Search results for: induced matching
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3257

Search results for: induced matching

3017 Cross-Disciplinary Perspectives on Climate-Induced Migration in Brazil: Legislation, Policies and Practice

Authors: Heloisa H. Miura, Luiza M. Pallone

Abstract:

In Brazil, people forced to move due to environmental causes, called 'environmental migrants', have always been neglected by public policies and legislation. Meanwhile, the numbers of climate-induced migration within and to Brazil continues to increase. The operating Immigration Law, implemented in 1980 under the Brazilian military regime, is widely considered to be out of date, once it does not offer legal protection to migrants who do not fit the definition of a refugee and are not allowed to stay regularly in the country. Aiming to reformulate Brazil’s legislation and policies on the matter, a new Migration Bill (PL 2516/2015) is currently being discussed in the Senate and is expected to define a more humanized approach to migration. Although the present draft foresees an expansion of the legal protection to different types of migrants, it still hesitates to include climate-induced displacements in its premises and to establish a migration management strategy. By introducing a human rights-based approach, this paper aims to provide a new multidisciplinary perspective to the protection of environmental migrants in Brazil.

Keywords: environmental migrants, human mobility, climate change, migration policy

Procedia PDF Downloads 402
3016 Effect of Prefabricated Vertical Drain System Properties on Embankment Behavior

Authors: Seyed Abolhasan Naeini, Ali Namaei

Abstract:

This study presents the effect of prefabricated vertical drain system properties on embankment behavior by calculating the settlement, lateral displacement and induced excess pore pressure by numerical method. In order to investigate this behavior, three different prefabricated vertical drains have been simulated under an embankment. The finite element software PLAXIS has been carried out for analyzing the displacements and excess pore pressures. The results showed that the consolidation time and induced excess pore pressure are highly depended to the discharge capacity of the prefabricated vertical drain. The increase in the discharge capacity leads to decrease the consolidation process and the induced excess pore pressure. Moreover, it was seen that the vertical drains spacing does not have any significant effect on the consolidation time. However, the increase in the drains spacing would decrease the system stiffness.

Keywords: vertical drain, prefabricated, consolidation, embankment

Procedia PDF Downloads 151
3015 Involvement of BCRP/ABCG2 in Protective Mechanisms of Resveratrol against Methotrexate-Induced Renal Damage in Rats

Authors: Mohamed A. Morsy, Azza A. El-Sheikh, Abdulla Y. Al-Taher

Abstract:

Resveratrol (RES) is a well-known polyphenol antioxidant. We have previously shown that testicular protective effect of RES against the anticancer drug methotrexate (MTX)-induced toxicity involves transporter-mediated mechanisms. Here, we investigated the effect of RES on MTX-induced nephrotoxicity. Rats were administered RES (10 mg/kg/day) for 8 days, with or without a single MTX dose (20 mg/kg i.p.) at day 4 of the experiment. MTX induced nephrotoxicity evident by significantly increase in serum blood urea nitrogen and creatinine compared to control, as well as distortion of kidney microscopic structure. MTX also significantly increased renal nitric oxide level, with induction of inducible nitric oxide synthase expression. MTX also significantly up-regulated fas ligand and caspase 3. Administering RES prior to MTX significantly improved kidney function and microscopic picture, as well as significantly decreased nitrosative and apoptotic markers compared to MTX alone. RES, but not MTX, caused significant increase in expression of breast cancer resistance protein (BCRP), an apical efflux renal transporter that participates in urinary elimination of both MTX and RES. Interestingly, concomitant MTX and RES caused further up-regulation of renal Bcrp compared to RES alone. Using Human BCRP ATPase assay, both RES and MTX exhibited dose-dependent increase in ATPase activity, with Km values of 0.52 ± 0.03 and 30.9 ± 4.2 µM, respectively. Furthermore, combined RES and MTX caused ATPase activity which was significantly less than maximum ATPase activity attained by the positive control; sulfasalazine (12.5 µM). In conclusion, RES exerted nephro-protection against MTX-induced toxicity through anti-nitrosative and anti-apoptotic effects, as well as via up-regulation of renal Bcrp.

Keywords: methotrexate, resveratrol, nephrotoxicity, breast cancer resistance protein

Procedia PDF Downloads 295
3014 Therapeutic Effects of Toll Like Receptor 9 Ligand CpG-ODN on Radiation Injury

Authors: Jianming Cai

Abstract:

Exposure to ionizing radiation causes severe damage to human body and an safe and effective radioprotector is urgently required for alleviating radiation damage. In 2008, flagellin, an agonist of TLR5, was found to exert radioprotective effects on radiation injury through activating NF-kB signaling pathway. From then, the radioprotective effects of TLR ligands has shed new lights on radiation protection. CpG-ODN is an unmethylated oligonucleotide which activates TLR9 signaling pathway. In this study, we demonstrated that CpG-ODN has therapeutic effects on radiation injuries induced by γ ray and 12C6+ heavy ion particles. Our data showed that CpG-ODN increased the survival rate of mice after whole body irradiation and increased the number of leukocytes as well as the bone marrow cells. CpG-ODN also alleviated radiation damage on intestinal crypt through regulating apoptosis signaling pathway including bcl2, bax, and caspase 3 etc. By using a radiation-induced pulmonary fibrosis model, we found that CpG-ODN could alleviate structural damage, within 20 week after whole–thorax 15Gy irradiation. In this model, Th1/Th2 imbalance induced by irradiation was also reversed by CpG-ODN. We also found that TGFβ-Smad signaling pathway was regulated by CpG-ODN, which accounts for the therapeutic effects of CpG-ODN in radiation-induced pulmonary injury. On another hand, for high LET radiation protection, we investigated protective effects of CpG-ODN against 12C6+ heavy ion irradiation and found that after CpG-ODN treatment, the apoptosis and cell cycle arrest induced by 12C6+ irradiation was reduced. CpG-ODN also reduced the expression of Bax and caspase 3, while increased the level of bcl2. Then we detected the effect of CpG-ODN on heavy ion induced immune dysfunction. Our data showed that CpG-ODN increased the survival rate of mice and also the leukocytes after 12C6+ irradiation. Besides, the structural damage of immune organ such as thymus and spleen was also alleviated by CpG-ODN treatment. In conclusion, we found that TLR9 ligand, CpG-ODN reduced radiation injuries in response to γ ray and 12C6+ heavy ion irradiation. On one hand, CpG-ODN inhibited the activation of apoptosis induced by radiation through regulating bcl2, bax and caspase 3. On another hand, through activating TLR9, CpG-ODN recruit MyD88-IRAK-TRAF6 complex, activating TAK1, IRF5 and NF-kB pathway, and thus alleviates radiation damage. This study provides novel insights into protection and therapy of radiation damages.

Keywords: TLR9, CpG-ODN, radiation injury, high LET radiation

Procedia PDF Downloads 480
3013 Induced-Gravity Inflation in View of the Bicep2 Results

Authors: C. Pallis

Abstract:

Induced-Gravity inflation is a model of chaotic inflation where the inflaton is identified with a Higgs-like modulus whose the vacuum expectation value controls the gravitational strength. Thanks to a strong enough coupling between the inflaton and the Ricci scalar curvature, inflation is attained even for subplanckian values of the inflaton with the corresponding effective theory being valid up to the Planck scale. In its simplest realization, induced-gravity inflation is based on a quatric potential and a quadratic non-minimal coupling and the inflationary observables turn out to be in agreement with the Planck data. Its supersymmetrization can be formulated within no-scale Supergravity employing two gauge singlet chiral superfields and applying a continuous $R$ and a discrete Zn symmetry to the proposed superpotential and Kahler potential. Modifying slightly the non-minimal coupling to Gravity, the model can account for the recent results of BICEP2. These modifications can be also accommodated beyond the no-scale SUGRA considering the fourth order term of the Kahler potential which mixes the inflaton with the accompanying non-inflaton field and small deviations from the prefactor $-3$ encountered in the adopted Kahler potential.

Keywords: cosmology, supersymmetric models, supergravity, modified gravity

Procedia PDF Downloads 715
3012 Anti-Melanogenic Effect of Fisetin through Activating Connective Tissue Growth Factor in vivo Mice Model

Authors: Ryeong-Hyeon Kim, Ah-Reum Lee, Seong-Soo Roh, Gyo-Nam Kim

Abstract:

Appropriate regulation of melanogenesis is important for the management of skin pigmentation-related disease. Although several beneficial effects of fisetin (3,7,3’,4’-tetrahydroxyflavone) have been reported, the precise role and molecular mechanisms of fisetin in skin health both remain unclear. Here, we induced melanogenesis of HRM2 mice (n=7/group) by UVB irradiation for 20 days. UVB-induced HRM2 mice showed that the significantly increased melanin accumulation, however, fisetin treatment (25mg and 50mg/kg of body weight) dose-dependently and significantly inhibits UVB-induced melanogenesis. In line with this, fisetin treatment effectively down-regulated m RNA and expression levels of tyrosinase, TRP2, and MITF. In addition, our inhibitor assay revealed the down-regulated melanogenic marker genes by fisetin treatment were mediated with connective tissue growth factor (CCN2)/TGF-β signaling pathway. Useful information is provided for development of functional foods using fisetin for skin health.

Keywords: connective tissue growth factor, fisetin, melanogenesis, skin, TGF-beta

Procedia PDF Downloads 236
3011 Analgesic, Toxicity and Anti-Pyretic Activities of Methanolic Extract from Hyoscyamus albus Leaves in Albinos Rats

Authors: Yahia Massinissa, Henhouda Affaf, Yahia Mouloud

Abstract:

The aim of this study was to investigate the toxicity; analgesic and anti-pyretic properties of standardized HA methanolic extract (HAMeOH) in vivo. The acute toxicity study was performed on rats while adopting the OECD-420 Guidelines (fixed dose procedure). Assessment of analgesic activity was performed in rats with two analgesic models. One was acetic acid induced writhing response and the other formalin-induced paw licking. The anti-pyretic effect was tested by brewer’s yeast induced fever in rats. For the acute toxicity test, the higher dose administration of 2000 mg/kg bw. of Hyoscyamus albus did not produce any toxic signs or deaths in rats. There were no significant differences (p>0.05) in the body and organ weights between control and treated groups. The (LD50) of Hyoscyamus albus was higher than 2000 g/kg bw. In subacute toxicity study, no mortality and toxic signs were observed with the doses of 100 and 200 mg/kg bw. of extracts of for 28 consecutive days. These analgesic experimental results indicated that HAMeOH (100 mg/kg and 200 mg/kg) decreased the acetic acid-induced writhing responses and HAMeOH (100 mg/kg and 200 mg/kg) decreased the licking time in the second phase of the formalin test. Moreover, in the model of yeast induced elevation of the body temperature HAMeOH showed dose-dependent lowering of the body temperature up to 3h at both the doses these results obtained, were comparable to that of paracetamol. The present findings indicate that the leaves of Hyoscyamus albus L. possess potent analgesic and antipyretic activity.

Keywords: Hyoscyamus albus, methanolic extract, toxicity, analgesic activity, antipyretic activity, formalin test

Procedia PDF Downloads 338
3010 National Directorate of Employment Training and Agricultural-Small and Medium Enterprises Performance in Nigeria

Authors: Festus M. Epetimehin

Abstract:

This study was conducted to identify the effect of National Directorate of Employment (NDE) training on the profit of Agricultural-Small and Medium Enterprises (SMEs) and to evaluate the factors that influenced farmers' participation in NDE training, as well as the type and frequency of training farmers and other agro-allied entrepreneurs in Nigeria. Using a multi-stage sampling procedure, a total of 384 respondents were sampled, including 192 beneficiaries and 192 non-beneficiaries in Oyo and Lagos States, respectively. Data were analysed using Binary Logit regression and Propensity Score Matching techniques. According to the binary logit analysis, respondents’ gender, availability to extension services, and the location of respondent’s operation were determinant factors influencing NDE training enrolment. All identified factors are related to the probability of respondents’ involvement in a positive way. Propensity score matching revealed that Agricultural-SMEs who participated in the NDE program boosted their profit by N341,072.18. The positive outcome of the effect implies that NDE training enhances Agri-SME performance in Nigeria. The study concluded that greater funding should be provided for the NDE for performance-enhancing training of the Agri-SMEs.

Keywords: PSM, binary logit model, Agri-SME

Procedia PDF Downloads 96
3009 Probabilistic Slope Stability Analysis of Excavation Induced Landslides Using Hermite Polynomial Chaos

Authors: Schadrack Mwizerwa

Abstract:

The characterization and prediction of landslides are crucial for assessing geological hazards and mitigating risks to infrastructure and communities. This research aims to develop a probabilistic framework for analyzing excavation-induced landslides, which is fundamental for assessing geological hazards and mitigating risks to infrastructure and communities. The study uses Hermite polynomial chaos, a non-stationary random process, to analyze the stability of a slope and characterize the failure probability of a real landslide induced by highway construction excavation. The correlation within the data is captured using the Karhunen-Loève (KL) expansion theory, and the finite element method is used to analyze the slope's stability. The research contributes to the field of landslide characterization by employing advanced random field approaches, providing valuable insights into the complex nature of landslide behavior and the effectiveness of advanced probabilistic models for risk assessment and management. The data collected from the Baiyuzui landslide, induced by highway construction, is used as an illustrative example. The findings highlight the importance of considering the probabilistic nature of landslides and provide valuable insights into the complex behavior of such hazards.

Keywords: Hermite polynomial chaos, Karhunen-Loeve, slope stability, probabilistic analysis

Procedia PDF Downloads 76
3008 Investigation of Vortex Induced Vibration and Galloping Characteristic for Various Shape Slender Bridge Hanger

Authors: Matza Gusto Andika, Syariefatunnisa

Abstract:

Hanger at the arch bridges is an important part to transfer load on the bridge deck onto the arch. Bridges are subjected to several types of loadings, such as dead load, temperature load, wind load, moving loads etc. Usually the hanger bridge has a typical bluff body shape such as circle, square, H beam, etc. When flow past bluff body, the flow separates from the body surface generating an unsteady broad wake. These vortices are shed to the wake periodically with some frequency that is related to the undisturbed wind speed and the size of the cross-section body by the well-known Strouhal relationship. The dynamic characteristic and hanger shape are crucial for the evaluation of vortex induced vibrations and structural vibrations. The effect of vortex induced vibration is not catastrophic as a flutter phenomenon, but it can make fatigue failure to the structure. Wind tunnel tests are conducted to investigate the VIV and galloping effect at circle, hexagonal, and H beam bluff body for hanger bridge. From this research, the hanger bridge with hexagonal shape has a minimum vibration amplitude due to VIV phenomenon compared to circle and H beam. However, when the wind bruises the acute angle of hexagon shape, the vibration amplitude of bridge hanger with hexagonal shape is higher than the other bluff body.

Keywords: vortex induced vibration, hanger bridge, wind tunnel, galloping

Procedia PDF Downloads 264
3007 Genotoxicity Induced by Nanoparticles on Human Lymphoblast Cells (TK6)

Authors: Piyaporn Buaklang, Narisa Kengtrong Bordeerat

Abstract:

The use of nanoparticles is increasing worldwide and there are many nanotech-based daily products available in the market. The toxicity of nanoparticles results from their extremely small size which can be transported easily into the blood stream and other organs. We aimed to study the genotoxicity of two nanoparticles, Titanium dioxide (TiO2-NPs) and Zinc oxide (ZnO-NPs), in TK6 cells by micronucleus assay. The cells were tested at 8, 24, and 48 hours after exposed to 0.10, 0.25, 0.50 and 1.00 µg/mL of TiO2-NPs particles size < 25 nm and < 100 nm and to ZnO-NPs at 1, 10, 50, and 100 µg/mL, particles size < 50 nm and < 100 nm. At 24 hours of incubation transmission electron microscope (TEM) revealed that the nanoparticles TiO2-NPs at 1.00 µg/mL and ZnO-NPs at 10 µg/mL were able to be taken into the cells and induced the production of increasing amount of micronucleus in dose-dependent manner. The effect of the two nanoparticles on chromosome aberration indicated that TiO2-NPs and ZnO-NPs are genotoxic. In addition, the toxicity of TiO2-NPs was found to be 10 times more toxic than ZnO-NPs after 24 hours exposure. Analysis showed that the TiO2-NPs induced formation of micronucleus was both time and dose dependent, whereas the genotoxicity of ZnO-NPs was only dose dependent. In conclusion, TiO2-NPs and ZnO-NPs were able to transport through the cells membrane and directly genotoxic to TK6 cells in dose-dependent manner.

Keywords: nanoparticles, genotoxicity, human lymphoblast cells (TK6), micronucleus

Procedia PDF Downloads 301
3006 Therapeutic Evaluation of Bacopa Monnieri Extract on Liver Fibrosis in Rats

Authors: Yu Wen Wang, Shyh Ming Kuo, Hsia Ying Cheng, Yu Chiuan Wu

Abstract:

Liver fibrosis is caused by the activation of hepatic stellate cells in the liver to secrete excessive and deposition of extracellular matrix. In recent years, many treatment strategies have been developed to reduce the activation of hepatic stellate cells and therefore to increase the decomposition of extracellular matrix. Bacopa monnieri, an herbaceous plant of the scrophulariaceae, containing saponins and glycosides, which with antioxidant, anti-inflammation, pain relief and free radical scavenging characteristics. This study was to evaluate the inhibition of hepatic stellate cell activity by Bacopa monnieri extract and its therapeutic potential in treating thioacetamide-induced liver fibrosis in rats. The results showed that the IC50 of Bacopa monnieri extract was 0.39 mg/mL. Bacopa monnieri extract could effectively reduce H2O2-induced hepatic stellate cells inflammation. In the TAA-induced liver fibrosis animal studies, albumin secretion recovered to normal level after treated with Bacopa monnieri extract for 2-w, and fibrosis related proteins, α-SMA and TGF-1levels decreased indicating the extract exerted therapeutic effect on the liver fibrosis. However, inflammatory factors TNF- obviously decreased after 4-w treatment. In summary, we could successfully extract the main component-Bacopaside I from the plant and acquired a potential therapy using this component in treating TAA-induced liver fibrosis in rat.

Keywords: anti-inflammatory, Bacopa monnieri, fibrosis, hepatic stellate cells, water extract

Procedia PDF Downloads 111
3005 The Role of Autophagy Modulation in Angiotensin-II Induced Hypertrophy

Authors: Kitti Szoke, Laszlo Szoke, Attila Czompa, Arpad Tosaki, Istvan Lekli

Abstract:

Autophagy plays an important role in cardiac hypertrophy, which is one of the most common causes of heart failure in the world. This self-degradative catabolic process, responsible for protein quality control, balancing sources of energy at critical times, and elimination of damaged organelles. The autophagic activity can be triggered by starvation, oxidative stress, or pharmacological agents, like rapamycin. This induced autophagy can promote cell survival during starvation or pathological stress. In this study, it is investigated the effect of the induced autophagic process on angiotensin induced hypertrophic H9c2 cells. In our study, it is used H9c2 cells as an in vitro model. To induce hypertrophy, cells were treated with 10000 nM angiotensin-II, and to activate autophagy, 100 nM rapamycin treatment was used. The following groups were formed: 1: control, 2: 10000 nM AT-II, 3: 100 nM rapamycin, 4: 100 nM rapamycin pretreatment then 10000 nM AT-II. The cell viability was examined via MTT (cell proliferation assay) assay. The cells were stained with rhodamine-conjugated phalloidin and DAPI to visualize F-actin filaments and cell nuclei then the cell size alteration was examined in a fluorescence microscope. Furthermore, the expression levels of autophagic and apoptotic proteins such as Beclin-1, p62, LC3B-II, Cleaved Caspase-3 were evaluated by Western blot. MTT assay result suggests that the used pharmaceutical agents in the tested concentrations did not have a toxic effect; however, at group 3, a slight decrement was detected in cell viability. In response to AT-II treatment, a significant increase was detected in the cell size; cells became hypertrophic. However, rapamycin pretreatment slightly reduced the cell size compared to group 2. Western blot results showed that AT-II treatment-induced autophagy, because the increased expression of Beclin-1, p62, LC3B-II were observed. However, due to the incomplete autophagy, the apoptotic Cleaved Caspase-3 expression also increased. Rapamycin pretreatment up-regulated Beclin-1 and LC3B-II, down-regulated p62 and Cleaved Caspase-3, indicating that rapamycin-induced autophagy can restore the normal autophagic flux. Taken together, our results suggest that rapamycin activated autophagy reduces angiotensin-II induced hypertrophy.

Keywords: angiotensin-II, autophagy, H9c2 cell line, hypertrophy, rapamycin

Procedia PDF Downloads 147
3004 Deciding Graph Non-Hamiltonicity via a Closure Algorithm

Authors: E. R. Swart, S. J. Gismondi, N. R. Swart, C. E. Bell

Abstract:

We present an heuristic algorithm that decides graph non-Hamiltonicity. All graphs are directed, each undirected edge regarded as a pair of counter directed arcs. Each of the n! Hamilton cycles in a complete graph on n+1 vertices is mapped to an n-permutation matrix P where p(u,i)=1 if and only if the ith arc in a cycle enters vertex u, starting and ending at vertex n+1. We first create exclusion set E by noting all arcs (u, v) not in G, sufficient to code precisely all cycles excluded from G i.e. cycles not in G use at least one arc not in G. Members are pairs of components of P, {p(u,i),p(v,i+1)}, i=1, n-1. A doubly stochastic-like relaxed LP formulation of the Hamilton cycle decision problem is constructed. Each {p(u,i),p(v,i+1)} in E is coded as variable q(u,i,v,i+1)=0 i.e. shrinks the feasible region. We then implement the Weak Closure Algorithm (WCA) that tests necessary conditions of a matching, together with Boolean closure to decide 0/1 variable assignments. Each {p(u,i),p(v,j)} not in E is tested for membership in E, and if possible, added to E (q(u,i,v,j)=0) to iteratively maximize |E|. If the WCA constructs E to be maximal, the set of all {p(u,i),p(v,j)}, then G is decided non-Hamiltonian. Only non-Hamiltonian G share this maximal property. Ten non-Hamiltonian graphs (10 through 104 vertices) and 2000 randomized 31 vertex non-Hamiltonian graphs are tested and correctly decided non-Hamiltonian. For Hamiltonian G, the complement of E covers a matching, perhaps useful in searching for cycles. We also present an example where the WCA fails.

Keywords: Hamilton cycle decision problem, computational complexity theory, graph theory, theoretical computer science

Procedia PDF Downloads 373
3003 Toxicity, Analgesic, and Anti-Pyretic Activities of Methanolic Extract from Hyoscyamus albus’ Leaves in Albinos Rats

Authors: Yahia Massinissa, Afaf Benhouda, Mouloud Yahia

Abstract:

Objective: The aim of this study was to investigate the toxicity; analgesic and anti-pyretic properties of standardized HA methanolic extract (HAMeOH) in vivo. Methods: The acute toxicity study was performed on rats while adopting the OECD-420 Guidelines (fixed dose procedure). Assessment of analgesic activity was performed in rats with two analgesic models. One was acetic acid induced writhing response and the other formalin-induced paw licking. The anti-pyretic effect was tested by Brewer’s yeast induced fever in rats. Results: For the acute toxicity test, the higher dose administration of 2000 mg/kg bw. of H.albus did not produce any toxic signs or deaths in rats. There were no significant differences (p>0.05) in the body and organ weights between control and treated groups. The (LD50) of 'H. albus' was higher than 2000 g/kg bw. In subacute toxicity study, no mortality and toxic signs were observed with the doses of 100 and 200 mg/kg bw. of extracts of for 28 consecutive days. These analgesic experimental results indicated that HAMeOH (100 mg/kg and 200 mg/kg) decreased the acetic acid-induced writhing responses and HAMeOH (100 mg/kg and 200 mg/kg) decreased the licking time in the second phase of the formalin test. Moreover, in the model of yeast-induced elevation of the body temperature HAMeOH showed dose-dependent lowering of the body temperature up to 3h at both the doses these results obtained, were comparable to that of paracetamol. Conclusion: The present findings indicate that the leaves of Hyoscyamus albus L. possess potent analgesic and antipyretic activity.

Keywords: Hyoscyamus albus, Umbilicus rupestris, secondary metabolites, NMR with protons, pharmacobiologic activities, methanolic extract

Procedia PDF Downloads 423
3002 A Wideband CMOS Power Amplifier with 23.3 dB S21, 10.6 dBm Psat and 12.3% PAE for 60 GHz WPAN and 77 GHz Automobile Radar Systems

Authors: Yo-Sheng Lin, Chien-Chin Wang, Yun-Wen Lin, Chien-Yo Lee

Abstract:

A wide band power amplifier (PA) for 60 GHz and 77 GHz direct-conversion transceiver using standard 90 nm CMOS technology is reported. The PA comprises a cascode input stage with a wide band T-type input-matching network and inductive interconnection and load, followed by a common-source (CS) gain stage and a CS output stage. To increase the saturated output power (PSAT) and power-added efficiency (PAE), the output stage adopts a two-way power dividing and combining architecture. Instead of the area-consumed Wilkinson power divider and combiner, miniature low-loss transmission-line inductors are used at the input and output terminals of each of the output stages for wide band input and output impedance matching to 100 ohm. This in turn results in further PSAT and PAE enhancement. The PA consumes 92.2 mW and achieves maximum power gain (S21) of 23.3 dB at 56 GHz, and S21 of 21.7 dB and 14 dB, respectively, at 60 GHz and 77 GHz. In addition, the PA achieves excellent saturated output power (PSAT) of 10.6 dB and maximum power added efficiency (PAE) of 12.3% at 60 GHz. At 77 GHz, the PA achieves excellent PSAT of 10.4 dB and maximum PAE of 6%. These results demonstrate the proposed wide band PA architecture is very promising for 60 GHz wireless personal local network (WPAN) and 77 GHz automobile radar systems.

Keywords: 60 GHz, 77 GHz, PA, WPAN, automotive radar

Procedia PDF Downloads 575
3001 Collision Induced Dissociation of Transition Metal Fluoride Complexes and the Multiply Charged Anions

Authors: Ruqia Nazir, Robin Perutz

Abstract:

Collision-induced dissociation (CID) can be used to study the intrinsic properties of ions in the gas phase.1 Decay pathways of transition metal difluoride complexes of titanium, zirconium, hafnium, and ruthenium were studied by CID in an ESI-Ion trap mass spectrometer. Furthermore, the decay pathways of multiply charged anions (MCAs) of titanium and zirconium were also studied. The CID results are illustrated by the behaviour of (Cp*)₂TiF₂, which initially forms the ions [M-F-]⁺, [M+Na]⁺, and [M+K]⁺. The [(Cp*₂)TiF⁺ ion decays on resonant excitation to lose HF forming [Cp*(C₅Me₄CH₂)Ti]⁺ (Figure). The other major ion, [(Cp*)₂TiF₂+Na]⁺, decays on resonant excitation with production of [(Cp*)₂TiF₂]⁺ and [C₅Me₄CH₂]⁺. We also report the behaviour of Cp₂MF₂ (M = Zr, Hf) and Ru(PMe₃)₄F₂. The decay pathway of the multiply charged anions (MCAs), notably TiF₆²⁻ and ZrF₆²⁻ was concluded to be ionic fragmentation with loss of F⁻ rather than electron detachment.

Keywords: collision induced dissociation, transition metal difluoride comolexes, multiply charged anions, mass spectrometry

Procedia PDF Downloads 107
3000 Optimal Design of Tuned Inerter Damper-Based System for the Control of Wind-Induced Vibration in Tall Buildings through Cultural Algorithm

Authors: Luis Lara-Valencia, Mateo Ramirez-Acevedo, Daniel Caicedo, Jose Brito, Yosef Farbiarz

Abstract:

Controlling wind-induced vibrations as well as aerodynamic forces, is an essential part of the structural design of tall buildings in order to guarantee the serviceability limit state of the structure. This paper presents a numerical investigation on the optimal design parameters of a Tuned Inerter Damper (TID) based system for the control of wind-induced vibration in tall buildings. The control system is based on the conventional TID, with the main difference that its location is changed from the ground level to the last two story-levels of the structural system. The TID tuning procedure is based on an evolutionary cultural algorithm in which the optimum design variables defined as the frequency and damping ratios were searched according to the optimization criteria of minimizing the root mean square (RMS) response of displacements at the nth story of the structure. A Monte Carlo simulation was used to represent the dynamic action of the wind in the time domain in which a time-series derived from the Davenport spectrum using eleven harmonic functions with randomly chosen phase angles was reproduced. The above-mentioned methodology was applied on a case-study derived from a 37-story prestressed concrete building with 144 m height, in which the wind action overcomes the seismic action. The results showed that the optimally tuned TID is effective to reduce the RMS response of displacements up to 25%, which demonstrates the feasibility of the system for the control of wind-induced vibrations in tall buildings.

Keywords: evolutionary cultural algorithm, Monte Carlo simulation, tuned inerter damper, wind-induced vibrations

Procedia PDF Downloads 135
2999 Two Lessons Learnt in Defining Intersections and Interfaces in Numerical Modeling with Plaxis

Authors: Mahdi Sadeghian, Somaye Sadeghian, Reza Dinarvand

Abstract:

This paper is going to discuss two issues encountered in using PLAXIS. Both issues were monitored during application of PLAXIS to estimate the excavation-induced displacement. Column Soil Mixing (CSM) was applied to stabilise the excavation. It was understood that the estimated excavation induced deformation at the top of the CSM blocks highly depends on the material type defining pavement material adjacent to the CSM blocks. Cohesive material for pavement will result in the unrealistic connection between pavement and CSM even by defining an interface element. To find the most realistic approach, the interface defined in three different manners (1) no interface elements were applied (2) a non-cohesive soil layer was defined between pavement and CSM block to represent the friction between these materials (3) built-in interface elements in PLAXIS was used to define the boundary between the pavement and the CSM block. The result showed that the option 2 would result in more realistic results. The second issue was in the modelling of the contact line between the CSM block and an inclined layer underneath. The analysis result showed that the excavation-induced deformation highly depends on how the PLAXIS user defines the contact area. It was understood that if the contact area had defined as a point in which CSM block had intersected the layer underneath the estimated lateral displacement of CSM block would be unrealistically lower than the model in which the contact area was defined as a line.

Keywords: PLAXIS, FEM, CSM, Excavation-Induced Deformation

Procedia PDF Downloads 162
2998 Early Transcriptome Responses to Piscine orthoreovirus-1 in Atlantic salmon Erythrocytes Compared to Salmonid Kidney Cell Lines

Authors: Thomais Tsoulia, Arvind Y. M. Sundaram, Stine Braaen, Øyvind Haugland, Espen Rimstad, Øystein Wessel, Maria K. Dahle

Abstract:

Fish red blood cells (RBC) are nucleated, and in addition to their function in gas exchange, they have been characterized as mediators of immune responses. Salmonid RBC are the major target cells of Piscineorthoreovirus (PRV), a virus associated with heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon. The activation of antiviral response genesin RBChas previously been described in ex vivo and in vivo PRV-infection models, but not explored in the initial virus encounter phase. In the present study, mRNA transcriptome responses were explored in erythrocytes from individual fish, kept ex vivo, and exposed to purified PRV for 24 hours. The responses were compared to responses in macrophage-like salmon head kidney (SHK-1) and endothelial-like Atlantic salmon kidney (ASK) cells, none of which support PRV replication. The comparative analysis showed that the antiviral response to PRV was strongest in the SHK-1 cells, with a set of 80 significantly induced genes (≥ 2-fold upregulation). In RBC, 46 genes were significantly upregulated, while ASK cells were not significantly responsive. In particular, the transcriptome analysis of RBC revealed that PRV significantly induced interferon regulatory factor 1 (IRF1) and interferon-induced protein with tetratricopeptide repeats 5-like (IFIT9). However, several interferon-regulated antiviral genes which have previously been reported upregulated in PRV infected RBC in vivo (myxovirus resistance (Mx), interferon-stimulated gene 15 (ISG15), toll-like receptor 3 (TLR3)), were not significantly induced after 24h of virus stimulation. In contrast to RBC, these antiviral response genes were significantly upregulated in SHK-1. These results confirm that RBC are involved in the innate immune response to viruses, but with a delayed antiviral response compared to SHK-1. A notable difference is that interferon regulatory factor 1 (IRF-1) is the most strongly induced gene in RBC, but not among the significantly induced genes in SHK-1. Putative differences in the binding, recognition, and response to PRV, and any link to effects on the ability of PRV to replicate remains to be explored.

Keywords: antiviral responses, atlantic salmon, piscine orthoreovirus-1, red blood cells, RNA-seq

Procedia PDF Downloads 189
2997 The Effect of Olea europea L. Extract on Doxorubicin-Induced Cardiotoxicity

Authors: Jessica Maiuolo, Irene Bava, Micaela Gliozzi, Vincenzo Mollace

Abstract:

Doxorubicin is an anthracycline that is commonly used as a chemotherapy drug due to its cytotoxic effects. The clinical use of doxorubicin is limited due to its known cardiotoxic effects. Polyphenols have a wide range of beneficial properties, and particular importance is given to Oleuropein, one of the main polyphenolic compounds of olive oil. The biological mechanisms involved and the role of the endoplasmic reticulum were examined. Olive oil extract and Oleuropein were able to decrease the damage induced by exposure to doxorubicin. In particular, this natural compound was found to reduce cell mortality and oxidative damage, increase lipid content, and decrease the concentration of calcium ions that escaped from the endoplasmic reticulum. In addition, the direct involvement of this cellular organelle was demonstrated by silencing the ATF6 arm of the Unfolded Protein Response, which was activated after treatment with doxorubicin. The protection afforded by pre-treatment with the natural compound of interest, following the early damage induced by DOXO, provided valuable information regarding the potential use of these substances along with chemotherapy treatment.

Keywords: Olea europea L., oleuropein, doxorubicin, endoplasmic reticulum, nutraceutical support

Procedia PDF Downloads 110
2996 Neuroprotective Effects of Rosmarinic Acid in the MPTP Mouse Model of Parkinson's Disease

Authors: Huamin Xu, Wenting Jia, Hong Jiang, Junxia Xie

Abstract:

Rosmarinic acid (RA) is a natural acid that is found in a variety of herbs, such as rosemary and has multiple biological activities such as antioxidative, anti-inflammatory and antiviral activities. In this study, we investigated the neuroprotective effects of RA on dopaminergic system in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mouse model of Parkinson’s disease (PD). The mice received oral administration of RA before MPTP injection. Results showed that the tyrosine hydroxylase expression in SN reduced and the levels of dopamine and its metabolites in the striatum decreased in MPTP intoxicated PD mice. Pretreatment with RA significantly inhibited these changes. Further studies demonstrated that MPTP treatment increased the iron content, which was counteracted by pre-treatment with RA. In addition, RA could restore the decrease of superoxide dismutase (SOD) induced by MPTP. This study provides evidence that RA could suppress MPTP-induced degeneration of the nigrostriatal dopaminergic system by regulating iron content and the expression of SOD. Thus, RA might be clinically evaluated for the prevention of neurodegenerative diseases.

Keywords: rosmarinic acid, Parkinson's disease, MPTP, dopaminergic system

Procedia PDF Downloads 204
2995 Antioxidant Juice Prevents UV- Induced Skin Damage in Rats

Authors: S. P. Gomes, D. C. Goncalves, E. Ribeiro, M. C. L. Seelaender

Abstract:

Skin is susceptible to photo damage induced by exposure to sunlight, or ultraviolet (UV) radiation, which induces breakdown of extracellular matrix, DNA degradation, skin cell lesion and apoptosis, and development of cancer. Phytonutrients demonstrate protective effects against UV damage. The purpose of this study was evaluating the effect of an antioxidant juice (AJ) contaning Brazilian natural products upon skin damage. The juice was produced by Metabolics®. Male Wistar rats were divided in 4 groups: Animals receiving the antioxidant juice (AJ): orange, carrot, honey, tomato extract, avocado, ginger and camu-camu (Brazilian fruit, a major source of vitamin C) ad libitum for 21 days; or water (C), subdivided in groups exposed or not to UV radiation for 2 non consecutive days, during five hours each day, after 15 days of juice supplementation. On the 22nd day, rats were killed by decapitation and epithelium samples from the dorsal skin removed, fixed in bouin and embedded in paraffin. The sections were stained with hematoxylin and eosin or mallory and picrosirius red. Isolated DNA was submitted to electrophoresis (1.8% agarose gel, 0.5% ethidium bromide). UV radiation significantly induced sunburn of superficial epithelial cells of C, AJ treatment reduced this effect. Collagen changes were observed in UV groups, yet AJ treatment prevented collagen degradation. UV radiation induced significant DNA degradation, in C, which was prevented by AJ treatment. The antioxidant juice consumed chronically protected against acute skin damage.

Keywords: nutraceuticals, antioxidants, photoprotection, uv radiation

Procedia PDF Downloads 624
2994 Evaluation of Malva sylvestris L. Effect on Sodium Fluoride-Induced Nephrotoxicity in Rat

Authors: A. Babaei Zarch, S. Kianbakht, H. Fallah Huseini, P. Changaei, A. Mirjalili, J. Salehi

Abstract:

Background: Malva Sylvestris L. has antioxidant property and is widely used in the traditional medicine to treat gastrointestinal, respiratory, skin and urological disorders. Objective: In this study the protective effect of Malva Sylvestris against sodium fluoride-induced nephrotoxicity in rat were evaluated. Methods: The Malva Sylvestris flower extract was prepared and injected intraperitoneally at the doses of 100, 200, 400 mg/kg/day to group of rats ( 10 in each group) for 1 week and subsequently 600 ppm sodium fluoride was added to the rats drinking water for 1 additional week. After these steps, the rats’ serum levels of urea, creatinine, reduced glutathione, catalase and malondialdehyde were determined. The histopathologies of the rats’ kidneys were also studied. Results: Sodium fluoride administration increased levels of BUN, creatinine glutathione, catalase activity and decreased malondialdehyde indicating induction of nephrotoxicity in rats. Malva Sylvestris extract pretreatment significantly decreased the BUN and creatinine levels (P<0.05). Moreover, the levels of catalase and glutathione were increased by Malva, and this increase were also statistically significant (P<0.05). All three doses of Malva extract decreased the malondialdehyde level, but it was significant only for the doses of 200 and 400 mg/kg/day (P<0.05). Histopathological findings also showed protective effect of Malva against renal damage induced by sodium fluoride. Conclusion: The results suggest that Malva Sylvestris has protective effect against sodium fluoride-induced nephrotoxicity maybe mediated by its antioxidant property.

Keywords: malva sylvestris, nephrotoxicity, sodium fluoride, rat

Procedia PDF Downloads 288
2993 Traumatic Osteoarthritis Induces Mechanical Hyperalgesia through IL-1β/TNF-α-Mediated Upregulation of the Sema4D Gene Expression

Authors: Hsiao-Chien Tsai, Yu-Pin Chen, Ruei-Ming Chen

Abstract:

Introduction: Osteoarthritis (OA) is characterized by joint destruction and causes chronic disability. One of the prominent symptoms is pain. Alleviating the pain is necessary and urgent for the therapy of OA patients. However, currently, understanding the mechanisms that drive OA-induced pain remains challenging, which hampers the optimistic management of pain in OA patients. Semaphorin 4D (Sema4D) participates in axon guidance pathway and bone remodeling, thus, may play a role in the regulation of pain in OA. In this study, we have established a rat model of OA to find out the mechanisms of OA-induced pain and to deliberate the roles of Sema4D. Methods: Behavioral changes and the pro-inflammatory cytokines (IL-1β, TNF-α, and IL-17) associated with pain were measured during the development of OA. Sema4D expression in cartilage and synovial membrane at 1, 4, and 12 weeks after inducing OA was analyzed. To assess if Sema4D is related to the neurogenesis in OA as an axon repellant, we analyzed the expression of PGP9.5 as well. Results: Synovitis and cartilage degradation were evident histologically during the development of OA. Mechanical hyperalgesia was most severe at week 1, then persisted thereafter. It was associated with stress coping strategies. Similar to the pain behavioral results, levels of IL-1β and TNF-α in synovial lavage fluid were significantly elevated in the OA group at weeks 1 and 4, respectively. Sema4D expression in cartilage and the synovial membrane was also enhanced in the OA group and was correlated with pain and pro-inflammatory cytokines. The marker of neurogenesis, PGP9.5, was also enhanced during the development of OA. Discussion: OA induced mechanical hyperalgesia, which might be through upregulating IL-1β/TNF-α-mediated Sema4D expressions. If anti-Sema4D treatment could reduce OA-induced mechanical hyperalgesia and prevent the subsequent progression of OA needs to be further investigated. Significance: OA can induce mechanical hyperalgesia through upregulation of IL-1β/TNF-α-mediated Sema4D and PGP9.5 expressions. And the upregulation of Sema4D may indicate the severity or active status of OA and OA-induced pain.

Keywords: traumatic osteoarthritis, mechanical hyperalgesia, Sema4D, inflammatory cytokines

Procedia PDF Downloads 78
2992 Nitrate-Induced Biochemical and Histopathological Changes in the Kidney of Rats: Attenuation by Hyparrhenia hirta

Authors: Hanen Bouaziz, Moez Rafrafi, Ghada Ben Salah, Kamel Jamoussi, Tahia Boudawara, Najiba Zeghal

Abstract:

The present study investigated the protective role of Hyparrhenia hirta against sodium nitrate (NaNO3)-induced nephrotoxicity. A high-performance liquid chromatography coupled with a mass spectrometer (HPLC-MS) method was developed to separate and identify flavonoids in Hyparrhenia hirta. Seven flavonoids were identified as 3-O-methylquercetin, luteolin-7-O-glucoside, luteolin, apigenin-7-O-glucoside, apigenin-8-C-glucoside, luteolin-8-C-glucoside and luteolin-6-C-glucoside. Wistar rats were randomly divided into three groups: a control group and two treated groups during 50 days with NaNO3 administered either alone in drinking water or co-administered with Hyparrhenia hirta. NaNO3 treatment induced a significant increase in plasma levels of creatinine, urea and uric while urinary level decreased significantly. Nephrotoxicity induced by NaNO3 was characterized by significant increase in creatinine clearance. In parallel, a significant increase in malondialdehyde level along with a concomitant decrease in total glutathione content and superoxide dismutase, catalase and glutathione peroxidase activities were observed in the kidney after NaNO3 treatment. The histopathological changes in kidney after NaNO3 administration were shrunken. There were renal tubule cell degeneration and infiltration of mononuclear cells. Most glomeruli revealed shrinkage, a wide capsular space and a peri-glomerular mononuclear cells infiltration. Hyparrhenia hirta supplementation showed a remarkable amelioration of the abnormalities cited above. The results concluded that the treatment with Hyparrhenia hirta had a significant role in protecting the animals from nitrate-induced kidney dysfunction.

Keywords: flavonoids, hyparrhenia hirta, kidney, nitrate toxicity, oxidative stress, rat

Procedia PDF Downloads 444
2991 Aggregation-Induced-Active Stimuli-Responsive Based Nano-Objects for Wastewater Treatment Application

Authors: Parvaneh Eskandari, Rachel O'Reilly

Abstract:

In the last years, controlling the self-assembly behavior of stimuli-responsive nano-objects, including micelles, vesicles, worm-like, etc., at different conditions is considered a pertinent challenge in the polymer community. The aim of the project was to synthesize aggregation-induced emission (AIE)-active stimuli-responsive polymeric nano-objects to control the self-assemblies morphologies of the prepared nano-objects. Two types of nanoobjects, micelle and vesicles, including PDMAEMA-b-P(BzMA-TPEMA) [PDMAEMA: poly(N,Ndimethylaminoethyl methacrylate); P(BzMA-TPEMA): poly[benzyl methacrylate-co- tetraphenylethene methacrylate]] were synthesized by using reversible addition−fragmentation chain-transfer (RAFT)- mediated polymerization-induced self-assembly (PISA), which combines polymerization and self-assembly in a single step. Transmission electron microscope and dynamic light scattering (DLS) analysis were used to confirm the formed self-assemblies morphologies. The controlled self-assemblies were applied as nitrophenolic compounds (NPCs) adsorbents from wastewater, thanks to their CO2-responsive part, PDMAEMA. Moreover, the fluorescence-active part of the prepared nano-objects, P(BzMA-TPEMA), played a key role in the detection of the NPCs at the aqueous solution. The optical properties of the prepared nano-objects were studied by UV/Vis and fluorescence spectroscopies. For responsivity investigations, the hydrodynamic diameter and Zeta-potential (ζ-potential) of the sample's aqueous solution were measured by DLS. In the end, the prepared nano-objects were used for the detection and adsorption of different NPCs.

Keywords: aggregation-induced emission polymers, stimuli-responsive polymers, reversible addition−fragmentation chain-transfer polymerization, polymerization-induced self-assembly, wastewater treatment

Procedia PDF Downloads 73
2990 Effects of Hydroxysafflor Yellow a (HSYA) on UVA-Induced Damage in HaCaT Keratinocytes

Authors: Szu-Chieh Yu, Pei-Chin Chiand, Chih-Yi Lin, Yi-Wen Chien

Abstract:

UV radiation from sunlight cause numbers of acute and chronic skin damage which can result in inflammation, immune changes, physical changes and DNA damage that facilitates skin aging and the development of skin carcinogenesis. Reactive oxygen species (ROS) are generated by excessive solar UV radiation, resulting in oxidative damage to cellar components, proteins, lipids, and nucleic acids. Thus, antioxidation plays an important role that protects skin against ROS-induced injury. Safflower (Carthamus tinctorius L.) is an important Chinese medicine contained abundance flavones and hydroxysafflor yellow A (HSYA) which is main active ingredient. HSYA is part of quinochalcone and has unique structures of hydroxy groups that provided the antioxidant effect. In this study, the aim was to investigate the protective role of HYSA in human keratinocytes (HaCaT) against UVA-induced oxidative damage and the possible mechanism. The HaCaT cells were UVA-irradiated and the effects of HYSA on cell viability, reactive oxygen species generation, DNA fragmentation and lipid peroxidation were measured. The mRNA expression of matrix metalloproteinase Ι (MMP Ι), cyclooxygenase-2 (COX-2) were determined by RT-PCR. In this study, UVA exposure lead to decrease in cell viability and increase in reactive oxygen species generation in HaCaT cells. HYSA could effectively increase the viability of HaCaT cells after UVA exposure and protect them from UVA-induced oxidative stress. Moreover, HYSA can reduce inflammation through inhibition the mRNA expression of MMP Ι and COX-2. Our results suggest that HSYA can act as a free radical scavenger while keratinocytes were photodamaged. HYSA could be a useful natural medicine for the protection of epidermal cells from UVA-induced damage and will be developed into products for skin care.

Keywords: HaCaT keratinocytes, hydroxysafflor yellow A (HSYA), MMP Ι, oxidative stress

Procedia PDF Downloads 380
2989 Distribution of Cytochrome P450 Gene in Patients Taking Medical Cannabis

Authors: Naso Isaiah Thanavisuth

Abstract:

Introduction: Medical cannabis can be used for treatment, including anorexia, pain, inflammation, multiple sclerosis, Parkinson's disease, epilepsy, cancer, and metabolic syndrome-related disorders. However, medical cannabis leads to adverse effects (AEs), which is delta-9-tetrahydrocannabinol (THC). In previous studies, the major of THC metabolism enzymes are CYP2C9. Especially, the variation of CYP2C9 gene consist of CYP2C9*2 on exon 3 (C430T) (Arg144Cys) and CYP2C9*3 on exon 7 (A1075C) (Ile359Leu) to decrease enzyme activity. Notwithstanding, there is no data describing whether the variant of CYP2C9 genes are a pharmacogenetics marker for prediction of THC-induced AEs in Thai patients. Objective: We want to investigate the association between CYP2C9 gene and THC-induced AEs in Thai patients. Method: We enrolled 39 Thai patients with medical cannabis treatment consisting of men and women who were classified by clinical data. The quality of DNA extraction was assessed by using NanoDrop ND-1000. The CYP2C9*2 and *3 genotyping were conducted using the TaqMan real time PCR assay (ABI, Foster City, CA, USA). Results: All Thai patients who received the medical cannabis consist of twenty four (61.54%) patients who were female and fifteen (38.46%) were male, with age range 27- 87 years. Moreover, the most AEs in Thai patients who were treated with medical cannabis between cases and controls were tachycardia, arrhythmia, dry mouth, and nausea. Particularly, thirteen (72.22%) medical cannabis-induced AEs were female and age range 33 – 69 years. In this study, none of the medical cannabis groups carried CYP2C9*2 variants in Thai patients. The CYP2C9*3 variants (*1/*3, intermediate metabolizer, IM) and (*3/*3, poor metabolizer, PM) were found, three of thirty nine (7.69%) and one of thirty nine (2.56%) , respectively. Conclusion: This is the first study to confirm the genetic polymorphism of CYP2C9 and medical cannabis-induced AEs in the Thai population. Although, our results indicates that there is no found the CYP2C9*2. However, the variation of CYP2C9 allele might serve as a pharmacogenetics marker for screening before initiating the therapy with medical cannabis for prevention of medical cannabis-induced AEs.

Keywords: CYP2C9, medical cannabis, adverse effects, THC, P450

Procedia PDF Downloads 105
2988 Scientific Investigation for an Ancient Egyptian Polychrome Wooden Stele

Authors: Ahmed Abdrabou, Medhat Abdalla

Abstract:

The studied stele dates back to Third Intermediate Period (1075-664) B.C in an ancient Egypt. It is made of wood and covered with painted gesso layers. This study aims to use a combination of multi spectral imaging {visible, infrared (IR), Visible-induced infrared luminescence (VIL), Visible-induced ultraviolet luminescence (UVL) and ultraviolet reflected (UVR)}, along with portable x-ray fluorescence in order to map and identify the pigments as well as to provide a deeper understanding of the painting techniques. Moreover; the authors were significantly interested in the identification of wood species. Multispectral imaging acquired in 3 spectral bands, ultraviolet (360-400 nm), visible (400-780 nm) and infrared (780-1100 nm) using (UV Ultraviolet-induced luminescence (UVL), UV Reflected (UVR), Visible (VIS), Visible-induced infrared luminescence (VIL) and Infrared photography. False color images are made by digitally editing the VIS with IR or UV images using Adobe Photoshop. Optical Microscopy (OM), potable X-ray fluorescence spectroscopy (p-XRF) and Fourier Transform Infrared Spectroscopy (FTIR) were used in this study. Mapping and imaging techniques provided useful information about the spatial distribution of pigments, in particular visible-induced luminescence (VIL) which allowed the spatial distribution of Egyptian blue pigment to be mapped and every region containing Egyptian blue, even down to single crystals in some instances, is clearly visible as a bright white area; however complete characterization of the pigments requires the use of p. XRF spectroscopy. Based on the elemental analysis found by P.XRF, we conclude that the artists used mixtures of the basic mineral pigments to achieve a wider palette of hues. Identification of wood species Microscopic identification indicated that the wood used was Sycamore Fig (Ficus sycomorus L.) which is recorded as being native to Egypt and was used to make wooden artifacts since at least the Fifth Dynasty.

Keywords: polychrome wooden stele, multispectral imaging, IR luminescence, Wood identification, Sycamore Fig, p-XRF

Procedia PDF Downloads 264