Search results for: intelligent transportation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2178

Search results for: intelligent transportation

1938 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao

Abstract:

Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.

Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive

Procedia PDF Downloads 174
1937 Development of Medical Intelligent Process Model Using Ontology Based Technique

Authors: Emmanuel Chibuogu Asogwa, Tochukwu Sunday Belonwu

Abstract:

An urgent demand for creative solutions has been created by the rapid expansion of medical knowledge, the complexity of patient care, and the requirement for more precise decision-making. As a solution to this problem, the creation of a Medical Intelligent Process Model (MIPM) utilizing ontology-based appears as a promising way to overcome this obstacle and unleash the full potential of healthcare systems. The development of a Medical Intelligent Process Model (MIPM) using ontology-based techniques is motivated by a lack of quick access to relevant medical information and advanced tools for treatment planning and clinical decision-making, which ontology-based techniques can provide. The aim of this work is to develop a structured and knowledge-driven framework that leverages ontology, a formal representation of domain knowledge, to enhance various aspects of healthcare. Object-Oriented Analysis and Design Methodology (OOADM) were adopted in the design of the system as we desired to build a usable and evolvable application. For effective implementation of this work, we used the following materials/methods/tools: the medical dataset for the test of our model in this work was obtained from Kaggle. The ontology-based technique was used with Confusion Matrix, MySQL, Python, Hypertext Markup Language (HTML), Hypertext Preprocessor (PHP), Cascaded Style Sheet (CSS), JavaScript, Dreamweaver, and Fireworks. According to test results on the new system using Confusion Matrix, both the accuracy and overall effectiveness of the medical intelligent process significantly improved by 20% compared to the previous system. Therefore, using the model is recommended for healthcare professionals.

Keywords: ontology-based, model, database, OOADM, healthcare

Procedia PDF Downloads 78
1936 Neural Network Modelling for Turkey Railway Load Carrying Demand

Authors: Humeyra Bolakar Tosun

Abstract:

The transport sector has an undisputed place in human life. People need transport access to continuous increase day by day with growing population. The number of rail network, urban transport planning, infrastructure improvements, transportation management and other related areas is a key factor affecting our country made it quite necessary to improve the work of transportation. In this context, it plays an important role in domestic rail freight demand planning. Alternatives that the increase in the transportation field and has made it mandatory requirements such as the demand for improving transport quality. In this study generally is known and used in studies by the definition, rail freight transport, railway line length, population, energy consumption. In this study, Iron Road Load Net Demand was modeled by multiple regression and ANN methods. In this study, model dependent variable (Output) is Iron Road Load Net demand and 6 entries variable was determined. These outcome values extracted from the model using ANN and regression model results. In the regression model, some parameters are considered as determinative parameters, and the coefficients of the determinants give meaningful results. As a result, ANN model has been shown to be more successful than traditional regression model.

Keywords: railway load carrying, neural network, modelling transport, transportation

Procedia PDF Downloads 143
1935 Highly Accurate Tennis Ball Throwing Machine with Intelligent Control

Authors: Ferenc Kovács, Gábor Hosszú

Abstract:

The paper presents an advanced control system for tennis ball throwing machines to improve their accuracy according to the ball impact points. A further advantage of the system is the much easier calibration process involving the intelligent solution of the automatic adjustment of the stroking parameters according to the ball elasticity, the self-calibration, the use of the safety margin at very flat strokes and the possibility to placing the machine to any position of the half court. The system applies mathematical methods to determine the exact ball trajectories and special approximating processes to access all points on the aimed half court.

Keywords: control system, robot programming, robot control, sports equipment, throwing machine

Procedia PDF Downloads 397
1934 Intelligent Control of Doubly Fed Induction Generator Wind Turbine for Smart Grid

Authors: Amal A. Hassan, Faten H. Fahmy, Abd El-Shafy A. Nafeh, Hosam K. M. Youssef

Abstract:

Due to the growing penetration of wind energy into the power grid, it is very important to study its interactions with the power system and to provide good control technique in order to deliver high quality power. In this paper, an intelligent control methodology is proposed for optimizing the controllers’ parameters of doubly fed induction generator (DFIG) based wind turbine generation system (WTGS). The genetic algorithm (GA) and particle swarm optimization (PSO) are employed and compared for the parameters adaptive tuning of the proposed proportional integral (PI) multiple controllers of the back to back converters of the DFIG based WTGS. For this purpose, the dynamic model of WTGS with DFIG and its associated controllers is presented. Furthermore, the simulation of the system is performed using MATLAB/SIMULINK and SIMPOWERSYSTEM toolbox to illustrate the performance of the optimized controllers. Finally, this work is validated to 33-bus test radial system to show the interaction between wind distributed generation (DG) systems and the distribution network.

Keywords: DFIG wind turine, intelligent control, distributed generation, particle swarm optimization, genetic algorithm

Procedia PDF Downloads 267
1933 Evaluation of Critical Success Factors in Public-Private Partnership Projects Based on Structural Equation Model

Authors: Medya Fathi

Abstract:

Today, success in the construction industry is not merely about project completion in a timely manner within an established budget and meeting required quality considerations. Management practices and partnerships need to be emphasized as well. In this regard, critical success factors (CSFs) cover necessary considerations for a successful project beyond the traditional success definition, which vary depending on project outcomes, delivery methods, project types, and partnering processes. Despite the extensive research on CSFs, there is a paucity of studies that examine CSFs for public-private partnership (PPP); the delivery method, which has gained increasing attention from researchers and practitioners over the last decade with a slow but growing adoption in the transportation infrastructure, particularly, highway industry. To fill this knowledge gap, data are collected through questionnaire surveys among private and public parties involved in PPP transportation projects in the United States. Then, the collected data are analyzed to explore the causality relationships between CSFs and PPP project success using structural equation model and provide a list of factors with the greatest influence. This study advocates adopting a critical success factor approach to enhance PPP success in the U.S. transportation industry and identify elements essential for public and private organizations to achieve this success.

Keywords: project success, critical success factors, public-private partnership, transportation

Procedia PDF Downloads 96
1932 A Hybrid Data Mining Algorithm Based System for Intelligent Defence Mission Readiness and Maintenance Scheduling

Authors: Shivam Dwivedi, Sumit Prakash Gupta, Durga Toshniwal

Abstract:

It is a challenging task in today’s date to keep defence forces in the highest state of combat readiness with budgetary constraints. A huge amount of time and money is squandered in the unnecessary and expensive traditional maintenance activities. To overcome this limitation Defence Intelligent Mission Readiness and Maintenance Scheduling System has been proposed, which ameliorates the maintenance system by diagnosing the condition and predicting the maintenance requirements. Based on new data mining algorithms, this system intelligently optimises mission readiness for imminent operations and maintenance scheduling in repair echelons. With modified data mining algorithms such as Weighted Feature Ranking Genetic Algorithm and SVM-Random Forest Linear ensemble, it improves the reliability, availability and safety, alongside reducing maintenance cost and Equipment Out of Action (EOA) time. The results clearly conclude that the introduced algorithms have an edge over the conventional data mining algorithms. The system utilizing the intelligent condition-based maintenance approach improves the operational and maintenance decision strategy of the defence force.

Keywords: condition based maintenance, data mining, defence maintenance, ensemble, genetic algorithms, maintenance scheduling, mission capability

Procedia PDF Downloads 297
1931 Perceptions of College Students on Whether an Intelligent Tutoring System Is a Tutor

Authors: Michael Smalenberger

Abstract:

Intelligent tutoring systems (ITS) are computer-based platforms which can incorporate artificial intelligence to provide step-by-step guidance as students practice problem-solving skills. ITS can replicate the benefits of one-on-one tutoring, foster transactivity in collaborative environments, and lead to substantial learning gains when used to supplement the instruction of a teacher or when used as the sole method of instruction. Developments improving the ease of ITS creation have recently increased their proliferation, leading many K-12 schools and institutions of higher education in the United States to regularly use ITS within classrooms. We investigated how students perceive their experience using an ITS. In this study, 111 undergraduate students used an ITS in a college-level introductory statistics course and were subsequently asked for feedback on their experience. Results show that their perceptions were generally favorable of the ITS, and most would seek to use an ITS both for STEM and non-STEM courses in the future. Along with detailed transaction-level data, this feedback also provides insights on the design of user-friendly interfaces, guidance on accessibility for students with impairments, the sequencing of exercises, students’ expectation of achievement, and comparisons to other tutoring experiences. We discuss how these findings are important for the creation, implementation, and evaluation of ITS as a mode and method of teaching and learning.

Keywords: college statistics course, intelligent tutoring systems, in vivo study, student perceptions of tutoring

Procedia PDF Downloads 101
1930 Experimental Measurement for Vehicular Communication Evaluation Using Obu Arada System

Authors: Aymen Sassi

Abstract:

The equipment of vehicles with wireless communication capabilities is expected to be the key to the evolution to next generation intelligent transportation systems (ITS). The IEEE community has been continuously working on the development of an efficient vehicular communication protocol for the enhancement of Wireless Access in Vehicular Environment (WAVE). Vehicular communication systems, called V2X, support vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communications. The efficiency of such communication systems depends on several factors, among which the surrounding environment and mobility are prominent. Accordingly, this study focuses on the evaluation of the real performance of vehicular communication with special focus on the effects of the real environment and mobility on V2X communication. It starts by identifying the real maximum range that such communication can support and then evaluates V2I and V2V performances. The Arada LocoMate OBU transmission system was used to test and evaluate the impact of the transmission range in V2X communication. The evaluation of V2I and V2V communication takes the real effects of low and high mobility on transmission into account.

Keywords: IEEE 802.11p, V2I, V2X, mobility, PLR, Arada LocoMate OBU, maximum range

Procedia PDF Downloads 415
1929 Effective Planning of Public Transportation Systems: A Decision Support Application

Authors: Ferdi Sönmez, Nihal Yorulmaz

Abstract:

Decision making on the true planning of the public transportation systems to serve potential users is a must for metropolitan areas. To take attraction of travelers to projected modes of transport, adequately fair overall travel times should be provided. In this fashion, other benefits such as lower traffic congestion, road safety and lower noise and atmospheric pollution may be earned. The congestion which comes with increasing demand of public transportation is becoming a part of our lives and making residents’ life difficult. Hence, regulations should be done to reduce this congestion. To provide a constructive and balanced regulation in public transportation systems, right stations should be located in right places. In this study, it is aimed to design and implement a Decision Support System (DSS) Application to determine the optimal bus stop places for public transport in Istanbul which is one of the biggest and oldest cities in the world. Required information is gathered from IETT (Istanbul Electricity, Tram and Tunnel) Enterprises which manages all public transportation services in Istanbul Metropolitan Area. By using the most real-like values, cost assignments are made. The cost is calculated with the help of equations produced by bi-level optimization model. For this study, 300 buses, 300 drivers, 10 lines and 110 stops are used. The user cost of each station and the operator cost taken place in lines are calculated. Some components like cost, security and noise pollution are considered as significant factors affecting the solution of set covering problem which is mentioned for identifying and locating the minimum number of possible bus stops. Preliminary research and model development for this study refers to previously published article of the corresponding author. Model results are represented with the intent of decision support to the specialists on locating stops effectively.

Keywords: operator cost, bi-level optimization model, user cost, urban transportation

Procedia PDF Downloads 246
1928 Flexible and Integrated Transport System in India

Authors: Aayushi Patidar, Nishant Parihar

Abstract:

One of the principal causes of failure in existing vehicle brokerage solutions is that they require the introduction of a single trusted third party to whom transport offers and requirements are sent, and which solves the scheduling problem. Advances in planning and scheduling could be utilized to address the scalability issues inherent here, but such refinements do not address the key need to decentralize decision-making. This is not to say that matchmaking of potential transport suppliers to consumers is not essential, but information from such a service should inform rather than determining the transport options for customers. The approach that is proposed, is the use of intelligent commuters that act within the system and to identify options open to users, weighing the evidence for desirability of each option given a model of the user’s priorities, and to drive dialogue among commuters in aiding users to solve their individual (or collective) transport goals. Existing research in commuter support for transport resource management has typically been focused on the provider. Our vision is to explore both the efficient use of limited transport resources and also to support the passengers in the transportation flexibility & integration among various modes in India.

Keywords: flexibility, integration, service design, technology

Procedia PDF Downloads 352
1927 Proposal for Knowledge-Based Virtual Community System (KBVCS) for Enhancing Knowledge Sharing in Mechatronics System Diagnostic and Repair

Authors: Adetoba B. Tiwalola, Adedeji W. Oyediran, Yekini N. Asafe, Akinwole A. Kikelomo

Abstract:

Mechatronics is synergistic integration of mechanical engineering, with electronics and intelligent computer control in the design and manufacturing of industrial products and processes. Automobile (auto car, motor car or car is a wheeled motor vehicle used for transporting passengers, which also carries its own engine or motor) is a mechatronic system which served as major means of transportation around the world. Virtually all community has a need for automobile. This makes automobile issues as related to diagnostic and repair interesting to all communities. Consequent to the diversification of skill in diagnosing automobile faults and approaches in solving some problems and innovation in automobile industry. It is appropriate to say that repair and diagnostic of automobile will be better enhanced if community has opportunity of sharing knowledge and idea globally. This paper discussed the desirable elements in automobile as mechatronics system and present conceptual framework of virtual community model for knowledge sharing among automobile users.

Keywords: automobile, automobile users, knowledge sharing, mechatronics system, virtual community

Procedia PDF Downloads 440
1926 Housing Prices and Travel Costs: Insights from Origin-Destination Demand Estimation in Taiwan’s Science Parks

Authors: Kai-Wei Ji, Dung-Ying Lin

Abstract:

This study investigates the impact of transportation on housing prices in regions surrounding Taiwan's science parks. As these parks evolve into crucial economic and population growth centers, they attract an increasing number of residents and workers, significantly influencing local housing markets. This demographic shift raises important questions about the role of transportation in shaping real estate values. Our research examines four major science parks in Taiwan, providing a comparative analysis of how transportation conditions and population dynamics interact to affect housing price premiums. We employ an origin-destination (OD) matrix derived from pervasive traffic data to model travel patterns and their effects on real estate values. The methodology utilizes a bi-level framework: a genetic algorithm optimizes OD demand estimation at the upper level, while a user equilibrium (UE) model simulates traffic flow at the lower level. This approach enables a nuanced exploration of how population growth impacts transportation conditions and housing price premiums. By analyzing the interplay between travel costs based on OD demand estimation and housing prices, we offer valuable insights for urban planners and policymakers. These findings are crucial for informed decision-making in rapidly developing areas, where understanding the relationship between mobility and real estate values is essential for sustainable urban development.

Keywords: demand estimation, genetic algorithm, housing price, transportation

Procedia PDF Downloads 20
1925 Three Issues for Integrating Artificial Intelligence into Legal Reasoning

Authors: Fausto Morais

Abstract:

Artificial intelligence has been widely used in law. Programs are able to classify suits, to identify decision-making patterns, to predict outcomes, and to formalize legal arguments as well. In Brazil, the artificial intelligence victor has been classifying cases to supreme court’s standards. When those programs act doing those tasks, they simulate some kind of legal decision and legal arguments, raising doubts about how artificial intelligence can be integrated into legal reasoning. Taking this into account, the following three issues are identified; the problem of hypernormatization, the argument of legal anthropocentrism, and the artificial legal principles. Hypernormatization can be seen in the Brazilian legal context in the Supreme Court’s usage of the Victor program. This program generated efficiency and consistency. On the other hand, there is a feasible risk of over standardizing factual and normative legal features. Then legal clerks and programmers should work together to develop an adequate way to model legal language into computational code. If this is possible, intelligent programs may enact legal decisions in easy cases automatically cases, and, in this picture, the legal anthropocentrism argument takes place. Such an argument argues that just humans beings should enact legal decisions. This is so because human beings have a conscience, free will, and self unity. In spite of that, it is possible to argue against the anthropocentrism argument and to show how intelligent programs may work overcoming human beings' problems like misleading cognition, emotions, and lack of memory. In this way, intelligent machines could be able to pass legal decisions automatically by classification, as Victor in Brazil does, because they are binding by legal patterns and should not deviate from them. Notwithstanding, artificial intelligent programs can be helpful beyond easy cases. In hard cases, they are able to identify legal standards and legal arguments by using machine learning. For that, a dataset of legal decisions regarding a particular matter must be available, which is a reality in Brazilian Judiciary. Doing such procedure, artificial intelligent programs can support a human decision in hard cases, providing legal standards and arguments based on empirical evidence. Those legal features claim an argumentative weight in legal reasoning and should serve as references for judges when they must decide to maintain or overcome a legal standard.

Keywords: artificial intelligence, artificial legal principles, hypernormatization, legal anthropocentrism argument, legal reasoning

Procedia PDF Downloads 145
1924 Integrative Analysis of Urban Transportation Network and Land Use Using GIS: A Case Study of Siddipet City

Authors: P. Priya Madhuri, J. Kamini, S. C. Jayanthi

Abstract:

Assessment of land use and transportation networks is essential for sustainable urban growth, urban planning, efficient public transportation systems, and reducing traffic congestion. The study focuses on land use, population density, and their correlation with the road network for future development. The scope of the study covers inventory and assessment of the road network dataset (line) at the city, zonal, or ward level, which is extracted from very high-resolution satellite data (spatial resolution < 0.5 m) at 1:4000 map scale and ground truth verification. Road network assessment is carried out by computing various indices that measure road coverage and connectivity. In this study, an assessment of the road network is carried out for the study region at the municipal and ward levels. In order to identify gaps, road coverage and connectivity were associated with urban land use, built-up area, and population density in the study area. Ward-wise road connectivity and coverage maps have been prepared. To assess the relationship between road network metrics, correlation analysis is applied. The study's conclusions are extremely beneficial for effective road network planning and detecting gaps in the road network at the ward level in association with urban land use, existing built-up, and population.

Keywords: road connectivity, road coverage, road network, urban land use, transportation analysis

Procedia PDF Downloads 33
1923 Intelligent Scaffolding Diagnostic Tutoring Systems to Enhance Students’ Academic Reading Skills

Authors: A.Chayaporn Kaoropthai, B. Onjaree Natakuatoong, C. Nagul Cooharojananone

Abstract:

The first year is usually the most critical year for university students. Generally, a considerable number of first-year students worldwide drop out of university every year. One of the major reasons for dropping out is failing. Although they are supposed to have mastered sufficient English proficiency upon completing their high school education, most first-year students are still novices in academic reading. Due to their lack of experience in academic reading, first-year students need significant support from teachers to help develop their academic reading skills. Reading strategies training is thus a necessity and plays a crucial role in classroom instruction. However, individual differences in both students, as well as teachers, are the main factors contributing to the failure in not responding to each individual student’s needs. For this reason, reading strategies training inevitably needs a diagnosis of students’ academic reading skills levels before, during, and after learning, in order to respond to their different needs. To further support reading strategies training, scaffolding is proposed to facilitate students in understanding and practicing using reading strategies under the teachers’ guidance. The use of the Intelligent Tutoring Systems (ITSs) as a tool for diagnosing students’ reading problems will be very beneficial to both students and their teachers. The ITSs consist of four major modules: the Expert module, the Student module, the Diagnostic module, and the User Interface module. The application of Artificial Intelligence (AI) enables the systems to perform diagnosis consistently and appropriately for each individual student. Thus, it is essential to develop the Intelligent Scaffolding Diagnostic Reading Strategies Tutoring Systems to enhance first-year students’ academic reading skills. The systems proposed will contribute to resolving classroom reading strategies training problems, developing students’ academic reading skills, and facilitating teachers.

Keywords: academic reading, intelligent tutoring systems, scaffolding, university students

Procedia PDF Downloads 390
1922 Deep Learning Framework for Predicting Bus Travel Times with Multiple Bus Routes: A Single-Step Multi-Station Forecasting Approach

Authors: Muhammad Ahnaf Zahin, Yaw Adu-Gyamfi

Abstract:

Bus transit is a crucial component of transportation networks, especially in urban areas. Any intelligent transportation system must have accurate real-time information on bus travel times since it minimizes waiting times for passengers at different stations along a route, improves service reliability, and significantly optimizes travel patterns. Bus agencies must enhance the quality of their information service to serve their passengers better and draw in more travelers since people waiting at bus stops are frequently anxious about when the bus will arrive at their starting point and when it will reach their destination. For solving this issue, different models have been developed for predicting bus travel times recently, but most of them are focused on smaller road networks due to their relatively subpar performance in high-density urban areas on a vast network. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. In this study, Gated Recurrent Unit (GRU) neural network was followed to predict the mean vehicle travel times for different hours of the day for multiple stations along multiple routes. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. The spatial and temporal information and the historical average travel times were captured from the dataset for model input parameters. As adjacency matrices for the spatial input parameters, the station distances and sequence numbers were used, and the time of day (hour) was considered for the temporal inputs. Other inputs, including volatility information such as standard deviation and variance of journey durations, were also included in the model to make it more robust. The model's performance was evaluated based on a metric called mean absolute percentage error (MAPE). The observed prediction errors for various routes, trips, and stations remained consistent throughout the day. The results showed that the developed model could predict travel times more accurately during peak traffic hours, having a MAPE of around 14%, and performed less accurately during the latter part of the day. In the context of a complicated transportation network in high-density urban areas, the model showed its applicability for real-time travel time prediction of public transportation and ensured the high quality of the predictions generated by the model.

Keywords: gated recurrent unit, mean absolute percentage error, single-step forecasting, travel time prediction.

Procedia PDF Downloads 72
1921 Factors Affecting Bus Use as a Sustainable Mode of Transportation: Insights from Kerman, Iran

Authors: Fatemeh Rahmani, Navid Nadimi, Vahid Khalifeh

Abstract:

In the near future, cities with medium populations will face traffic congestion, air pollution, high fuel consumption, and noise pollution. It is possible to improve the sustainability of cities by utilizing public transportation. A study of the factors that influence citizens' bus usage in medium-sized cities is presented in this paper. For this purpose, Kerman's citizens were surveyed online. The model was based on a binary logistic regression. A descriptive analysis revealed that simple measures like renewing the fleet, upgrading the stations, establishing a schedule program, and cleaning the buses could improve passenger satisfaction. In addition, the modeling results showed that future traffic congestion can be prevented by implementing road and parking lot pricing plans. Further, as the number and length of trips increases, the probability of citizens taking the bus increases. In conclusion, Kerman's bus system is both secure and fast, but these two characteristics can be improved to increase bus ridership.

Keywords: sustainability, transportation, bus, congestion, satisfaction

Procedia PDF Downloads 10
1920 The Effect of Socio-Economic Factors on Electric Vehicle Charging Behavior: An Investigation

Authors: Judith Mwakalonge, Geophrey Mbatta, Cuthbert Ruseruka, Gurcan Comert, Saidi Siuhi

Abstract:

Recent advancements in technology have fostered the development of Electric Vehicles (EVs) that provides relief from transportation dependence on natural fossil fuels as sources of energy. It is estimated that more than 50% of petroleum is used for transportation, which accounts for 28% of annual energy use. Vehicles make up about 82% of all transportation energy use. It is also estimated that about 22% of global Carbon dioxide (CO2) emissions are produced by the transportation sector, therefore, it raises environmental concerns. Governments worldwide, including the United States, are investing in developing EVs to resolve the issues related to the use of natural fossil fuels, such as air pollution due to emissions. For instance, the Bipartisan Infrastructure Law (BIL) that was signed by President Biden on November 15th, 2021, sets aside about $5 billion to be apportioned to all 50 states, the District of Columbia, and Puerto Rico for the development of EV chargers. These chargers should be placed in a way that maximizes their utility. This study aims at studying the charging behaviors of Electric Vehicle (EV) users to establish factors to be considered in the selection of charging locations. The study will focus on social-economic and land use data by studying the relationship between charging time and charging locations. Local factors affecting the charging time and the chargers’ utility will be investigated.

Keywords: electric vehicles, EV charging stations, social economic factors, charging networks

Procedia PDF Downloads 82
1919 2023 Targets of the Republic of Turkey State Railways

Authors: Hicran Açıkel, Hüseyin Arak, D. Ali Açıkel

Abstract:

Train or high-speed train is a land transportation vehicle, which is safe and offers passengers flight-like comfort while it is preferred for busy lines with respect to passengers. In this study, TCDD’s (Turkish State Railroads Company) targets for the year of 2023, the planned high-speed train lines, improvements, which are considered for the existing lines, and achievability of these targets are examined.

Keywords: train, high-speed train, TCDD, transportation

Procedia PDF Downloads 247
1918 Research of Control System for Space Intelligent Robot Based on Vision Servo

Authors: Changchun Liang, Xiaodong Zhang, Xin Liu, Pengfei Sun

Abstract:

Space intelligent robotic systems are expected to play an increasingly important role in the future. The robotic on-orbital service, whose key is the tracking and capturing technology, becomes research hot in recent years. In this paper, the authors propose a vision servo control system for target capturing. Robotic manipulator will be an intelligent robotic system with large-scale movement, functional agility, and autonomous ability, and it can be operated by astronauts in the space station or be controlled by the ground operator in the remote operation mode. To realize the autonomous movement and capture mission of SRM, a kind of autonomous programming strategy based on multi-camera vision fusion is designed and the selection principle of object visual position and orientation measurement information is defined for the better precision. Distributed control system hierarchy is designed and reliability is considering to guarantee the abilities of control system. At last, a ground experiment system is set up based on the concept of robotic control system. With that, the autonomous target capturing experiments are conducted. The experiment results validate the proposed algorithm, and demonstrates that the control system can fulfill the needs of function, real-time and reliability.

Keywords: control system, on-orbital service, space robot, vision servo

Procedia PDF Downloads 419
1917 A Reliable Multi-Type Vehicle Classification System

Authors: Ghada S. Moussa

Abstract:

Vehicle classification is an important task in traffic surveillance and intelligent transportation systems. Classification of vehicle images is facing several problems such as: high intra-class vehicle variations, occlusion, shadow, illumination. These problems and others must be considered to develop a reliable vehicle classification system. In this study, a reliable multi-type vehicle classification system based on Bag-of-Words (BoW) paradigm is developed. Our proposed system used and compared four well-known classifiers; Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), k-Nearest Neighbour (KNN), and Decision Tree to classify vehicles into four categories: motorcycles, small, medium and large. Experiments on a large dataset show that our approach is efficient and reliable in classifying vehicles with accuracy of 95.7%. The SVM outperforms other classification algorithms in terms of both accuracy and robustness alongside considerable reduction in execution time. The innovativeness of developed system is it can serve as a framework for many vehicle classification systems.

Keywords: vehicle classification, bag-of-words technique, SVM classifier, LDA classifier, KNN classifier, decision tree classifier, SIFT algorithm

Procedia PDF Downloads 358
1916 Trends of Public-Private Partnership Infrastructure in Thailand

Authors: Wasaporn Techapeeraparnich

Abstract:

Bringing private investor involving in providing public infrastructure have been increasingly used worldwide, and there is no exception for developing countries like Thailand. Recently, there is a huge investment opportunity for public-private partnership (PPP) in Thailand, especially in the transportation sector. This paper analyses the development of the PPP since the early beginning of PPP in different service sectors. It also summarizes the development of PPP and its application in terms of usage, opportunities and trends particularly in the transport sector. The results are aimed to draw some lessons learned for future development.

Keywords: case study, public-private partnership, transportation, Thailand

Procedia PDF Downloads 434
1915 Design and Construction of an Intelligent Multiplication Table for Enhanced Education and Increased Student Engagement

Authors: Zahra Alikhani Koopaei

Abstract:

In the fifth lesson of the third-grade mathematics book, students are introduced to the concept of multiplication. However, some students showed a lack of interest in learning this topic. To address this, a simple electronic multiplication table was designed with the aim of making the concept of multiplication entertaining and engaging for students. It provides them with moments of excitement during the learning process. To achieve this goal, a device was created that produced a bell sound when two wire ends were connected. Each wire end was connected to a specific number in the multiplication table, and the other end was linked to the corresponding answer. Consequently, if the answer is correct, the bell will ring. This study employs interactive and engaging methods to teach mathematics, particularly to students who have previously shown little interest in the subject. By integrating game-based learning and critical thinking, we observed an increase in understanding and interest in learning multiplication compared to before using this method. This further motivated the students. As a result, the intelligent multiplication table was successfully designed. Students, under the instructor's supervision, could easily construct the device during the lesson. Through the implementation of these operations, the concept of multiplication was firmly established in the students' minds. Engaging multiple intelligences in each student enhances a more stable and improved understanding of the concept of multiplication.

Keywords: intelligent multiplication table, design, construction, education, increased interest, students

Procedia PDF Downloads 69
1914 Applying an Automatic Speech Intelligent System to the Health Care of Patients Undergoing Long-Term Hemodialysis

Authors: Kuo-Kai Lin, Po-Lun Chang

Abstract:

Research Background and Purpose: Following the development of the Internet and multimedia, the Internet and information technology have become crucial avenues of modern communication and knowledge acquisition. The advantages of using mobile devices for learning include making learning borderless and accessible. Mobile learning has become a trend in disease management and health promotion in recent years. End-stage renal disease (ESRD) is an irreversible chronic disease, and patients who do not receive kidney transplants can only rely on hemodialysis or peritoneal dialysis to survive. Due to the complexities in caregiving for patients with ESRD that stem from their advanced age and other comorbidities, the patients’ incapacity of self-care leads to an increase in the need to rely on their families or primary caregivers, although whether the primary caregivers adequately understand and implement patient care is a topic of concern. Therefore, this study explored whether primary caregivers’ health care provisions can be improved through the intervention of an automatic speech intelligent system, thereby improving the objective health outcomes of patients undergoing long-term dialysis. Method: This study developed an automatic speech intelligent system with healthcare functions such as health information voice prompt, two-way feedback, real-time push notification, and health information delivery. Convenience sampling was adopted to recruit eligible patients from a hemodialysis center at a regional teaching hospital as research participants. A one-group pretest-posttest design was adopted. Descriptive and inferential statistics were calculated from the demographic information collected from questionnaires answered by patients and primary caregivers, and from a medical record review, a health care scale (recorded six months before and after the implementation of intervention measures), a subjective health assessment, and a report of objective physiological indicators. The changes in health care behaviors, subjective health status, and physiological indicators before and after the intervention of the proposed automatic speech intelligent system were then compared. Conclusion and Discussion: The preliminary automatic speech intelligent system developed in this study was tested with 20 pretest patients at the recruitment location, and their health care capacity scores improved from 59.1 to 72.8; comparisons through a nonparametric test indicated a significant difference (p < .01). The average score for their subjective health assessment rose from 2.8 to 3.3. A survey of their objective physiological indicators discovered that the compliance rate for the blood potassium level was the most significant indicator; its average compliance rate increased from 81% to 94%. The results demonstrated that this automatic speech intelligent system yielded a higher efficacy for chronic disease care than did conventional health education delivered by nurses. Therefore, future efforts will continue to increase the number of recruited patients and to refine the intelligent system. Future improvements to the intelligent system can be expected to enhance its effectiveness even further.

Keywords: automatic speech intelligent system for health care, primary caregiver, long-term hemodialysis, health care capabilities, health outcomes

Procedia PDF Downloads 110
1913 The Review of Coiled Tubing Intelligent Sidetracking Steering Technology

Authors: Zhao Xueran, Yang Dong

Abstract:

In order to improve the problem that old wells in oilfields are shut down due to low oil recovery, sidetracking has become one of the main technical means to restore the vitality of old wells. A variety of sidetracking technologies have been researched and formed internationally. Among them, coiled tubing sidetracking horizontal wells have significant advantages over conventional sidetracking methods: underbalanced pressure operations; reducing the number of trips of tubing, while drilling and production, saving construction costs, less ground equipment and less floor space, orienter guidance to reduce drilling friction, etc. This paper mainly introduces the steering technology in coiled tubing intelligent sidetracking at home and abroad, including the orienter and the rotary steerable system.

Keywords: sidetracking, coiled tubing, orienter, rotary steering system

Procedia PDF Downloads 168
1912 Experimental Study for the Development of a Wireless Communication System in a Solar Central Tower Facility

Authors: Victor H. Benitez, Ramon V. Armas-Flores, Jesus H. Pacheco-Ramirez

Abstract:

Systems transforming solar energy into electrical power have emerged as a viable source of clean, renewable energy. Solar power tower technology is a good example of this type of system, which consists of several mobile mirrors, called heliostats, which reflect the sun's radiation to the same point, located on top of a tower at the center of heliostat field, for collection or transformation into another type of energy. The so-called Hermosillo’s Solar Platform (Plataforma Solar de Hermosillo, PSH, in Spanish) is a facility constituted with several heliostats, its aim and scope is for research purposes. In this paper, the implementation of a wireless communication system based on intelligent nodes is proposed in order to allow the communication and control of the heliostats in PSH. Intelligent nodes transmit information from one point to another, and can perform other actions that allow them to adapt to the conditions and limitations of a field of heliostats, thus achieving effective communication system. After deployment of the nodes in the heliostats, tests were conducted to measure the effectiveness of the communication, and determine the feasibility of using the proposed technologies. The test results were always positive, exceeding expectations held for its operation in the field of heliostats. Therefore, it was possible to validate the efficiency of the wireless communication system to be implemented in PSH, allowing communication and control of the heliostats.

Keywords: heliostat, intelligent node, solar energy, wireless communication

Procedia PDF Downloads 408
1911 Comparative Analysis of Canal Centering Ratio, Apical Transportation, and Remaining Dentin Thickness between Single File System Using Cone Beam Computed Tomography: An in vitro Study

Authors: Aditi Jain

Abstract:

Aim: To compare the canal transportation, centering ability and remaining dentin thickness of OneShape and WaveOne system using CBCT. Objective: To identify rotary system which respects original canal anatomy. Materials and Methods: Forty extracted human single-rooted premolars were used in the present study. Pre-instrumentation scans of all teeth were taken, canal curvatures were calculated, and the samples were randomly divided into two groups with twenty samples in each group, where Group 1 included WaveOne system and Group 2 Protaper rotary system. Post-instrumentation scans were performed, and the two scans were compared to determine canal transportation, centering ability and remaining dentin thickness at 1, 3, and 5 mm from the root apex. Results: Using Student’s unpaired t test results were as follows; for canal transportation Group 1 showed statistical significant difference at 3mm, 6mm and non-significant difference was obtained at 9mm but for Group 2 non-statistical significant difference was obtained at 3mm, 6mm, and 9mm. For centering ability and remaining dentin thickness Group 1 showed non-statistical significant difference at 3mm and 9mm, while statistical significant difference at 6mm was obtained. When comparison of remaining dentin thickness was done at three levels using two groups WaveOne and ProTaper. There was non-statistical significant difference between two groups. Conclusion: WaveOne single reciprocation file respects original canal anatomy better than ProTaper. WaveOne depicted the best centering ability.

Keywords: ShapeOne, WaveOne, transportation, centering ability, dentin thickness, CBCT (Cone Beam Computed Tomography)

Procedia PDF Downloads 205
1910 Interactive Solutions for the Multi-Objective Capacitated Transportation Problem with Mixed Constraints under Fuzziness

Authors: Aquil Ahmed, Srikant Gupta, Irfan Ali

Abstract:

In this paper, we study a multi-objective capacitated transportation problem (MOCTP) with mixed constraints. This paper is comprised of the modelling and optimisation of an MOCTP in a fuzzy environment in which some goals are fractional and some are linear. In real life application of the fuzzy goal programming (FGP) problem with multiple objectives, it is difficult for the decision maker(s) to determine the goal value of each objective precisely as the goal values are imprecise or uncertain. Also, we developed the concept of linearization of fractional goal for solving the MOCTP. In this paper, imprecision of the parameter is handled by the concept of fuzzy set theory by considering these parameters as a trapezoidal fuzzy number. α-cut approach is used to get the crisp value of the parameters. Numerical examples are used to illustrate the method for solving MOCTP.

Keywords: capacitated transportation problem, multi objective linear programming, multi-objective fractional programming, fuzzy goal programming, fuzzy sets, trapezoidal fuzzy number

Procedia PDF Downloads 434
1909 Research on the Ecological Impact Evaluation Index System of Transportation Construction Projects

Authors: Yu Chen, Xiaoguang Yang, Lin Lin

Abstract:

Traffic engineering construction is an important infrastructure for economic and social development. In the process of construction and operation, the ability to make a correct evaluation of the project's environmental impact appears to be crucial to the rational operation of existing transportation projects, the correct development of transportation engineering construction and the adoption of corresponding measures to scientifically carry out environmental protection work. Most of the existing research work on ecological and environmental impact assessment is limited to individual aspects of the environment and less to the overall evaluation of the environmental system; in terms of research conclusions, there are more qualitative analyses from the technical and policy levels, and there is a lack of quantitative research results and quantitative and operable evaluation models. In this paper, a comprehensive analysis of the ecological and environmental impacts of transportation construction projects is conducted, and factors such as the accessibility of data and the reliability of calculation results are comprehensively considered to extract indicators that can reflect the essence and characteristics. The qualitative evaluation indicators were screened using the expert review method, the qualitative indicators were measured using the fuzzy statistics method, the quantitative indicators were screened using the principal component analysis method, and the quantitative indicators were measured by both literature search and calculation. An environmental impact evaluation index system with the general objective layer, sub-objective layer and indicator layer was established, dividing the environmental impact of the transportation construction project into two periods: the construction period and the operation period. On the basis of the evaluation index system, the index weights are determined using the hierarchical analysis method, and the individual indicators to be evaluated are dimensionless, eliminating the influence of the original background and meaning of the indicators. Finally, the thesis uses the above research results, combined with the actual engineering practice, to verify the correctness and operability of the evaluation method.

Keywords: transportation construction projects, ecological and environmental impact, analysis and evaluation, indicator evaluation system

Procedia PDF Downloads 105