks compared to the rectangular ones.

Keywords: pressure distribution, liquid sloshing impact, sway motion, trapezoidal storage tank, coupled BEM-FEM

Procedia PDF Downloads 519
15724 Numerical Study of Rayleight Number and Eccentricity Effect on Free Convection Fluid Flow and Heat Transfer of Annulus

Authors: Ali Reza Tahavvor‚ Saeed Hosseini, Behnam Amiri

Abstract:

Concentric and eccentric annulus is used frequently in technical and industrial applications such as nuclear reactors, thermal storage system and etc. In this paper, computational fluid dynamics (CFD) is used to investigate two dimensional free convection of laminar flow in annulus with isotherm cylinders surface and cooler inner surface. Problem studied in thirty different cases. Due to natural convection continuity and momentum equations are coupled and must be solved simultaneously. Finite volume method is used for solving governing equations. The purpose was to obtain the eccentricity effect on Nusselt number in different Rayleight numbers, so streamlines and temperature fields must be determined. Results shown that the highest Nusselt number values occurs in degree of eccentricity equal to 0.5 upward for inner cylinder and degree of eccentricity equal to 0.3 upward for outer cylinder. Side eccentricity reduces the outer cylinder Nusselt number but increases inner cylinder Nusselt number. The trend in variation of Nusselt number with respect to eccentricity remain similar in different Rayleight numbers. Correlations are included to calculate the Nusselt number of the cylinders.

Keywords: natural convection, concentric, eccentric, Nusselt number, annulus

Procedia PDF Downloads 339
15723 Large Eddy Simulation with Energy-Conserving Schemes: Understanding Wind Farm Aerodynamics

Authors: Dhruv Mehta, Alexander van Zuijlen, Hester Bijl

Abstract:

Large Eddy Simulation (LES) numerically resolves the large energy-containing eddies of a turbulent flow, while modelling the small dissipative eddies. On a wind farm, these large scales carry the energy wind turbines extracts and are also responsible for transporting the turbines’ wakes, which may interact with downstream turbines and certainly with the atmospheric boundary layer (ABL). In this situation, it is important to conserve the energy that these wake’s carry and which could be altered artificially through numerical dissipation brought about by the schemes used for the spatial discretisation and temporal integration. Numerical dissipation has been reported to cause the premature recovery of turbine wakes, leading to an over prediction in the power produced by wind farms.An energy-conserving scheme is free from numerical dissipation and ensures that the energy of the wakes is increased or decreased only by the action of molecular viscosity or the action of wind turbines (body forces). The aim is to create an LES package with energy-conserving schemes to simulate wind turbine wakes correctly to gain insight into power-production, wake meandering etc. Such knowledge will be useful in designing more efficient wind farms with minimal wake interaction, which if unchecked could lead to major losses in energy production per unit area of the wind farm. For their research, the authors intend to use the Energy-Conserving Navier-Stokes code developed by the Energy Research Centre of the Netherlands.

Keywords: energy-conserving schemes, modelling turbulence, Large Eddy Simulation, atmospheric boundary layer

Procedia PDF Downloads 445
15722 Nano Ceramics Materials in Clean Rooms: Properties and Characterization

Authors: HebatAllah Tarek, Zeyad El-Sayad, Ali F. Bakr

Abstract:

Surface coating can permit the bulk materials to remain unchanged, whereas the surface functionality is engineered to afford a more required characteristic. Nano-Ceramic coatings are considered ideal coatings on materials that can significantly improve the surface properties, including anti-fouling, self-cleaning, corrosion resistance, wear resistance, anti-scratch, waterproof, anti-acid rain and anti-asphalt. Furthermore, various techniques have been utilized to fabricate a range of different ceramic coatings with more desirable properties on Nano-ceramics, which make the materials usually used in in-service environments and worth mentioning that the practical part of this study will be applied in one of the most important architectural applications due to the contamination-free conditions provided by it in the manufacturing industry. Without cleanrooms, products will become contaminated and either malfunction or infect people with bacteria. Cleanrooms are used for the manufacture of items used in computers, cars, airplanes, spacecraft, televisions, disc players and many other electronic and mechanical devices, as well as the manufacture of medicines, medical devices, and foods. The aim of this study will be to examine the Nano-ceramics on porcelain and glass panels. The investigation will be included fabrications, methods, surface properties and applications in clean rooms. The unfamiliarity in this study is using Nano-ceramics in clean rooms instead of using them on metallic materials.

Keywords: nano-ceramic coating, clean rooms, porcelain, surface properties

Procedia PDF Downloads 66
15721 Solar Light-Driving Photoconversion of CO₂ Into Renewable Hydrocarbon Fuels

Authors: Yong Zhou, Congping Wu, Zhigang Zou

Abstract:

With the rapid societal development, energy demand has increased exponentially and is mainly based on traditional and nonrenewable energy resources, such as petroleum, fossil fuels, and coal. The combustion of carbon-containing fuels releases a large amount of CO₂, causing the greenhouse effect that contribute to climate change. Photocatalytic CO₂ reduction into solar fuels is a promising approach to simultaneously alleviate current energy and environmental issues. In this study, we report the synthesis of a series of atomically ultrathin 2D structures, which contain an ultrahigh fraction of surface atoms, benefitting for efficiency and selectivity regulation of the target products toward CO₂ photoconversion.

Keywords: Photocatalysis, CO₂, Solar fuels, Nanostructure

Procedia PDF Downloads 34
15720 Wave Powered Airlift PUMP for Primarily Artificial Upwelling

Authors: Bruno Cossu, Elio Carlo

Abstract:

The invention (patent pending) relates to the field of devices aimed to harness wave energy (WEC) especially for artificial upwelling, forced downwelling, production of compressed air. In its basic form, the pump consists of a hydro-pneumatic machine, driven by wave energy, characterised by the fact that it has no moving mechanical parts, and is made up of only two structural components: an hollow body, which is open at the bottom to the sea and partially immersed in sea water, and a tube, both joined together to form a single body. The shape of the hollow body is like a mushroom whose cap and stem are hollow; the stem is open at both ends and the lower part of its surface is crossed by holes; the tube is external and coaxial to the stem and is joined to it so as to form a single body. This shape of the hollow body and the type of connection to the tube allows the pump to operate simultaneously as an air compressor (OWC) on the cap side, and as an airlift on the stem side. The pump can be implemented in four versions, each of which provides different variants and methods of implementation: 1) firstly, for the artificial upwelling of cold, deep ocean water; 2) secondly, for the lifting and transfer of these waters to the place of use (above all, fish farming plants), even if kilometres away; 3) thirdly, for the forced downwelling of surface sea water; 4) fourthly, for the forced downwelling of surface water, its oxygenation, and the simultaneous production of compressed air. The transfer of the deep water or the downwelling of the raised surface water (as for pump versions indicated in points 2 and 3 above), is obtained by making the water raised by the airlift flow into the upper inlet of another pipe, internal or adjoined to the airlift; the downwelling of raised surface water, oxygenation, and the simultaneous production of compressed air (as for the pump version indicated in point 4), is obtained by installing a venturi tube on the upper end of the pipe, whose restricted section is connected to the external atmosphere, so that it also operates like a hydraulic air compressor (trompe). Furthermore, by combining one or more pumps for the upwelling of cold, deep water, with one or more pumps for the downwelling of the warm surface water, the system can be used in an Ocean Thermal Energy Conversion plant to supply the cold and the warm water required for the operation of the same, thus allowing to use, without increased costs, in addition to the mechanical energy of the waves, for the purposes indicated in points 1 to 4, the thermal one of the marine water treated in the process.

Keywords: air lifted upwelling, fish farming plant, hydraulic air compressor, wave energy converter

Procedia PDF Downloads 115
15719 Characteristic of Gluten-Free Products: Latvian Consumer Survey

Authors: Laila Ozola, Evita Straumite

Abstract:

Celiac disease is a permanent enteropathy caused by the ingestion of gluten, a protein occurring in wheat, rye and barley. The only way of the effective daily treatment is a strict gluten-free diet. From the investigation of products available in the local market, it was found that Latvian producers do not offer gluten-free products. The aim of this research was to study and analyze changes of celiac patient’s attitude to gluten-free product quality and availability in the Latvian market and purchasing habits. The survey was designed using website www.visidati.lv, and a questionnaire was sent to people suffering from celiac disease. The first time the respondents were asked to fill in the questionnaire in 2011, but now repeatedly from the beginning of September 2013 till the end of January 2014. The questionnaire was performed with 75 celiac patients, respondents were from all Latvian regions and they answered 16 questions. One of the most important questions was aimed to find out consumers’ opinion about quality of gluten-free products, consumption patterns of gluten-free products, and, moreover, their interest in products made in Latvia. Respondents were asked to name gluten-free products they mainly buy and give specific purchase locations, evaluate the quality of products and necessity for products produced in Latvia. The results of questionnaire show that the consumers are satisfied with the quality of gluten-free flour, flour blends, sweets and pasta, but are not satisfied with the quality of bread and confectionery available in the Latvian markets.

Keywords: consumers, gluten-free products, quality, survey

Procedia PDF Downloads 259
15718 Photovoltaic Array Cleaning System Design and Evaluation

Authors: Ghoname Abdullah, Hidekazu Nishimura

Abstract:

Dust accumulation on the photovoltaic module's surface results in appreciable loss and negatively affects the generated power. Hence, in this paper, the design of a photovoltaic array cleaning system is presented. The cleaning system utilizes one drive motor, two guide rails, and four sweepers during the cleaning process. The cleaning system was experimentally implemented for one month to investigate its efficiency on PV array energy output. The energy capture over a month for PV array cleaned using the proposed cleaning system is compared with that of the energy capture using soiled PV array. The results show a 15% increase in energy generation from PV array with cleaning. From the results, investigating the optimal scheduling of the PV array cleaning could be an interesting research topic.

Keywords: cleaning system, dust accumulation, PV array, PV module, soiling

Procedia PDF Downloads 107
15717 Spatially Downscaling Land Surface Temperature with a Non-Linear Model

Authors: Kai Liu

Abstract:

Remote sensing-derived land surface temperature (LST) can provide an indication of the temporal and spatial patterns of surface evapotranspiration (ET). However, the spatial resolution achieved by existing commonly satellite products is ~1 km, which remains too coarse for ET estimations. This paper proposed a model that can disaggregate coarse resolution MODIS LST at 1 km scale to fine spatial resolutions at the scale of 250 m. Our approach attempted to weaken the impacts of soil moisture and growing statues on LST variations. The proposed model spatially disaggregates the coarse thermal data by using a non-linear model involving Bowen ratio, normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI). This LST disaggregation model was tested on two heterogeneous landscapes in central Iowa, USA and Heihe River, China, during the growing seasons. Statistical results demonstrated that our model achieved better than the two classical methods (DisTrad and TsHARP). Furthermore, using the surface energy balance model, it was observed that the estimated ETs using the disaggregated LST from our model were more accurate than those using the disaggregated LST from DisTrad and TsHARP.

Keywords: Bowen ration, downscaling, evapotranspiration, land surface temperature

Procedia PDF Downloads 298
15716 Study of Bored Pile Retaining Wall Using Physical Modeling

Authors: Amin Eslami, Jafar Bolouri Bazaz

Abstract:

Excavation and retaining walls are of challenging issues in civil engineering. In this study, the behavior of one the important type of supporting systems called Contiguous Bored Pile (CBP) retaining wall is investigated using a physical model. Besides, a comparison is made between two modes of free end piles(soft bed) and fixed end piles (stiff bed). Also a back calculation of effective length (the real free length of pile) is done by measuring lateral deflection of piles in different stages of excavation in both a forementioned cases. Based on observed results, for the fixed end mode, the effective length to free length ratio (Leff/L0) is equal to unity in initial stages of excavation and less than 1 in its final stages in a decreasing manner. While this ratio for free end mode, remains constant during all stages of excavation and is always less than unity.

Keywords: contiguous bored pile wall, effective length, fixed end, free end, free length

Procedia PDF Downloads 369
15715 Urban Block Design's Impact on the Indoor Daylight Quality, Heating and Cooling Loads of Buildings in the Semi-Arid Regions: Duhok City in Kurdistan Region-Iraq as a Case Study

Authors: Kawar Salih

Abstract:

It has been proven that designing sustainable buildings starts from early stages of urban design. The design of urban blocks specifically, is considered as one of the pragmatic strategies of sustainable urbanism. There have been previous studies that focused on the impact of urban block design and regulation on the outdoor thermal comfort in the semi-arid regions. However, no studies have been found that concentrated on that impact on the internal behavior of buildings of those regions specifically the daylight quality and energy performance. Further, most studies on semi-arid regions are focusing only on the cooling load reduction, neglecting the heating load. The study has focused on two parameters of urban block distribution which are the block orientation and the surface-to-volume ratio with the consideration of both heating and cooling loads of buildings. In Duhok (a semi-arid city in Kurdistan region of Iraq), energy consumption and daylight quality of different types of residential blocks have been examined using dynamic simulation. The findings suggest that there is a considerable higher energy load for heating than cooling, contradicting many previous studies about these regions. The results also highlight that the orientation of urban blocks can vary the energy consumption to 8%. Regarding the surface-to-volume ratio (S/V), it was observed that after the twice enlargement of the S/V, the energy consumption increased 15%. Though, the study demonstrates as well that there are opportunities for reducing energy consumption with the increase of the S/V which contradicts many previous research on S/V impacts on energy consumption. These results can help to design urban blocks with the bigger S/V than existing blocks in the city which it can provide better indoor daylight and relatively similar energy consumption.

Keywords: blocke orienation, building energy consumption, urban block design, semi-arid regions, surfacet-to-volume ratio

Procedia PDF Downloads 320
15714 Unbalanced Cylindrical Magnetron for Accelerating Cavities Coating

Authors: G. Rosaz, V. Semblanet, S. Calatroni, A. Sublet, M. Taborelli

Abstract:

We report in this paper the design and qualification of a cylindrical unbalanced magnetron source. The dedicated magnetic assemblies were simulated using a finite element model. A hall-effect magnetic probe was then used to characterize those assemblies and compared to the theoretical magnetic profiles. These show a good agreement between the expected and actual values. The qualification of the different magnetic assemblies was then performed by measuring the ion flux density reaching the surface of the sample to be coated using a commercial retarding field energy analyzer. The strongest unbalanced configuration shows an increase from 0.016 A.cm-2 to 0.074 A.cm-2 of the ion flux density reaching the sample surface compared to the standard balanced configuration for a pressure 5.10-3 mbar and a plasma source power of 300 W.

Keywords: ion energy distribution function, magnetron sputtering, niobium, unbalanced, SRF cavities, thin film

Procedia PDF Downloads 226
15713 Hydrothermal Energy Application Technology Using Dam Deep Water

Authors: Yooseo Pang, Jongwoong Choi, Yong Cho, Yongchae Jeong

Abstract:

Climate crisis, such as environmental problems related to energy supply, is getting emerged issues, so the use of renewable energy is essentially required to solve these problems, which are mainly managed by the Paris Agreement, the international treaty on climate change. The government of the Republic of Korea announced that the key long-term goal for a low-carbon strategy is “Carbon neutrality by 2050”. It is focused on the role of the internet data centers (IDC) in which large amounts of data, such as artificial intelligence (AI) and big data as an impact of the 4th industrial revolution, are managed. The demand for the cooling system market for IDC was about 9 billion US dollars in 2020, and 15.6% growth a year is expected in Korea. It is important to control the temperature in IDC with an efficient air conditioning system, so hydrothermal energy is one of the best options for saving energy in the cooling system. In order to save energy and optimize the operating conditions, it has been considered to apply ‘the dam deep water air conditioning system. Deep water at a specific level from the dam can supply constant water temperature year-round. It will be tested & analyzed the amount of energy saving with a pilot plant that has 100RT cooling capacity. Also, a target of this project is 1.2 PUE (Power Usage Effectiveness) which is the key parameter to check the efficiency of the cooling system.

Keywords: hydrothermal energy, HVAC, internet data center, free-cooling

Procedia PDF Downloads 56
15712 Silymarin Loaded Mesoporous Silica Nanoparticles: Preparation, Optimization, Pharmacodynamic and Oral Multi-Dose Safety Assessment

Authors: Sarah Nasr, Maha M. A. Nasra, Ossama Y. Abdallah

Abstract:

The present work aimed to prepare Silymarin loaded MCM-41 type mesoporous silica nanoparticles (MSNs) and to assess the system’s solubility enhancement ability on the pharmacodynamic performance of Silymarin as a hepatoprotective agent. MSNs prepared by soft-templating technique, were loaded with Silymarin, characterized for particle size, zeta potential, surface properties, DSC and XRPD. DSC and specific surface area data confirmed deposition of Silymarin in an amorphous state in MSNs’ pores. In-vitro drug dissolution testing displayed enhanced dissolution rate of Silymarin upon loading on MSNs. High dose Acetaminophen was then used to inflict hepatic injury upon albino male Wistar rats simultaneously receiving either free Silymarin, Silymarin loaded MSNs or blank MSNs. Plasma AST, ALT, albumin and total protein and liver homogenate content of TBARs or LDH as measures of antioxidant drug action were assessed for all animal groups. Results showed a significant superiority of Silymarin loaded MSNs to free drug in almost all parameters. Meanwhile prolonged administration of blank MSNs had no evident toxicity on rats.

Keywords: mesoporous silica nanoparticles, safety, solubility enhancement, silymarin

Procedia PDF Downloads 309
15711 Numerical Analysis on the Effect of Abrasive Parameters on Wall Shear Stress and Jet Exit Kinetic Energy

Authors: D. Deepak, N. Yagnesh Sharma

Abstract:

Abrasive Water Jet (AWJ) machining is a relatively new nontraditional machine tool used in machining of fiber reinforced composite. The quality of machined surface depends on jet exit kinetic energy which depends on various operating and material parameters. In the present work the effect abrasive parameters such as its size, concentration and type on jet kinetic energy is investigated using computational fluid dynamics (CFD). In addition, the effect of these parameters on wall shear stress developed inside the nozzle is also investigated. It is found that for the same operating parameters, increase in the abrasive volume fraction (concentration) results in significant decrease in the wall shear stress as well as the jet exit kinetic energy. Increase in the abrasive particle size results in marginal decrease in the jet exit kinetic energy. Numerical simulation also indicates that garnet abrasives produce better jet exit kinetic energy than aluminium oxide and silicon carbide.

Keywords: abrasive water jet machining, jet kinetic energy, operating pressure, wall shear stress, Garnet abrasive

Procedia PDF Downloads 352
15710 Economic Analysis of Policy Instruments for Energy Efficiency

Authors: Etidel Labidi

Abstract:

Energy efficiency improvement is one of the means to reduce energy consumption and carbon emissions. Recently, some developed countries have implemented the tradable white certificate scheme (TWC) as a new policy instrument based on market approach to support energy efficiency improvements. The major focus of this paper is to compare the White Certificates (TWC) scheme as an innovative policy instrument for energy efficiency improvement to other policy instruments: energy taxes and regulations setting a minimum level of energy efficiency. On the basis of our theoretical discussion and numerical simulation, we show that the white certificates system is the most interesting policy instrument for saving energy because it generates the most important level of energy savings and the least increase in energy service price.

Keywords: energy savings, energy efficiency, energy policy, white certificates

Procedia PDF Downloads 306
15709 CFD Modelling and Thermal Performance Analysis of Ventilated Double Skin Roof Structure

Authors: A. O. Idris, J. Virgone, A. I. Ibrahim, D. David, E. Vergnault

Abstract:

In hot countries, the major challenge is the air conditioning. The increase in energy consumption by air conditioning stems from the need to live in more comfortable buildings, which is understandable. But in Djibouti, one of the countries with the most expensive electricity in the world, this need is exacerbated by an architecture that is inappropriate and unsuitable for climatic conditions. This paper discusses the design of the roof which is the surface receiving the most solar radiation. The roof determines the general behavior of the building. The study presents Computational Fluid Dynamics (CFD) modeling and analysis of the energy performance of a double skin ventilated roof. The particularity of this study is that it considers the climate of Djibouti characterized by hot and humid conditions in winter and very hot and humid in summer. Roof simulations are carried out using the Ansys Fluent software to characterize the flow and the heat transfer induced in the ventilated roof in steady state. This modeling is carried out by comparing the influence of several parameters such as the internal emissivity of the upper surface, the thickness of the insulation of the roof and the thickness of the ventilated channel on heat gain through the roof. The energy saving potential compared to the current construction in Djibouti is also presented.

Keywords: building, double skin roof, CFD, thermo-fluid analysis, energy saving, forced convection, natural convection

Procedia PDF Downloads 237
15708 Application of PV/Wind-Based Green Energy to Power Cellular Base Station

Authors: Francis Okodede, Edafe Lucky Okotie

Abstract:

Conventional energy sources based on oil, coal, and natural gas has posed a trait to environment and to human health. Green energy stands as an alternative because it has proved to be eco-friendly. The prospective of renewable energy sources are quite vast as they can, in principle, meet many times the world’s energy demand. Renewable energy sources, such as wind and solar, can provide sustainable energy services based on the use of routinely available indigenous resources. New renewable energy sources (solar energy, wind energy, and modern bio-energy) are currently contributing immensely to global energy demand. A number of studies have shown the potential and contribution of renewable energy to global energy supplies, indicating that in the second half of the 21st century, it is going to be a major source and driver in the telecommunication sector. Green energy contribution might reach as much as 50 percent of global energy demands if the right policies are in place. This work suggests viable non-conventional means of energy supply to power a cellular base station.

Keywords: base station, energy storage, green energy, rotor efficiency, solar energy, wind energy

Procedia PDF Downloads 64
15707 Designing Nickel Coated Activated Carbon (Ni/AC) Based Electrode Material for Supercapacitor Applications

Authors: Zahid Ali Ghazi

Abstract:

Supercapacitors (SCs) have emerged as auspicious energy storage devices because of their fast charge-discharge characteristics and high power densities. In the current study, a simple approach is used to coat activated carbon (AC) with a thin layer of nickel (Ni) by an electroless deposition process to enhance the electrochemical performance of the SC. The synergistic combination of large surface area and high electrical conductivity of the AC, as well as the pseudocapacitive behavior of the metallic Ni, has shown great potential to overcome the limitations of traditional SC materials. First, the materials were characterized using X-ray diffraction (XRD) for crystallography, scanning electron microscopy (SEM) for surface morphology and energy dispersion X-ray (EDX) for elemental analysis. The electrochemical performance of the nickel-coated activated carbon (Ni-AC) is systematically evaluated through various techniques, including galvanostatic charge-discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The GCD results revealed that Ni/AC has a higher specific capacitance (1559 F/g) than bare AC (222 F/g) at 1 A/g current density in a 2 M KOH electrolyte. Even at a higher current density of 20 A/g, the Ni/AC showed a high capacitance of 944 F/g as compared to 77 F/g by AC. The specific capacitance (1318 F/g) calculated from CV measurements for Ni-AC at 10mV/sec was in close agreement with GCD data. Furthermore, the bare AC exhibited a low energy of 15 Wh/kg at a power density of 356 W/kg whereas, an energy density of 111 Wh/kg at a power density of 360 W/kg was achieved by Ni/AC-850 electrode and demonstrated a long life cycle with 94% capacitance retention over 50000 charge/discharge cycles at 10 A/g. In addition, the EIS study disclosed that the Rs and Rct values of Ni/AC electrodes were much lower than those of bare AC. The superior performance of Ni/AC is mainly attributed to the presence of excessive redox active sites, large electroactive surface area and corrosive resistance properties of Ni. We believe that this study will provide new insights into the controlled coating of ACs and other porous materials with metals for developing high-performance SCs and other energy storage devices.

Keywords: supercapacitor, cyclic voltammetry, coating, energy density, activated carbon

Procedia PDF Downloads 43
15706 The Evaluation of Surface Integrity during Machining of Inconel 718 with Various Laser Assistance Strategies

Authors: Szymon Wojciechowski, Damian Przestacki, Tadeusz Chwalczuk

Abstract:

The paper is focused on the evaluation of surface integrity formed during turning of Inconel 718 with the application of various laser assistance strategies. The primary objective of the work was to determine the relations between the applied machining strategy and the obtained surface integrity, in order to select the effective cutting conditions allowing the obtainment of high surface quality. The carried out experiment included the machining of Inconel 718 in the conventional turning conditions, as well as during the continuous laser assisted machining and sequential laser assistance. The surface integrity was evaluated by the measurements of machined surface topographies, microstructures and the microhardness. Results revealed that surface integrity of Inconel 718 is strongly affected by the selected machining strategy. The significant improvement of the surface roughness formed during machining of Inconel 718, can be reached by the application of simultaneous laser heating and cutting (LAM).

Keywords: Inconel 718, laser assisted machining, surface integrity, turning

Procedia PDF Downloads 256
15705 Theoretical Investigation of Gas Adsorption on Metal- Graphene Surface

Authors: Fatemeh Safdari, Amirnaser Shamkhali, Gholamabbas Parsafar

Abstract:

Carbon nanostructures are of great importance in academic research and industry, which can be mentioned to chemical sensors, catalytic processes, pharmaceutical and environmental issues. Common point in all of these applications is the occurrence of adsorption of molecules on these structures. Important carbon nanostructures in this case are mainly nanotubes and graphene. To modify pure graphene, recently, many experimental and theoretical studies have carried out to investigate of metal adsorption on graphene. In this work, the adsorption of CO molecules on pure graphene and on metal adatom on graphene surface has been simulated based on density functional theory (DFT). All calculations were performed by PBE functional and Troullier-Martins pseudopotentials. Density of states (DOS) for graphene-CO, graphen and CO around the Fermi energy has been moved and very small mixing occured which implies the physisorption of CO on the bare graphen surface. While, the results have showed that CO adsorption on transition-metal adatom on graphene surface is chemisorption.

Keywords: adsorption, density functional theory, graphene, metal adatom

Procedia PDF Downloads 318
15704 Three-Dimensional Numerical Investigation for Reinforced Concrete Slabs with Opening

Authors: Abdelrahman Elsehsah, Hany Madkour, Khalid Farah

Abstract:

This article presents a 3-D modified non-linear elastic model in the strain space. The Helmholtz free energy function is introduced with the existence of a dissipation potential surface in the space of thermodynamic conjugate forces. The constitutive equation and the damage evolution were derived as well. The modified damage has been examined to model the nonlinear behavior of reinforced concrete (RC) slabs with an opening. A parametric study with RC was carried out to investigate the impact of different factors on the behavior of RC slabs. These factors are the opening area, the opening shape, the place of opening, and the thickness of the slabs. And the numerical results have been compared with the experimental data from literature. Finally, the model showed its ability to be applied to the structural analysis of RC slabs.

Keywords: damage mechanics, 3-D numerical analysis, RC, slab with opening

Procedia PDF Downloads 151