Search results for: solid waste composition and characteristics
13145 Exploring Paper Mill Sludge and Sugarcane Bagasse as Carrier Matrix in Solid State Fermentation for Carotenoid Pigment Production by Planococcus sp. TRC1
Authors: Subhasree Majumdar, Sovan Dey, Sayari Mukherjee, Sourav Dutta, Dalia Dasgupta Mandal
Abstract:
Bacterial isolates from Planococcus genus are known for the production of yellowish orange pigment that belongs to the carotenoid family. These pigments are of immense pharmacological importance as antioxidant, anticancer, eye and liver protective agent, etc. The production of this pigment in a cost effective manner is a challenging task. The present study explored paper mill sludge (PMS), a solid lignocellulosic waste generated in large quantities from pulp and paper mill industry as a substrate for carotenoid pigment production by Planococcus sp. TRC1. PMS was compared in terms of efficacy with sugarcane bagasse, which is a highly explored substrate for valuable product generation via solid state fermentation. The results showed that both the biomasses yielded the highest carotenoid during 48 hours of incubation, 31.6 mg/gm and 42.1 mg/gm for PMS and bagasse respectively. Compositional alterations of both the biomasses showed reduction in lignin, hemicellulose and cellulose content by 41%, 15%, 1% for PMS and 38%, 25% and 6% for sugarcane bagasse after 72 hours of incubation. Structural changes in the biomasses were examined by FT-IR, FESEM, and XRD which further confirmed modification of solid biomasses by bacterial isolate. This study revealed the potential of PMS to act as cheap substrate for carotenoid pigment production by Planococcus sp. TRC1, as it showed a significant production in comparison to sugarcane bagasse which gave only 1.3 fold higher production than PMS. Delignification of PMS by TRC1 during pigment production is another important finding for the reuse of this waste from the paper industry.Keywords: carotenoid, lignocellulosic, paper mill sludge, Planococcus sp. TRC1, solid state fermentation, sugarcane bagasse
Procedia PDF Downloads 23913144 Impact of Calcium Carbide Waste Dumpsites on Soil Chemical and Microbial Characteristics
Authors: C. E. Ihejirika, M. I. Nwachukwu, R. F. Njoku-Tony, O. C. Ihejirika, U. O. Enwereuzoh, E. O. Imo, D. C. Ashiegbu
Abstract:
Disposal of industrial solid wastes in the environment is a major environmental challenge. This study investigated the effects of calcium carbide waste dumpsites on soil quality. Soil samples were collected with hand auger from three different dumpsites at varying depths and made into composite samples. Samples were subjected to standard analytical procedures. pH varied from 10.38 to 8.28, nitrate from 5.6mg/kg to 9.3mg/kg, phosphate from 8.8mg/kg to 12.3mg/kg, calcium carbide reduced from 10% to to 3%. Calcium carbide was absent in control soil samples. Bacterial counts from dumpsites ranged from 1.8 x 105cfu/g - 2.5 x 105cfu/g while fungal ranged from 0.8 x 103cfu/g - 1.4 x 103cfu/g. Bacterial isolates included Pseudomonas spp, Flavobacterium spp, and Achromobacter spp, while fungal isolates include Penicillium notatum, Aspergillus niger, and Rhizopus stolonifer. No organism was isolated from the dumpsites at soil depth of 0-15 cm, while there were isolates from other soil depths. Toxicity might be due to alkaline condition of the dumpsite. Calcium carbide might be bactericidal and fungicidal leading to cellular physiology, growth retardation, death, general loss of biodiversity and reduction of ecosystem processes. Detoxification of calcium carbide waste before disposal on soil might be the best option in management.Keywords: biodiversity, calcium-carbide, denitrification, toxicity
Procedia PDF Downloads 55213143 Feasibility Study and Energy Conversion Evaluation of Agricultural Waste Gasification in the Pomelo Garden, Taiwan
Authors: Yi-Hao Pai, Wen-Feng Chen
Abstract:
The planting area of Pomelo in Hualien, Taiwan amounts to thousands of hectares. Especially in the blooming season of Pomelo, it is an important producing area for Pomelo honey, and it is also a good test field for promoting the "Under-forest Economy". However, in the current Pomelo garden planting and management operations, the large amount of agricultural waste generated by the pruning of the branches causes environmental sanitation concerns, which can lead to the hiding of pests or the infection of the Pomelo tree, and indirectly increase the health risks of bees. Therefore, how to deal with the pruning of the branches and avoid open burning is a topic of social concern in recent years. In this research, afeasibility study evaluating energy conversion efficiency through agricultural waste gasification from the Pomelo garden, Taiwan, is demonstrated. we used a high-temperature gasifier to convert the pruning of the branches into syngas and biochar. In terms of syngas composition and calorific value assessment, we use the biogas monitoring system for analysis. Then, we used Raman spectroscopy and electron microscopy (EM) to diagnose the microstructure and surface morphology of biochar. The results indicate that the 1 ton of pruning of the branches can produce 1797.03m3 of syngas, corresponding to a calorific value of 9.1MJ/m3. The main components of the gas include CH4, H2, CO, and CO2, and the corresponding gas composition ratio is 16.8%, 7.1%, 13.7%, and 24.5%. Through the biomass syngas generator with a conversion efficiency of 30% for power generation, a total of 1,358kWh can be obtained per ton of pruning of the branches. In the research of biochar, its main characteristics in Raman spectroscopy are G bands and D bands. The first-order G and D bands are at 1580 and 1350 cm⁻¹, respectively. The G bands originates from the in-plane tangential stretching of the C−C bonds in the graphitic structure, and theD band corresponds to scattering from local defects or disorders present in carbon. The area ratio of D and G peaks (D/G) increases with the decrease of reaction temperature. The larger the D/G, the higher the defect concentration and the higher the porosity. This result is consistent with the microstructure displayed by SEM. The study is expected to be able to reuse agricultural waste and promote the development of agricultural and green energy circular economy.Keywords: agricultural waste, gasification, energy conversion, pomelo garden
Procedia PDF Downloads 14313142 Feasibility Study on the Application of Waste Materials for Production of Sustainable Asphalt Mixtures
Authors: Farzaneh Tahmoorian, Bijan Samali, John Yeaman
Abstract:
Road networks are expanding all over the world during the past few decades to meet the increasing freight volumes created by the population growth and industrial development. At the same time, the rate of generation of solid wastes in the society is increasing with the population growth, technological development, and changes in the lifestyle of people. Thus, the management of solid wastes has become an acute problem. Accordingly, there is a need for greater efficiency in the construction and maintenance of road networks, in reducing the overall cost, especially the utilization of natural materials such as aggregates. An efficient means to reduce construction and maintenance costs of road networks is to replace natural (virgin) materials by secondary, recycled materials. Recycling will also help to reduce pressure on landfills and demand for extraction of natural virgin materials thus ensuring sustainability. Application of solid wastes in asphalt layer reduces not only environmental issues associated with waste disposal but also the demand for virgin materials which will subsequently result in sustainability. Therefore, this research aims to investigate the feasibility of the application of some of the waste materials such as glass, construction and demolition wastes, etc. as alternative materials in pavement construction, particularly flexible pavements. To this end, various combination of different waste materials in certain percentages is considered in designing the asphalt mixture. One of the goals of this research is to determine the optimum percentage of all these materials in the mixture. This is done through a series of tests to evaluate the volumetric properties and resilient modulus of the mixture. The information and data collected from these tests are used to select the adequate samples for further assessment through advanced tests such as triaxial dynamic test and fatigue test, in order to investigate the asphalt mixture resistance to permanent deformation and also cracking. This paper presents the results of these investigations on the application of waste materials in asphalt mixture for production of a sustainable asphalt mix.Keywords: asphalt, glass, pavement, recycled aggregate, sustainability
Procedia PDF Downloads 23813141 Sustainable Recycling Practices to Reduce Health Hazards of Municipal Solid Waste in Patna, India
Authors: Anupama Singh, Papia Raj
Abstract:
Though Municipal Solid Waste (MSW) is a worldwide problem, yet its implications are enormous in developing countries, as they are unable to provide proper Municipal Solid Waste Management (MSWM) for the large volume of MSW. As a result, the collected wastes are dumped in open dumping at landfilling sites while the uncollected wastes remain strewn on the roadside, many-a-time clogging drainage. Such unsafe and inadequate management of MSW causes various public health hazards. For example, MSW directly on contact or by leachate contaminate the soil, surface water, and ground water; open burning causes air pollution; anaerobic digestion between the piles of MSW enhance the greenhouse gases i.e., carbon dioxide and methane (CO2 and CH4) into the atmosphere. Moreover, open dumping can cause spread of vector borne disease like cholera, typhoid, dysentery, and so on. Patna, the capital city of Bihar, one of the most underdeveloped provinces in India, is a unique representation of this situation. Patna has been identified as the ‘garbage city’. Over the last decade there has been an exponential increase in the quantity of MSW generation in Patna. Though a large proportion of such MSW is recyclable in nature, only a negligible portion is recycled. Plastic constitutes the major chunk of the recyclable waste. The chemical composition of plastic is versatile consisting of toxic compounds, such as, plasticizers, like adipates and phthalates. Pigmented plastic is highly toxic and it contains harmful metals such as copper, lead, chromium, cobalt, selenium, and cadmium. Human population becomes vulnerable to an array of health problems as they are exposed to these toxic chemicals multiple times a day through air, water, dust, and food. Based on analysis of health data it can be emphasized that in Patna there has been an increase in the incidence of specific diseases, such as, diarrhoea, dysentry, acute respiratory infection (ARI), asthma, and other chronic respiratory diseases (CRD). This trend can be attributed to improper MSWM. The results were reiterated through a survey (N=127) conducted during 2014-15 in selected areas of Patna. Random sampling method of data collection was used to better understand the relationship between different variables affecting public health due to exposure to MSW and lack of MSWM. The results derived through bivariate and logistic regression analysis of the survey data indicate that segregation of wastes at source, segregation behavior, collection bins in the area, distance of collection bins from residential area, and transportation of MSW are the major determinants of public health issues. Sustainable recycling is a robust method for MSWM with its pioneer concerns being environment, society, and economy. It thus ensures minimal threat to environment and ecology consequently improving public health conditions. Hence, this paper concludes that sustainable recycling would be the most viable approach to manage MSW in Patna and would eventually reduce public health hazards.Keywords: municipal solid waste, Patna, public health, sustainable recycling
Procedia PDF Downloads 32713140 Ultrasonic Techniques to Characterize and Monitor Water-in-Oil Emulsion
Authors: E. A. Alshaafi, A. Prakash
Abstract:
Oil-water emulsions are commonly encountered in various industrial operations and at different stages of crude oil production and processing. Emulsions are often difficult to track and treat and can cause a number of costly problems which need to be avoided. The characteristics of the emulsion phase can vary with crude composition and types of impurities present in oil. The objectives of this study are the development of ultrasonic techniques to track and characterize emulsion phase generated during production and cleaning of crude oil. The position of emulsion layer is monitored with the help of ultrasonic probes suitably placed in the vessel. The sensitivity of the technique and its potential has been demonstrated based on extensive testing with different oil samples. The technique is also being developed to monitor emulsion phase characteristics such as stability, composition, and droplet size distribution. The ultrasonic parameters recorded are changes in acoustic velocity, signal attenuation and its frequency spectrum. Emulsion has been prepared with light mineral oil sample and the effects of various factors including mixing speed, temperature, surfactant, and solid particles concentrations have been investigated. The applied frequency for ultrasonic waves has been varied from 1 to 5 MHz to carry out a sensitivity analysis. Emulsion droplet structure is observed with optical microscopy and stability is examined by tracking the changes in ultrasonic parameters with time. A model based on ultrasonic attenuation spectroscopy is being developed and tested to track changes in droplet size distribution with time.Keywords: ultrasonic techniques, emulsion, characterization, droplet size
Procedia PDF Downloads 17613139 Conceptual Model of a Residential Waste Collection System Using ARENA Software
Authors: Bruce G. Wilson
Abstract:
The collection of municipal solid waste at the curbside is a complex operation that is repeated daily under varying circumstances around the world. There have been several attempts to develop Monte Carlo simulation models of the waste collection process dating back almost 50 years. Despite this long history, the use of simulation modeling as a planning or optimization tool for waste collection is still extremely limited in practice. Historically, simulation modeling of waste collection systems has been hampered by the limitations of computer hardware and software and by the availability of representative input data. This paper outlines the development of a Monte Carlo simulation model that overcomes many of the limitations contained in previous models. The model uses a general purpose simulation software program that is easily capable of modeling an entire waste collection network. The model treats the stops on a waste collection route as a queue of work to be processed by a collection vehicle (or server). Input data can be collected from a variety of sources including municipal geographic information systems, global positioning system recorders on collection vehicles, and weigh scales at transfer stations or treatment facilities. The result is a flexible model that is sufficiently robust that it can model the collection activities in a large municipality, while providing the flexibility to adapt to changing conditions on the collection route.Keywords: modeling, queues, residential waste collection, Monte Carlo simulation
Procedia PDF Downloads 40413138 A Unified Ghost Solid Method for the Elastic Solid-Solid Interface
Authors: Abouzar Kaboudian, Boo Cheong Khoo
Abstract:
The Ghost Solid Method (GSM) based algorithms have been extensively used for numerical calculation of wave propagation in the limit of abrupt changes in materials. In this work, we present a unified version of the GSMs that can be successfully applied to both abrupt as well as smooth changes of the material properties in a medium. The application of this method enables us to use the previously-matured numerical algorithms which were developed to be applied to homogeneous mediums, with only minor modifications. This method is developed for one-dimensional settings and its extension to multi-dimensions is briefly discussed. Various numerical experiments are presented to show the applicability of this unified GSM to wave propagation problems in sharply as well as smoothly varying mediums.Keywords: elastic solid, functionally graded material, ghost solid method, solid-solid interaction
Procedia PDF Downloads 41813137 Phytoremediation Waste Processing of Coffee in Various Concentration of Organic Materials Plant Using Kiambang
Authors: Siti Aminatu Zuhria
Abstract:
On wet coffee processing can improve the quality of coffee, but the coffee liquid waste that can pollute the environment. Liquid waste a lot of coffee resulting from the stripping and washing the coffee. This research will be carried out the process of handling liquid waste stripping coffee from the coffee skin with media phytoremediation using plants kiambang. The purpose of this study was to determine the characteristics of the coffee liquid waste and plant phytoremediation kiambang as agent in various concentrations of liquid waste coffee as well as determining the most optimal concentration in the improved quality of waste water quality standard approach. This research will be conducted through two stages, namely the preliminary study and the main study. In a preliminary study aims to determine the ability of the plant life kiambang as phytoremediation agent in the media well water, distilled water and liquid waste coffee. The main study will be conducted wastewater dilution and coffee will be obtained COD concentration variations. Results are expected at this research that can determine the ability of plants kiambang as an agent for phytoremediation in wastewater treatment with various concentrations of waste and the most optimal concentration in the improved quality of waste water quality standard approach.Keywords: wet coffee processing, phytoremediation, Kiambang plant, variation concentration liquid waste
Procedia PDF Downloads 30713136 Unraveling the Political Complexities of the Textile and Clothing Waste Ecosystem; A Case Study on Melbourne Metropolitan Civic Waste Management Practices
Authors: Yasaman Samie
Abstract:
The ever-increasing rate of textile and clothing (T&C) waste generation and the common ineffective waste management practices have been for long a challenge for civic waste management. This challenge stems from not only the complexity in the T&C material components but also the heterogeneous nature of the T&C waste management sector and the disconnection between the stakeholders. To date, there is little research that investigates the importance of a governmental structure and its role in T&C waste managerial practices and decision makings. This paper reflects on the impacts and involvement of governments, the Acts, and legislation on the effectiveness of T&C waste management practices, which are carried out by multiple players in a city context. In doing so, this study first develops a methodical framework for holistically analyzing a city’s T&C waste ecosystem. Central to this framework are six dimensions: social, environmental, economic, political, cultural, and educational, as well as the connection between these dimensions such as Socio-Political and Cultural-Political. Second, it delves into the political dimension and its interconnections with varying aspects of T&C waste. In this manner, this case-study takes metropolitan Melbourne as a case and draws on social theories of Actor-Network Theory and the principals of supply chain design and planning. Data collection was through two rounds of semi-structured interviews with 18 key players of T&C waste ecosystem (including charities, city councils, private sector providers and producers) mainly within metropolitan Melbourne and also other Australian and European cities. Research findings expand on the role of the politics of waste in facilitating a proactive approach to T&C waste management in the cities. That is achieved through a revised definition for T&C waste and its characteristics, discussing the varying perceptions of value in waste, prioritizing waste types in civic waste management practices and how all these aspects shall be reflected in the in-placed acts and legislations.Keywords: civic waste management, multi-stakeholder ecosystem, textile and clothing waste, waste and governments
Procedia PDF Downloads 11613135 Survey of Web Service Composition
Authors: Wala Ben Messaoud, Khaled Ghedira, Youssef Ben Halima, Henda Ben Ghezala
Abstract:
A web service (WS) is called compound or composite when its execution involves interactions with other WS to use their features. The composition of WS specifies which services need to be invoked, in what order and how to handle exception conditions. This paper gives an overview of research efforts of WS composition. The approaches proposed in the literature are diverse, interesting and have opened important research areas. Based on many studies, we extracted the most important role of WS composition use in order to facilitate its introduction in WS concept.Keywords: SOA, web services, composition approach, composite WS
Procedia PDF Downloads 31113134 Analysis of Histogram Asymmetry for Waste Recognition
Authors: Janusz Bobulski, Kamila Pasternak
Abstract:
Despite many years of effort and research, the problem of waste management is still current. So far, no fully effective waste management system has been developed. Many programs and projects improve statistics on the percentage of waste recycled every year. In these efforts, it is worth using modern Computer Vision techniques supported by artificial intelligence. In the article, we present a method of identifying plastic waste based on the asymmetry analysis of the histogram of the image containing the waste. The method is simple but effective (94%), which allows it to be implemented on devices with low computing power, in particular on microcomputers. Such de-vices will be used both at home and in waste sorting plants.Keywords: waste management, environmental protection, image processing, computer vision
Procedia PDF Downloads 12313133 The Effect of the Precursor Powder Size on the Electrical and Sensor Characteristics of Fully Stabilized Zirconia-Based Solid Electrolytes
Authors: Olga Yu Kurapova, Alexander V. Shorokhov, Vladimir G. Konakov
Abstract:
Nowadays, due to their exceptional anion conductivity at high temperatures cubic zirconia solid solutions, stabilized by rare-earth and alkaline-earth metal oxides, are widely used as a solid electrolyte (SE) materials in different electrochemical devices such as gas sensors, oxygen pumps, solid oxide fuel cells (SOFC), etc. Nowadays the intensive studies are carried out in a field of novel fully stabilized zirconia based SE development. The use of precursor powders for SE manufacturing allows predetermining the microstructure, electrical and sensor characteristics of zirconia based ceramics used as SE. Thus the goal of the present work was the investigation of the effect of precursor powder size on the electrical and sensor characteristics of fully stabilized zirconia-based solid electrolytes with compositions of 0,08Y2O3∙0,92ZrO2 (YSZ), 0,06Ce2O3∙ 0,06Y2O3∙0,88ZrO2 and 0,09Ce2O3∙0,06Y2O3-0,85ZrO2. The synthesis of precursors powders with different mean particle size was performed by sol-gel synthesis in the form of reversed co-precipitation from aqueous solutions. The cakes were washed until the neutral pH and pan-dried at 110 °С. Also, YSZ ceramics was obtained by conventional solid state synthesis including milling into a planetary mill. Then the powder was cold pressed into the pellets with a diameter of 7.2 and ~4 mm thickness at P ~16 kg/cm2 and then hydrostatically pressed. The pellets were annealed at 1600 °С for 2 hours. The phase composition of as-synthesized SE was investigated by X-Ray photoelectron spectroscopy ESCA (spectrometer ESCA-5400, PHI) X-ray diffraction analysis - XRD (Shimadzu XRD-6000). Following galvanic cell О2 (РО2(1)), Pt | SE | Pt, (РО2(2) = 0.21 atm) was used for SE sensor properties investigation. The value of РО2(1) was set by mixing of O2 and N2 in the defined proportions with the accuracy of 5%. The temperature was measured by Pt/Pt-10% Rh thermocouple, The cell electromotive force (EMF) measurement was carried out with ± 0.1 mV accuracy. During the operation at the constant temperature, reproducibility was better than 5 mV. Asymmetric potential measured for all SE appeared to be negligible. It was shown that the resistivity of YSZ ceramics decreases in about two times upon the mean agglomerates decrease from 200-250 to 40 nm. It is likely due to the both surface and bulk resistivity decrease in grains. So the overall decrease of grain size in ceramic SE results in the significant decrease of the total ceramics resistivity allowing sensor operation at lower temperatures. For the SE manufactured the estimation of oxygen ion transfer number tion was carried out in the range 600-800 °С. YSZ ceramics manufactured from powders with the mean particle size 40-140 nm, shows the highest values i.e. 0.97-0.98. SE manufactured from precursors with the mean particle size 40-140 nm shows higher sensor characteristic i.e. temperature and oxygen concentration EMF dependencies, EMF (ENernst - Ereal), tion, response time, then ceramics, manufactured by conventional solid state synthesis.Keywords: oxygen sensors, precursor powders, sol-gel synthesis, stabilized zirconia ceramics
Procedia PDF Downloads 28513132 Optimization of Process Parameters Affecting Biogas Production from Organic Fraction of Municipal Solid Waste via Anaerobic Digestion
Authors: B. Sajeena Beevi, P. P. Jose, G. Madhu
Abstract:
The aim of this study was to obtain the optimal conditions for biogas production from anaerobic digestion of organic fraction of municipal solid waste (OFMSW) using response surface methodology (RSM). The parameters studied were initial pH, substrate concentration and total organic carbon (TOC). The experimental results showed that the linear model terms of initial pH and substrate concentration and the quadratic model terms of the substrate concentration and TOC had significant individual effect (p < 0.05) on biogas yield. However, there was no interactive effect between these variables (p > 0.05). The highest level of biogas produced was 53.4 L/Kg VS at optimum pH, substrate concentration and total organic carbon of 6.5, 99gTS/L, and 20.32 g/L respectively.Keywords: anaerobic digestion, biogas, optimization, response surface methodology
Procedia PDF Downloads 43713131 Qualitative and Quantitative Characterization of Generated Waste in Nouri Petrochemical Complex, Assaluyeh, Iran
Authors: L. Heidari, M. Jalili Ghazizade
Abstract:
In recent years, different petrochemical complexes have been established to produce aromatic compounds. Among them, Nouri Petrochemical Complex (NPC) is the largest producer of aromatic raw materials in the world, and is located in south of Iran. Environmental concerns have been raised in this region due to generation of different types of solid waste generated in the process of aromatics production, and subsequently, industrial waste characterization has been thoroughly considered. The aim of this study is qualitative and quantitative characterization of industrial waste generated in the aromatics production process and determination of the best method for industrial waste management. For this purpose, all generated industrial waste during the production process was determined using a checklist. Four main industrial wastes were identified as follows: spent industrial soil, spent catalyst, spent molecular sieves and spent N-formyl morpholine (NFM) solvent. The amount of heavy metals and organic compounds in these wastes were further measured in order to identify the nature and toxicity of such a dangerous compound. Then industrial wastes were classified based on lab analysis results as well as using different international lists of hazardous waste identification such as EPA, UNEP and Basel Convention. Finally, the best method of waste disposal is selected based on environmental, economic and technical aspects.Keywords: aromatic compounds, industrial soil, molecular sieve, normal formyl morpholine solvent
Procedia PDF Downloads 23413130 Quality Evaluation of Grape Seed Oils of the Ionian Islands Based on GC-MS and Other Spectroscopic Techniques
Authors: I. Oikonomou, I. Lappa, D. Daferera, C. Kanakis, L. Kiokakis, K. Skordilis, A. Avramouli, E. Kalli, C. Pappas, P. A. Tarantilis, E. Skotti
Abstract:
Grape seeds are waste products of wineries and often referred to as an important agricultural and industrial waste product with the potential to be used in pharmaceutical, food, and cosmetic applications. In this study, grape seed oil from traditional Ionian varieties was examined for the determination of the quality and the characteristics of each variety. Initially, the fatty acid methyl ester (FAME) profiles were analyzed using Gas Chromatography-Mass Spectrometry, after transesterification. Furthermore, other quality parameters of the grape seed oils were determined by Spectroscopy techniques, UV-Vis and Raman included. Moreover, the antioxidant capacity of the oil was measured by 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assays and their antioxidant capacity expressed in Trolox equivalents. K and ΔΚ indices were measured in 232, 268, 270 nm, as an oil quality index. The results indicate that the air-dried grape seed total oil content ranged from 5.26 to 8.77% w/w, which is in accordance with the other grape seed varieties tested in similar studies. The composition of grape seed oil is predominated with linoleic and oleic fatty acids, with the linoleic fatty acid ranging from 53.68 to 69.95% and both the linoleic and oleic fatty acids totaling 78-82% of FAMEs, which is analogous to the fatty acid composition of safflower oil. The antioxidant assays ABTS and DPPH scored high, exhibiting that the oils have potential in the cosmetic and culinary businesses. Above that, our results demonstrate that Ionian grape seed oils have prospects that can go further than cosmetic or culinary use, into the pharmaceuticals industry. Finally, the reclamation of grape seeds from wineries waste stream is in accordance with the bio-economy strategic framework and contributes to environmental protection.Keywords: antioxidant capacity, fatty acid methyl esters, grape seed oil, GC-MS
Procedia PDF Downloads 20713129 Impact of Technical Barriers to Trade on Waste Imports
Authors: Chin-Ho Lin
Abstract:
This study explores the impact of technical barriers to trade(TBT) on the import value and weight of 54 types of waste products between ASEAN+6 countries and 200 trading partners from 1999–to 2018. By using disaggregated detailed product data and the gravity model, we obtained results demonstrating that implementation of TBT by importing countries is likely to enhance waste trade. After controlling for three combinations of fixed effects, the results remain robust. We consider the quality of waste products by dividing waste products into recyclable and nonrecyclable materials, revealing that imported recyclable waste is more likely to be imported than nonrecyclable waste. When waste trade isregulated by importing countries through TBT implementation, the exporting countries may export relatively valuable waste products, and recyclable waste is of greater economic value because it can be used as an input in other production processes. Finally, developed countries are more likely than developing countries to export waste to the ASEAN+6countries, a finding that supports the waste haven hypothesis.Keywords: waste trade, ASEAN+6, technical barriers to trade, gravity model, waste haven hypothesis
Procedia PDF Downloads 12213128 Nutritional Characteristics, Mineral contents, Amino acid Composition and Phytochemical Analysis of Eryngium alpinium Leaf Protein Concentrates
Authors: Owonikoko A. D., Odoje O. F.
Abstract:
Fresh sample of Eryngium alpinum was purchased and processed for leaf protein concentrates with a view to evaluating its nutritional potential, mineral composition, amino acid characteristics and phytochemical constituents. Using standard analytical methods. The proximate composition of the leaf protein concentrates revealed moisture content;(5.35±0.21)g/100g, ash;(11.37±0.43)g/100g, crude protein;(48.17±0.46)g/100g, crude fat;(15.38±0.07)g/100g, crude fibre (3.05±0.46)g/100g, and Nitrogen free extractive; (16.68±0.30) g/100g. The mineral content was: Na;(51.88±0.23) mg/100g, K;(65.40±0.32)mg/100g, Ca; (86.89±0.46)mg/100g, Mg;(49.27±0.42) mg/100g, Zn;(0.62±0.03)mg/100g, Fe (6.65±0.43)mg/100g, Mn;(0.96±0.54)mg/100g, Cd;(0.28±0.04)mg/100g, P; (8.55±0.97)mg/100g, while selenium, lead and mercury were not detected in the sample indicating that the sample is free of causing risk of metal poisoning. The results of phytochemical constituents showed phytate; (18.34±0.36)mg/100g, flavonoid (0.25±0.41)mg/100g. The sample contain both essential and non-essential amino acid, with the highest value of Glutamic acid (12.26) and the lowest value of Tryptophan 1.05. the content of the leaf protein content shows that the sample is fit for dietary consumption and could as well be processed to be used as food additives.Keywords: mineral composition, phytochemical analysis, leaf protein concentrates, eryngium alpinum
Procedia PDF Downloads 11413127 Laboratory Investigations on the Utilization of Recycled Construction Aggregates in Asphalt Mixtures
Authors: Farzaneh Tahmoorian, Bijan Samali, John Yeaman
Abstract:
Road networks are increasingly expanding all over the world. The construction and maintenance of the road pavements require large amounts of aggregates. Considerable usage of various natural aggregates for constructing roads as well as the increasing rate at which solid waste is generated have attracted the attention of many researchers in the pavement industry to investigate the feasibility of the application of some of the waste materials as alternative materials in pavement construction. Among various waste materials, construction and demolition wastes, including Recycled Construction Aggregate (RCA) constitute a major part of the municipal solid wastes in Australia. Creating opportunities for the application of RCA in civil and geotechnical engineering applications is an efficient way to increase the market value of RCA. However, in spite of such promising potentials, insufficient and inconclusive data and information on the engineering properties of RCA had limited the reliability and design specifications of RCA to date. In light of this, this paper, as a first step of a comprehensive research, aims to investigate the feasibility of the application of RCA obtained from construction and demolition wastes for the replacement of part of coarse aggregates in asphalt mixture. As the suitability of aggregates for using in asphalt mixtures is determined based on the aggregate characteristics, including physical and mechanical properties of the aggregates, an experimental program is set up to evaluate the physical and mechanical properties of RCA. This laboratory investigation included the measurement of compressive strength and workability of RCA, particle shape, water absorption, flakiness index, crushing value, deleterious materials and weak particles, wet/dry strength variation, and particle density. In addition, the comparison of RCA properties with virgin aggregates has been included as part of this investigation and this paper presents the results of these investigations on RCA, basalt, and the mix of RCA/basalt.Keywords: asphalt, basalt, pavement, recycled aggregate
Procedia PDF Downloads 16713126 An Optimization Model for Waste Management in Demolition Works
Authors: Eva Queheille, Franck Taillandier, Nadia Saiyouri
Abstract:
Waste management has become a major issue in demolition works, because of its environmental impact (energy consumption, resource consumption, pollution…). However, improving waste management requires to take also into account the overall demolition process and to consider demolition main objectives (e.g. cost, delay). Establishing a strategy with these conflicting objectives (economic and environment) remains complex. In order to provide a decision-support for demolition companies, a multi-objective optimization model was developed. In this model, a demolition strategy is computed from a set of 80 decision variables (worker team composition, machines, treatment for each type of waste, choice of treatment platform…), which impacts the demolition objectives. The model has experimented on a real-case study (demolition of several buildings in France). To process the optimization, different optimization algorithms (NSGA2, MOPSO, DBEA…) were tested. Results allow the engineer in charge of this case, to build a sustainable demolition strategy without affecting cost or delay.Keywords: deconstruction, life cycle assessment, multi-objective optimization, waste management
Procedia PDF Downloads 15413125 Urgent Need for E -Waste Management in Mongolia
Authors: Enkhjargal Bat-Ochir
Abstract:
The global market of electrical and electronic equipment (EEE) has increasing rapidly while the lifespan of these products has become increasingly shorter. So, e-waste is becoming the world’s fastest growing waste stream. E-waste is a huge problem when it’s not properly disposed of, as these devices contain substances that are harmful to the environment and to human health as they contaminate the land, water, and air. This paper tends to highlight e-waste problem and harmful effects and can grasp the extent of the problem and take the necessary measures to solve it in Mongolia and to improve standards and human health.Keywords: e -waste, recycle, electrical, Mongolia
Procedia PDF Downloads 42213124 Food Waste Utilization: A Contemporary Prospect of Meeting Energy Crisis Using Microbial Fuel Cell
Authors: Bahareh Asefi, Fereidoun Farzaneh, Ghazaleh Asefi, Chang-Ping Yu
Abstract:
Increased production of food waste (FW) is a global issue that is receiving more attention due to its environmental and economic impacts. The generation of electricity from food waste, known as energy recovery, is one of the effective solutions in food waste management. Food waste has high energy content which seems ideal to achieve dual benefits in terms of energy recovery and waste stabilization. Microbial fuel cell (MFC) is a promising technology for treating food waste and generate electricity. In this work, we will review energy utilization from different kind of food waste using MFC and factors which affected the process. We have studied the key technology of energy generated from food waste using MFC to enhance the food waste management. The power density and electricity production by each kind of food waste and challenges were identified. This work explored the conversion of FW into energy from different type of food waste, which aim to provide a theoretical analysis for energy utilization of food waste.Keywords: energy generation, food waste, microbial fuel cell, power density
Procedia PDF Downloads 23113123 Knowledge Decision of Food Waste and Loss Reduction in Supply Chain System: A Case Study of Kingdom of Saudi Arabia
Authors: Nadia Adnan, Muhammad Mohsin Raza, Latha Ravindran
Abstract:
Based on the principles above, the study presents an economic model of food waste for consumers, intermediaries, and producers. We discriminate between purchasing and selling, purchases versus customers consumption, and gross output versus sales for each intermediary. To compensate for waste at each level of the supply chain, agents must charge higher sales prices. The research model can produce more accurate predictions about how actions (public regulations or private efforts) to reduce food waste impact markets, including indirect (cascading) effects. With a formal model, researchers demonstrate the uniqueness of these interaction effects and simulate an empirical model calibrated to market characteristics and waste rates in Saudi Arabia. Researchers demonstrate that the effects of waste reduction differ per commodity, depending on supply and demand elasticities, degree of openness to international commerce, and the beginning rates of food loss and waste at each level of the value chain. Because of the consequential effects related to the supply chain, initiatives to minimize food waste will be strengthened in some circumstances and partially countered in others.Keywords: food loss, food waste, supply chain management, Saudi Arabia, food supply
Procedia PDF Downloads 11013122 Use of Fault Tree Analysis for Technical Assessment of Waste-to-Energy Plants
Authors: Ying-Chu Chen
Abstract:
Waste to energy (WTE) technology is becoming increasingly important throughout the world. There are 24 WTE plants in operation in Taiwan that might be ranked the top in density (number of MSW incinerators/area) in the world. Many problems exist in WTE plants, such as low-quality construction, leakage of pipelines, irregular feedings, and lack of maintenance. These problems should be identified and analyzed for effective implementation and efficient operation of WTE plants. This research applies a fault tree analysis (FTA) to identify failures and evaluate their effects on the operation of WTE plants from a technical point of view. Five subsystems of a WTE plant were defined, including loading system, incineration system, effluent disposal system, structural components, and control system. This research results proved that FTA is suitable for WTE evaluation and is an effective analysis tool for technical evaluation in the field of WTE technology.Keywords: delphi method, fault tree approach, municipal solid waste, waste to energy, WTE
Procedia PDF Downloads 56913121 A System For A Sustainable Electronic Waste Marketplace
Authors: Arya Sarukkai
Abstract:
Due to increased technological advances and the high use of phones, tablets, computers, and other electronics, we continue to see rapid growth in the volume of e-waste. There are millions just throwing out their old devices, millions who have many devices and don’t know what to do with them, and there are millions who would benefit from receiving those devices. The thesis of this paper is that by creating an ecosystem of donors and recipients and providing the right incentives, we can reduce e-waste. We discuss a system for sustainable e-waste by building a marketplace between donors and recipients. We also summarize experimental results comparing different incentives and present a live web service that allows for e-waste supplies to reach schools and nonprofit institutions.Keywords: E-waste ecosystems, marketplaces, e-waste web app, online services
Procedia PDF Downloads 20313120 Analysis of the Variation on Earth Pressure by Addition of Construction Demolition Waste (C&D Waste) In Black Cotton Soil
Authors: Nirav Jadav, M. G.Vanza
Abstract:
Black cotton soils mainly exhibit the property of swelling/shrinkage when they react to moisture variations. This property causes development of cracks in the structures resting on these soils, which poses instability to the structures. Soil stabilization is a technique to enhance the geotechnical characteristics of Black cotton soils by changing their properties. Due to rapid growth in construction industry, a lot of waste material is being generated every day, which poses the problem of its disposal. If the waste material can be utilized for soil stabilization, it will mitigate the problems of its disposal. The tests results evaluate that the strength of the Black cotton soils increased by the use of C&D waste material. This study determines various Index and engineering properties of soil and compare for different proportions of soil and C&D Waste. For finding properties of soil and C&D Waste, various test is carried out like sieve analysis, hydrometer test, specific gravity test, Atterberg’s limit test, Standard proctor test and soil Triaxial unconsolidated undrained test. It also takes into account the characteristics alteration due to addition of C&D Waste in active and passive pressure. This study presents the efficacy for use of C&D Waste as a stabilizing material to be mixed with backfill soil in retaining walls. Standard proctor test was conducted at proportions S1W0 (soil = 100%, Waste = 0%), S7W1 (soil = 87.5%, waste = 12.5%), S3W1, S5W3 and S1W1. From these, S5W3 showed optimum results, so this proportion was considered for Soil Triaxial UU-Test. Also, S1W0 was considered too. When 37.5% of soil is replaced by C&D Waste, the Optimum moisture content (OMC) decrease by 11.48%, further, increase C&D Waste in soil OMC remains constant, and maximum dry density (MDD) were observed to be increased by 9.27%, further increased C&D Waste in soil MDD reduces. Carried out strength test, which shows cohesion decreased by 162% and the internal friction angle increased by 49.4% with compare to virgin soil. The study focuses on the potential use of C&D Waste as a stabilizing material in the retaining wall backfill. The active earth pressure decreases, and the passive earth pressure increases in the S5W3 mixture compared to the S1W0 mixture at the same depth.Keywords: black cotton soil, construction demolition waste, compaction test, strength test
Procedia PDF Downloads 8613119 Small Scale Waste to Energy Systems: Optimization of Feedstock Composition for Improved Control of Ash Sintering and Quality of Generated Syngas
Authors: Mateusz Szul, Tomasz Iluk, Aleksander Sobolewski
Abstract:
Small-scale, distributed energy systems enabling cogeneration of heat and power based on gasification of sewage sludge, are considered as the most efficient and environmentally friendly ways of their treatment. However, economic aspects of such an investment are very demanding; therefore, for such a small scale sewage sludge gasification installation to be profitable, it needs to be efficient and simple at the same time. The article presents results of research on air gasification of sewage sludge in fixed bed GazEla reactor. Two of the most important aspects of the research considered the influence of the composition of sewage sludge blends with other feedstocks on properties of generated syngas and ash sintering problems occurring at the fixed bed. Different means of the fuel pretreatment and blending were proposed as a way of dealing with the above mentioned undesired characteristics. Influence of RDF (Refuse Derived Fuel) and biomasses in the fuel blends were evaluated. Ash properties were assessed based on proximate, ultimate, and ash composition analysis of the feedstock. The blends were specified based on complementary characteristics of such criteria as C content, moisture, volatile matter, Si, Al, Mg, and content of basic metals in the ash were analyzed, Obtained results were assessed with use of experimental gasification tests and laboratory ISO-procedure for analysis of ash characteristic melting temperatures. Optimal gasification process conditions were determined by energetic parameters of the generated syngas, its content of tars and lack of ash sinters within the reactor bed. Optimal results were obtained for co-gasification of herbaceous biomasses with sewage sludge where LHV (Lower Heating Value) of the obtained syngas reached a stable value of 4.0 MJ/Nm3 for air/steam gasification.Keywords: ash fusibility, gasification, piston engine, sewage sludge
Procedia PDF Downloads 19913118 Modeling of Physico-Chemical Characteristics of Concrete for Filling Trenches in Radioactive Waste Management
Authors: Ilija Plecas, Dalibor Arbutina
Abstract:
The leaching rate of 60Co from spent mix bead (anion and cation) exchange resins in a cement-bentonite matrix has been studied. Transport phenomena involved in the leaching of a radioactive material from a cement-bentonite matrix are investigated using three methods based on theoretical equations. These are: the diffusion equation for a plane source, an equation for diffusion coupled to a first order equation and an empirical method employing a polynomial equation. The results presented in this paper are from a 25-year mortar and concrete testing project that will influence the design choices for radioactive waste packaging for a future Serbian radioactive waste disposal center.Keywords: cement, concrete, immobilization, leaching, permeability, radioactivity, waste
Procedia PDF Downloads 32513117 Control of Pipeline Gas Quality to Extend Gas Turbine Life
Authors: Peter J. H. Carnell, Panayiotis Theophanous
Abstract:
Natural gas due to its cleaner combustion characteristics is expected to be the most widely used fuel in the move towards less polluting and renewable energy sources. Thus, the developed world is supplied by a complex network of gas pipelines and natural gas is becoming a major source of fuel. Natural gas delivered directly from the well will differ in composition from gas derived from LNG or produced by anaerobic digestion processes. Each will also have specific contaminants and properties although gas from all sources is likely to enter the distribution system and be blended to provide the desired characteristics such as Higher Heating Value and Wobbe No. The absence of a standard gas composition poses problems when the gas is used as a chemical feedstock, in specialised furnaces or on gas turbines. The chemical industry has suffered in the past as a result of variable gas composition. Transition metal catalysts used in ammonia, methanol and hydrogen plants were easily poisoned by sulphur, chlorides and mercury reducing both activity and catalyst expected lives from years to months. These plants now concentrate on purification and conditioning of the natural gas feed using fixed bed technologies, allowing them to run for several years and having transformed their operations. Similar technologies can be applied to the power industry reducing maintenance requirements and extending the operating life of gas turbines.Keywords: gas composition, gas conditioning, gas turbines, power generation, purification
Procedia PDF Downloads 28713116 Texture Characterization and Mineralogical Composition of the 1982-1983 Second Phase Galunggung Eruption, West Java Regency, Indonesia
Authors: M. Hanif Irsyada, Rifaldy, Arif Lutfi Namury, Syahreza S. Angkasa, Khalid Rizky, Ricky Aryanto, M. Alfiyan Bagus, Excobar Arman, Fahri Septianto, Firman Najib Wibisana
Abstract:
Galunggung Mountain is an active volcano in Indonesia, precisely on the island of Java. This area is included in the Sunda Sunda arc formed by the tendency of the Australian oceanic plate to Eurasian continental plate. This research was conducted to determine the characteristics and document the mineralogical composition of the Galunggung eruption of the second phase 1982-1983. In fragment samples, petrographic analysis is carried out under a qualitative and quantitative polarizing microscope. This sample was obtained from the second phase eruption in the Cibanjanj formation. Based on the analysis results obtained filter texture characteristics, olivine parallel growth, lamellar structure, glass inclusion, plagioclase zonation and obtained special texture in the gabbroic cummulate. The mineral composition consists of phenocryst plagioclase (41vol%), pyroxene (26vol%), olivin (4vol%) and mineral opaque (29vol%). Microlite minerals consist of plagioclase (31.95vol%), pyroxene (12.09vol%), opaque minerals (55.96vol%). This research is expected to be developed by further researchers to be able to explain in more detail related to Galunggung mountain with 3 phases of eruption that are so intense. Also, it is expected to explain the structural characteristics and mineralogical composition that can be used to determine the origin of all the results of the Galunggung eruption 1982-1983.Keywords: Galunggung eruption, mineralogical composition, texture characterization, gabbroic cumulate
Procedia PDF Downloads 131