Search results for: discharge energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8853

Search results for: discharge energy

8613 Identifying the Factors affecting on the Success of Energy Usage Saving in Municipality of Tehran

Authors: Rojin Bana Derakhshan, Abbas Toloie

Abstract:

For the purpose of optimizing and developing energy efficiency in building, it is required to recognize key elements of success in optimization of energy consumption before performing any actions. Surveying Principal Components is one of the most valuable result of Linear Algebra because the simple and non-parametric methods are become confusing. So that energy management system implemented according to energy management system international standard ISO50001:2011 and all energy parameters in building to be measured through performing energy auditing. In this essay by simulating used of data mining, the key impressive elements on energy saving in buildings to be determined. This approach is based on data mining statistical techniques using feature selection method and fuzzy logic and convert data from massive to compressed type and used to increase the selected feature. On the other side, influence portion and amount of each energy consumption elements in energy dissipation in percent are recognized as separated norm while using obtained results from energy auditing and after measurement of all energy consuming parameters and identified variables. Accordingly, energy saving solution divided into 3 categories, low, medium and high expense solutions.

Keywords: energy saving, key elements of success, optimization of energy consumption, data mining

Procedia PDF Downloads 445
8612 Realization of Sustainable Urban Society by Personal Electric Transporter and Natural Energy

Authors: Yuichi Miyamoto

Abstract:

In regards to the energy sector in the modern period, two points were raised. First is a vast and growing energy demand, and second is an environmental impact associated with it. The enormous consumption of fossil fuel to the mobile unit is leading to its rapid depletion. Nuclear power is not the only problem. A modal shift that utilizes personal transporters and independent power, in order to realize a sustainable society, is very effective. The paper proposes that the world will continue to work on this. Energy of the future society, innovation in battery technology and the use of natural energy is a big key. And it is also necessary in order to save on energy consumption.

Keywords: natural energy, modal shift, personal transportation, battery

Procedia PDF Downloads 382
8611 Optimal Planning and Design of Hybrid Energy System for Taxila University

Authors: Habib Ur Rahman Habib

Abstract:

Renewable energy resources are being realized as suitable options in hybrid energy planning for on-grid and micro grid. In this paper, operation, planning and optimal design of on-grid distributed energy resources based hybrid system are investigated. The aim is to minimize the cost of the overall energy system keeping in view the environmental emission and minimum penetration of conventional energy resources. Seven grid connected different case studies including diesel only, diesel-renewable based, and renewable based only are designed to perform economic analysis, operational planning and emission. Sensitivity analysis is implemented to investigate the impact of different parameters on the performance of energy resources.

Keywords: data management, renewable energy, distributed energy, smart grid, micro-grid, modeling, energy planning, design optimization

Procedia PDF Downloads 431
8610 A Study on the Wind Energy Produced in the Building Skin Using Piezoelectricity

Authors: Sara Mota Carmo

Abstract:

Nowadays, there is an increasing demand for buildings to be energetically autonomous through energy generation systems from renewable sources, according to the concept of a net zero energy building (NZEB). In this sense, the present study aims to study the integration of wind energy through piezoelectricity applied to the building skin. As a methodology, a reduced-scale prototype of a building was developed and tested in a wind tunnel, with the four façades monitored by recording the energy produced by each. The applied wind intensities varied between 2m/s and 8m/s and the four façades were compared with each other regarding the energy produced according to the intensity of wind and position in the wind. The results obtained concluded that it was not a sufficient system to generate sources to cover family residential buildings' energy needs. However, piezoelectricity is expanding and can be a promising path for a wind energy system in architecture as a complement to other renewable energy sources.

Keywords: adaptative building skin, kinetic façade, wind energy in architecture, NZEB

Procedia PDF Downloads 50
8609 Energy Consumption in China’s Urban Water Supply System

Authors: Kate Smith, Shuming Liu, Yi Liu, Dragan Savic, Gustaf Olsson, Tian Chang, Xue Wu

Abstract:

In a water supply system, a great deal of care goes into sourcing, treating and delivering water to consumers, but less thought is given to the energy consumed during these processes. This study uses 2011 data to quantify energy use for urban water supply in China and investigates population density as a possible influencing factor. The objective is to provide information that can be used to develop energy-conscious water infrastructure policy, calculate the energy co-benefits of water conservation and compare energy use between China and other countries. The average electrical energy intensity and per capita electrical energy consumption for urban water supply in China in 2011 were 0.29 kWh/m3 and 33.2 kWh/cap•yr, respectively. Comparison between provinces revealed a direct correlation between energy intensity of urban water supply and population served per unit length of pipe. This could imply energy intensity is lower when more densely populated areas are supplied by relatively dense networks of pipes. This study also found that whereas the percentage of energy used for urban water supply tends to increase with the percentage of population served this increase is slower where water supply is more energy efficient and where a larger percentage of population is already supplied.

Keywords: china, electrical energy use, water-energy nexus, water supply

Procedia PDF Downloads 474
8608 A System Dynamics Model for Assessment of Alternative Energy Policy Measures: A Case of Energy Management System as an Energy Efficiency Policy Tool

Authors: Andra Blumberga, Uldis Bariss, Anna Kubule, Dagnija Blumberga

Abstract:

European Union Energy Efficiency Directive provides a set of binding energy efficiency measures to reach. Each of the member states can use either energy efficiency obligation scheme or alternative policy measures or combination of both. Latvian government has decided to divide savings among obligation scheme (65%) and alternative measures (35%). This decision might lead to significant energy tariff increase hence impact on the national economy. To assess impact of alternative policy measures focusing on energy management scheme based on ISO 50001 and ability to decrease share of obligation scheme a System Dynamics modeling was used. Simulation results show that energy efficiency goal can be met with alternative policy measure to large energy consumers in industrial, tertiary and public sectors by applying the energy tax exemption for implementers of energy management system. A delay in applying alternative policy measures plays very important role in reaching the energy efficiency goal. One year delay in implementation of this policy measure reduces cumulative energy savings from 2016 to 2017 from 5200 GWh to 3000 GWh in 2020.

Keywords: system dynamics, energy efficiency, policy measure, energy management system, obligation scheme

Procedia PDF Downloads 255
8607 A Comparison of Energy Calculations for a Single-Family Detached Home with Two Energy Simulation Methods

Authors: Amir Sattari

Abstract:

For newly produced houses and energy renovations, an energy calculation needs to be conducted. This is done to verify whether the energy consumption criteria of the house -to reach the energy targets by 2020 and 2050- are in-line with the norms. The main purpose of this study is to confirm whether easy to use energy calculation software or hand calculations used by small companies or individuals give logical results compared to advanced energy simulation program used by researchers or bigger companies. There are different methods for calculating energy consumption. In this paper, two energy calculation programs are used and the relation of energy consumption with solar radiation is compared. A hand calculation is also done to validate whether the hand calculations are still reasonable. The two computer programs which have been used are TMF Energi (the easy energy calculation variant used by small companies or individuals) and IDA ICE - Indoor Climate and Energy (the advanced energy simulation program used by researchers or larger companies). The calculations are done for a standard house from the Swedish house supplier Fiskarhedenvillan. The method is based on having the same conditions and inputs in the different calculation forms so that the results can be compared and verified. The house has been faced differently to see how the orientation affects energy consumption in different methods. The results for the simulations are close to each other and the hand calculation differs from the computer programs by only 5%. Even if solar factors differ due to the orientation of the house, energy calculation results from different computer programs and even hand calculation methods are in line with each other.

Keywords: energy calculation, energy consumption, energy simulation, IDA ICE, TMF energi

Procedia PDF Downloads 98
8606 Three-Dimensional Carbon Foam Based Asymmetric Assembly of Metal Oxides Electrodes for High-Performance Solid-State Micro-Supercapacitor

Authors: Sumana Kumar, Abha Misra

Abstract:

Micro-supercapacitors hold great attention as one of the promising energy storage devices satisfying the increasing quest for miniaturized and portable devices. Despite having impressive power density, superior cyclic lifetime, and high charge-discharge rates, micro-supercapacitors still suffer from low energy density, which limits their practical application. The energy density (E=1/2CV²) can be increased either by increasing specific capacitance (C) or voltage range (V). Asymmetric micro-supercapacitors have attracted great attention by using two different electrode materials to expand the voltage window and thus increase the energy density. Currently, versatile fabrication technologies such as inkjet printing, lithography, laser scribing, etc., are used to directly or indirectly pattern the electrode material; these techniques still suffer from scalable production and cost inefficiency. Here, we demonstrate the scalable production of a three-dimensional (3D) carbon foam (CF) based asymmetric micro-supercapacitor by spray printing technique on an array of interdigital electrodes. The solid-state asymmetric micro-supercapacitor comprised of CF-MnO positive electrode and CF-Fe₂O₃ negative electrode achieves a high areal capacitance of 18.4 mF/cm² (2326.8 mF/cm³) at 5 mV/s and a wider potential window of 1.4 V. Consequently, a superior energy density of 5 µWh/cm² is obtained, and high cyclic stability is confirmed with retention of the initial capacitance by 86.1% after 10000 electrochemical cycles. The optimized decoration of pseudocapacitive metal oxides in the 3D carbon network helps in high electrochemical utilization of materials where the 3D interconnected network of carbon provides overall electrical conductivity and structural integrity. The research provides a simple and scalable spray printing method to fabricate an asymmetric micro-supercapacitor using a custom-made mask that can be integrated on a large scale.

Keywords: asymmetric micro-supercapacitors, high energy-density, hybrid materials, three-dimensional carbon-foam

Procedia PDF Downloads 100
8605 Technical and Practical Aspects of Sizing a Autonomous PV System

Authors: Abdelhak Bouchakour, Mustafa Brahami, Layachi Zaghba

Abstract:

The use of photovoltaic energy offers an inexhaustible supply of energy but also a clean and non-polluting energy, which is a definite advantage. The geographical location of Algeria promotes the development of the use of this energy. Indeed, given the importance of the intensity of the radiation received and the duration of sunshine. For this reason, the objective of our work is to develop a data-processing tool (software) of calculation and optimization of dimensioning of the photovoltaic installations. Our approach of optimization is basing on mathematical models, which amongst other things describe the operation of each part of the installation, the energy production, the storage and the consumption of energy.

Keywords: solar panel, solar radiation, inverter, optimization

Procedia PDF Downloads 584
8604 Improving Cyclability and Capacity of Lithium Oxygen Batteries via Low Rate Pre-Activation

Authors: Zhihong Luo, Guangbin Zhu, Lulu Guo, Zhujun Lyu, Kun Luo

Abstract:

Cycling life has become the threshold for the prospective application of Li-O₂ batteries, and the protection of Li anode has recently regarded as the key factor to the performance. Herein, a simple low rate pre-activation (20 cycles at 0.5 Ag⁻¹ and a capacity of 200 mAh g⁻¹) was employed to effectively improve the performance and cyclability of Li-O₂ batteries. The charge/discharge cycles at 1 A g⁻¹ with a capacity of 1000 mAh g⁻¹ were maintained for up to 290 times versus 55 times for the cell without pre-activation. The ultimate battery capacity and high rate discharge property were also largely enhanced. Morphology, XRD and XPS analyses reveal that the performance improvement is in close association with the formation of the smooth and compact surface layer formed on the Li anode after low rate pre-activation, which apparently alleviated the corrosion of Li anode and the passivation of cathode during battery cycling, and the corresponding mechanism was also discussed.

Keywords: lithium oxygen battery, pre-activation, cyclability, capacity

Procedia PDF Downloads 133
8603 Micro-Electrical Discharge Machining (µEDM): Effect of the Electrochemical Etching Parameters on the Fabrication of Cylindrical Tungsten Micro-Tools

Authors: Asmae Tafraouti, Yasmina Layouni

Abstract:

The fabrication of cylindrical Tungsten micro-tools with a high aspect ratio is a real challenge because of several constraints that come into during their manufacture. In this paper, we will describe the process used to fabricate these micro-tools. It consists of using electrochemical etching. We will also present the optimal protocol that makes it possible to fabricate micro-tools with a high aspect ratio in a reproducible way. Next, we will show the limit of the experimental parameters chosen to manufacture micro-tools from a wire with an initial diameter of Φ_0=250µm. The protocol used allows obtaining an average diameter of Φ=88µm ±1 µm over a length of L=3.5mm.

Keywords: drop-off effect, electrochemical etching, micro-electrical discharge machining, tungsten micro-tools

Procedia PDF Downloads 169
8602 Catalyst Assisted Microwave Plasma for NOx Formation

Authors: Babak Sadeghi, Rony Snyders, Marie-Paule.Delplancke-Ogletree

Abstract:

Nitrogen fixation (NF) is one of the crucial industrial processes. Many attempts have been made in order to artificially fix nitrogen, and among them, the Haber-Bosch’s (H-B) process is widely used. However, it presents two major drawbacks: huge fossil feedstock consumption and noticeable greenhouse gases emission. It is, therefore, necessary to develop alternatives. Plasma technology, as an inherent “green” technology, is considered to have a great potential for reducing the environmental impacts and improving the energy efficiency of the NF process. In this work, we have studied the catalyst assisted microwave plasma for NF application. Heterogeneous catalysts of MoO₃, with various loads 0, 5, 10, 20, and 30 wt%, supported on γ-alumina were prepared by conventional wet impregnation. Crystallinity, surface area, pore size, and microstructure were obtained by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption isotherm, Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM). The XRD patterns of calcined alumina confirm the γ- phase. Characteristic picks of MoO₃ could not be observed for low loads (< 20 wt%), likely indicating a high dispersion of metal oxide over the support. The specific surface area along with pores size are decreasing with increasing calcination temperature and MoO₃ loading. The MoO₃ loading does not modify the microstructure. TEM and SEM results for loading inferior to 20 wt% are coherent with a monolayer of MoO₃ on the support as proposed elsewhere. For loading of 20 wt% and more, TEM and Electron diffraction (ED) show nanocrystalline ₃-D MoO₃ particles. The catalytic performances of these catalysts were investigated in the post-discharge of a microwave plasma for NOx formation from N₂/O₂ mixtures. The plasma is sustained by a surface wave launched in a quartz tube via a surfaguide supplied by a 2.45 GHz microwave generator in pulse mode. In-situ identification and quantification of the products were carried out by Fourier-transform infrared spectroscopy (FTIR) in the post-discharge region. FTIR analysis of the exhausted gas reveal NO and NO₂ bands in presence of catalyst while only NO band were assigned without catalyst. On the other hand, in presence of catalyst, a 10% increase of NOₓ formation and of 20% increase in energy efficiency are observed.

Keywords: γ-Al2O₃-MoO₃, µ-waveplasma, N2 fixation, Plasma-catalysis, Plasma diagnostic

Procedia PDF Downloads 154
8601 The Eco-Efficient Construction: A Review of Embodied Energy in Building Materials

Authors: Francesca Scalisi, Cesare Sposito

Abstract:

The building construction industry consumes a large amount of resources and energy, both during construction (embodied energy) and during the operational phase (operating energy). This paper presents a review of the literature on low carbon and low embodied energy materials in buildings. The embodied energy comprises the energy consumed during the extraction, processing, transportation, construction, and demolition of building materials. While designing a nearly zero energy building, it is necessary to choose and use materials, components, and technologies that allow to reduce the consumption of energy and also to reduce the emissions in the atmosphere during all the Life Cycle Assessment phases. The appropriate choice of building materials can contribute decisively to reduce the energy consumption of the building sector. The increasing worries for the environmental impact of construction materials are witnessed by a lot of studies. The mentioned worries have brought again the attention towards natural materials. The use of more sustainable construction materials and construction techniques represent a major contribution to the eco-efficiency of the construction industry and thus to a more sustainable development.

Keywords: embodied energy, embodied carbon, life cycle assessment, architecture, sustainability, material construction

Procedia PDF Downloads 316
8600 Energy Trends in Rural South Africa: A Case Study of the Mnweni Rural Community in the Province of Kwazulu-Natal

Authors: Noel Chellan

Abstract:

Energy is the life-blood of development. All human societies have been and still are dependent on energy – some societies more than others. With regard to energy in South Africa, previous policies of the apartheid regime neglected the energy needs of poor black communities in general – and rural communities in particular. Since South Africa’s first democratic elections in 1994 – whilst millions of South African households have received electricity from the national electricity grid, there are still many rural communities that are still experiencing challenges in relation to both electricity deprivation as well as provision. This paper looks at the energy-mix of the Mnweni rural community in South Africa and argues that understanding energy is key to understanding the nature and forms of development of any community or country, for that matter. The paper engages with the energy trends in the rural community of Mnweni from the days of apartheid until 2021. It also looks at agricultural practises from an energy perspective. Such an energy perspective will enable one to assess the pace and scale of development in rural Mnweni.

Keywords: rural, energy, development, apartheid

Procedia PDF Downloads 220
8599 Evaluation of Research in the Field of Energy Efficiency and MCA Methods Using Publications Databases

Authors: Juan Sepúlveda

Abstract:

Energy is a fundamental component in sustainability, the access and use of this resource is related with economic growth, social improvements, and environmental impacts. In this sense, energy efficiency has been studied as a factor that enhances the positive impacts of energy in communities; however, the implementation of efficiency requires strong policy and strategies that usually rely on individual measures focused in independent dimensions. In this paper, the problem of energy efficiency as a multi-objective problem is studied, using scientometric analysis to discover trends and patterns that allow to identify the main variables and study approximations related with a further development of models to integrate energy efficiency and MCA into policy making for small communities.

Keywords: energy efficiency, MCA, scientometric, trends

Procedia PDF Downloads 347
8598 Advantages and Disadvantages of Hydroelectric Energy

Authors: Esther Ushike Akashie

Abstract:

No matter who you are, where you are from and irrespective of age and gender, there is a universal need for power and energy. Every year, this need grows even more urgent the more scientific and technological inventions advance. Due to this fact, we find that majority of the research related to energy and power has been focused on finding new and innovative ways to produce power. Furthermore, we observe that because of the environmental state of our world today and the impact of climate change, one of the most explored routes of study has been the use of renewable energies. In this paper, we will be looking at one of the oldest forms of renewable energy, hydroelectric energy. First off, an overview of its history, sources, technical aspects, and applications will be evaluated. After which, we will then proceed to understand the main benefits and drawbacks of this form of renewable energy and offer insights on how it can be better utilized in our world today.

Keywords: hydropower, hydroelectric energy, advantages, disadvantages

Procedia PDF Downloads 128
8597 Overview of Smart Grid Applications in Turkey

Authors: Onur Elma, Giray E. Kıral, Ugur S. Selamoğuları, Mehmet Uzunoğlu, Bulent Vural

Abstract:

Electrical energy has become indispensable for people's lives and with rapidly developing technology and continuously changing living standards the need for the electrical energy has been on the rise. Therefore, both energy generation and efficient use of energy are very important topics. Smart grid concept has been introduced to provide monitoring, energy efficiency, reliability and energy quality. Under smart grid concept, smart homes, which can be considered as key component in smart grid operation, have appeared as another research area. In this study, first, smart grid research in the world will be reviewed. Then, overview of smart grid applications in Turkey will be given.

Keywords: energy efficiency, smart grids, smart home, applications

Procedia PDF Downloads 477
8596 Uncertainty in Building Energy Performance Analysis at Different Stages of the Building’s Lifecycle

Authors: Elham Delzendeh, Song Wu, Mustafa Al-Adhami, Rima Alaaeddine

Abstract:

Over the last 15 years, prediction of energy consumption has become a common practice and necessity at different stages of the building’s lifecycle, particularly, at the design and post-occupancy stages for planning and maintenance purposes. This is due to the ever-growing response of governments to address sustainability and reduction of CO₂ emission in the building sector. However, there is a level of uncertainty in the estimation of energy consumption in buildings. The accuracy of energy consumption predictions is directly related to the precision of the initial inputs used in the energy assessment process. In this study, multiple cases of large non-residential buildings at design, construction, and post-occupancy stages are investigated. The energy consumption process and inputs, and the actual and predicted energy consumption of the cases are analysed. The findings of this study have pointed out and evidenced various parameters that cause uncertainty in the prediction of energy consumption in buildings such as modelling, location data, and occupant behaviour. In addition, unavailability and insufficiency of energy-consumption-related inputs at different stages of the building’s lifecycle are classified and categorized. Understanding the roots of uncertainty in building energy analysis will help energy modellers and energy simulation software developers reach more accurate energy consumption predictions in buildings.

Keywords: building lifecycle, efficiency, energy analysis, energy performance, uncertainty

Procedia PDF Downloads 111
8595 Feasibility Study of the Quadcopter Propeller Vibrations for the Energy Production

Authors: Nneka Osuchukwu, Leonid Shpanin

Abstract:

The concept of converting the kinetic energy of quadcopter propellers into electrical energy is considered in this contribution following the feasibility study of the propeller vibrations, theoretical energy conversion, and simulation techniques. Analysis of the propeller vibration performance is presented via graphical representation of calculated and simulated parameters, in order to demonstrate the possibility of recovering the harvested energy from the propeller vibrations of the quadcopter while the quadcopter is in operation. Consideration of using piezoelectric materials in such concept, converting the mechanical energy of the propeller into the electrical energy, is given. Photographic evidence of the propeller in operation is presented and discussed together with experimental results to validate the theoretical concept.

Keywords: energy harvesting, piezoelectric material, propeller vibration, unmanned aerial vehicle

Procedia PDF Downloads 451
8594 The Mechanism Study on the Difference between High and Low Voltage Performance of Li3V2(PO4)3

Authors: Enhui Wang, Qingzhu Ou, Yan Tang, Xiaodong Guo

Abstract:

As one of most popular polyanionic compounds in lithium-ion cathode materials, Li3V2(PO4)3 has always suffered from the low rate capability especially during 3~4.8V, which is considered to be related with the ion diffusion resistance and structural transformation during the Li+ de/intercalation. Here, as the change of cut-off voltages, cycling numbers and current densities, the process of SEI interfacial film’s formation-growing- destruction-repair on the surface of the cathode, the structural transformation during the charge and discharge, the de/intercalation kinetics reflected by the electrochemical impedance and the diffusion coefficient, have been investigated in detail. Current density, cycle numbers and cut-off voltage impacting on interfacial film and structure was studied specifically. Firstly, the matching between electrolyte and material was investigated, it turned out that the batteries with high voltage electrolyte showed the best electrochemical performance and high voltage electrolyte would be the best electrolyte. Secondly, AC impedance technology was used to study the changes of interface impedance and lithium ion diffusion coefficient, the results showed that current density, cycle numbers and cut-off voltage influenced the interfacial film together and the one who changed the interfacial properties most was the key factor. Scanning electron microscopy (SEM) analysis confirmed that the attenuation of discharge specific capacity was associated with the destruction and repair process of the SEI film. Thirdly, the X-ray diffraction was used to study the changes of structure, which was also impacted by current density, cycle numbers and cut-off voltage. The results indicated that the cell volume of Li3V2 (PO4 )3 increased as the current density increased; cycle numbers merely influenced the structure of material; the cell volume decreased first and moved back gradually after two Li-ion had been deintercalated as the charging cut-off voltage increased, and increased as the intercalation number of Li-ion increased during the discharging process. Then, the results which studied the changes of interface impedance and lithium ion diffusion coefficient turned out that the interface impedance and lithium ion diffusion coefficient increased when the cut-off voltage passed the voltage platforms and decreased when the cut-off voltage was between voltage platforms. Finally, three-electrode system was first adopted to test the activation energy of the system, the results indicated that the activation energy of the three-electrode system (22.385 KJ /mol) was much smaller than that of two-electrode system (40.064 KJ /mol).

Keywords: cut-off voltage, de/intercalation kinetics, solid electrolyte interphase film, structural transformation

Procedia PDF Downloads 279
8593 Status Check: Journey of India’s Energy Sustainability through Renewable Sources

Authors: Santosh Ghosh, Vinod Kumar Yadav, Vivekananda Mukherjee, Ishta Garg

Abstract:

India, akin to the rest of the world today, is grappling with balancing act between ever increasing demand for energy and alarmingly high level of green house gas emission, which is inevitable corollary of energy production in the conventional way. Researchers and energy policy makers around the world are now focusing on renewable energy (RE) technologies to find solution to this crisis. In India various agencies at both national and state level has been set up and bestowed with responsibility of development of renewable energy technologies, viz. Ministry of New Renewable Energy (MNRE), National Vidyut Vyapar Nigam Ltd. (NVVNL), Indian Renewable Energy Development Agency Limited (IREDA) and RE Development Agencies in respective states. In the present work, the preparedness of India in terms of forming institutional and policy frame work briefly discussed. Status of implementation of RE technologies state wise and of India as a whole, critically reviewed.

Keywords: energy policy, energy sustainability, renewable energy, IREDA

Procedia PDF Downloads 606
8592 Patient Outcomes Following Out-of-Hospital Cardiac Arrest

Authors: Scott Ashby, Emily Granger, Mark Connellan

Abstract:

Background: In-hospital management of Out-of-Hospital Cardiac Arrest (OHCA) is complex as the aetiologies are varied. Acute coronary angiography has been shown to improve outcomes for patients with coronary occlusion as the cause; however, these patients are difficult to identify. ECG results may help identify these patients, but the accuracy of this diagnostic test is under debate, and requires further investigation. Methods: Arrest and hospital management information was collated retrospectively for OHCA patients who presented to a single clinical site between 2009 and 2013. Angiography results were then collected and checked for significance with survival to discharge. The presence of a severe lesion (>70%) was then compared to categorised ECG findings, and the accuracy of the test was calculated. Results: 104 patients were included in this study, 44 survived to discharge, 52 died and 8 were transferred to other clinical sites. Angiography appears to significantly correlate with survival to discharge. ECG showed 54.8% sensitivity for detecting the presence of a severe lesion within the group that received angiography. A combined criterion including any ECG pathology showed 100% sensitivity and negative predictive value, however, a low specificity and positive predictive value. Conclusion: In the cohort investigated, ST elevation on ECG is not a sensitive enough screening test to be used to determine whether OHCA patients have coronary stenosis as the likely cause of their arrest, and more investigation into whether screening with a combined ECG criterion, or whether all patients should receive angiography routinely following OHCA is needed.

Keywords: out of hospital cardiac arrest, coronary angiography, resuscitation, emergency medicine

Procedia PDF Downloads 377
8591 Microstructural and Electrochemical Investigation of Carbon Coated Nanograined LiFePO4 as Cathode Material for Li-Batteries

Authors: Rinlee Butch M. Cervera, Princess Stephanie P. Llanos

Abstract:

Lithium iron phosphate (LiFePO4) is a potential cathode material for lithium-ion batteries due to its promising characteristics. In this study, pure LiFePO4 (LFP) and carbon-coated nanograined LiFePO4 (LFP-C) is synthesized and characterized for its microstructural properties. X-ray diffraction patterns of the synthesized samples can be indexed to an orthorhombic LFP structure with about 63 nm crystallite size as calculated by using Scherrer’s equation. Agglomerated particles that range from 200 nm to 300 nm are observed from scanning electron microscopy images. Transmission electron microscopy images confirm the crystalline structure of LFP and coating of amorphous carbon layer. Elemental mapping using energy dispersive spectroscopy analysis revealed the homogeneous dispersion of the compositional elements. In addition, galvanostatic charge and discharge measurements were investigated for the cathode performance of the synthesized LFP and LFP-C samples. The results showed that the carbon-coated sample demonstrated the highest capacity of about 140 mAhg-1 as compared to non-coated and micrograined sized commercial LFP.

Keywords: ceramics, energy storage, electrochemical measurements, transmission electron microscope

Procedia PDF Downloads 228
8590 Changes in Blood Pressure in a Longitudinal Cohort of Vietnamese Women

Authors: Anh Vo Van Ha, Yun Zhao, Luat Cong Nguyen, Tan Khac Chu, Phung Hoang Nguyen, Minh Ngoc Pham, Colin W. Binns, Andy H. Lee

Abstract:

This study aims to study longitudinal changes in blood pressure (BP) during the 1-year postpartum period and to evaluate the influence of parity, maternal age at delivery, prepregnancy BMI, gestational weight gain, gestational age at delivery and postpartum maternal weight. A prospective longitudinal cohort study of 883 singleton Vietnamese women was conducted in Hanoi, Haiphong, and Ho Chi Minh City, Vietnam during 2015-2017. Women diagnosed with gestational diabetes mellitus at 24-28 weeks of gestation, pre-eclampsia, and hypoglycemia was excluded from analysis. BP was repeatedly measured at discharge, 6 and 12 months postpartum using automatic blood pressure monitors. Linear mixed model with repeated measures was used to describe changes occurring during pregnancy to 1-year postpartum. Parity, self-reported prepregnancy BMI, gestational weight gain, maternal age and gestational age at delivery will be treated as time-invariant variables and measured maternal weight will be treated as a time-varying variable in models. Women with higher measured postpartum weight had higher mean systolic blood pressure (SBP), 0.20 mmHg, 95% CI [0.12, 0.28]. Similarly, women with higher measured postpartum weight had higher mean diastolic blood pressure (DBP), 0.15 mmHg, 95% CI [0.08, 0.23]. These differences were both statistically significant, P < 0.001. There were no differences in SBP and DBP depending on parity, maternal age at delivery, prepregnancy BMI, gestational weight gain and gestational age at delivery. Compared with discharge measurement, SBP was significantly higher in 6 months postpartum, 6.91 mmHg, 95% CI [6.22, 7.59], and 12 months postpartum, 6.39 mmHg, 95% CI [5.64, 7.15]. Similarly, DBP was also significantly higher in 6 and months postpartum than at discharge, 10.46 mmHg 95% CI [9.75, 11.17], and 11.33 mmHg 95% CI [10.54, 12.12]. In conclusion, BP measured repeatedly during the postpartum period (6 and 12 months postpartum) showed a statistically significant increase, compared with after discharge from the hospital. Maternal weight was a significant predictor of postpartum blood pressure over the 1-year postpartum period.

Keywords: blood pressure, maternal weight, postpartum, Vietnam

Procedia PDF Downloads 184
8589 Soybean Oil Based Phase Change Material for Thermal Energy Storage

Authors: Emre Basturk, Memet Vezir Kahraman

Abstract:

In many developing countries, with the rapid economic improvements, energy shortage and environmental issues have become a serious problem. Therefore, it has become a very critical issue to improve energy usage efficiency and also protect the environment. Thermal energy storage system is an essential approach to match the thermal energy claim and supply. Thermal energy can be stored by heating, cooling or melting a material with the energy and then enhancing accessible when the procedure is reversed. The overall thermal energy storage techniques are sorted as; latent heat or sensible heat thermal energy storage technology segments. Among these methods, latent heat storage is the most effective method of collecting thermal energy. Latent heat thermal energy storage depend on the storage material, emitting or discharging heat as it undergoes a solid to liquid, solid to solid or liquid to gas phase change or vice versa. Phase change materials (PCMs) are promising materials for latent heat storage applications due to their capacities to accumulate high latent heat storage per unit volume by phase change at an almost constant temperature. Phase change materials (PCMs) are being utilized to absorb, collect and discharge thermal energy during the cycle of melting and freezing, converting from one phase to another. Phase Change Materials (PCMs) can generally be arranged into three classes: organic materials, salt hydrates and eutectics. Many kinds of organic and inorganic PCMs and their blends have been examined as latent heat storage materials. Organic PCMs are rather expensive and they have average latent heat storage per unit volume and also have low density. Most organic PCMs are combustible in nature and also have a wide range of melting point. Organic PCMs can be categorized into two major categories: non-paraffinic and paraffin materials. Paraffin materials have been extensively used, due to their high latent heat and right thermal characteristics, such as minimal super cooling, varying phase change temperature, low vapor pressure while melting, good chemical and thermal stability, and self-nucleating behavior. Ultraviolet (UV)-curing technology has been generally used because it has many advantages, such as low energy consumption , high speed, high chemical stability, room-temperature operation, low processing costs and environmental friendly. For many years, PCMs have been used for heating and cooling industrial applications including textiles, refrigerators, construction, transportation packaging for temperature-sensitive products, a few solar energy based systems, biomedical and electronic materials. In this study, UV-curable, fatty alcohol containing soybean oil based phase change materials (PCMs) were obtained and characterized. The phase transition behaviors and thermal stability of the prepared UV-cured biobased PCMs were analyzed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The heating process phase change enthalpy is measured between 30 and 68 J/g, and the freezing process phase change enthalpy is found between 18 and 70 J/g. The decomposition of UVcured PCMs started at 260 ºC and reached a maximum of 430 ºC.

Keywords: fatty alcohol, phase change material, thermal energy storage, UV curing

Procedia PDF Downloads 350
8588 The Environmental Challenges of Energy Generation and Usage in Nigeria

Authors: Aliyu Mohammed Lawal, Dahiru Ya'u Gital

Abstract:

The problems placed on the environment as a result of energy generation and usage in Nigeria are: Potential damage to the environment health by Co, Co2, Sox and Nox effluent gas emissions and global warming. For instance in the year 2004 in Nigeria energy consumption was 58% oil and 34% natural gas but about 94 million metric tons of Co2 was emitted out of which 64% came from fossil fuels while about 35% came from fuel wood. The findings from this research on how to alleviate these problems are that long term sustainable development solutions should be enhanced globally; energy should be used more rationally renewable energy resources should be exploited and the existing emissions should be controlled to tolerate limits because the increase in energy demand in Nigeria places enormous strain on current energy facilities.

Keywords: energy generation, environmental health, effluent gas emission, global warming, fossil fuel

Procedia PDF Downloads 436
8587 The Analysis of Solar Radiation Exergy in Hakkari

Authors: Hasan Yildizhan

Abstract:

According to the Solar Energy Potential Atlas (GEPA) prepared by Turkish Ministry of Energy, Hakkari is ranked first in terms of sunshine duration and it is ranked eighth in terms of solar radiation energy. Accordingly, Hakkari has a rich potential of investment with regard to solar radiation energy. The part of the solar radiation energy arriving on the surface of the earth which is transposable to useful work is determined by means of exergy analysis. In this study, the radiation exergy values for Hakkari have been calculated and evaluated by making use of the monthly average solar radiation energy and temperature values measured by General Directorate of State Meteorology.

Keywords: solar radiation exergy, Hakkari, solar energy potential, Turkey

Procedia PDF Downloads 690
8586 An Investigation of the Relevant Factors of Unplanned Readmission within 14 Days of Discharge in a Regional Teaching Hospital in South Taiwan

Authors: Xuan Hua Huang, Shu Fen Wu, Yi Ting Huang, Pi Yueh Lee

Abstract:

Background: In Taiwan, the Taiwan healthcare care Indicator Series regards the rate of hospital readmission as an important indicator of healthcare quality. Unplanned readmission not only effects patient’s condition but also increase healthcare utilization rate and healthcare costs. Purpose: The purpose of this study was explored the effects of adult unplanned readmission within 14 days of discharge at a regional teaching hospital in South Taiwan. Methods: The retrospectively review design was used. A total 495 participants of unplanned readmissions and 878 of non-readmissions within 14 days recruited from a regional teaching hospital in Southern Taiwan. The instruments used included the Charlson Comorbidity Index, and demographic characteristics, and disease-related variables. Statistical analyses were performed with SPSS version 22.0. The descriptive statistics were used (means, standard deviations, and percentage) and the inferential statistics were used T-test, Chi-square test and Logistic regression. Results: The unplanned readmissions within 14 days rate was 36%. The majorities were 268 males (54.1%), aged >65 were 318 (64.2%), and mean age was 68.8±14.65 years (23-98years). The mean score for the comorbidities was 3.77±2.73. The top three diagnosed of the readmission were digestive diseases (32.7%), respiratory diseases (15.2%), and genitourinary diseases (10.5%). There were significant relationships among the gender, age, marriage, comorbidity status, and discharge planning services (χ2: 3.816-16.474, p: 0.051~0.000). Logistic regression analysis showed that old age (OR = 1.012, 95% CI: 1.003, 1.021), had the multi-morbidity (OR = 0.712~4.040, 95% CI: 0.559~8.522), had been consult with discharge planning services (OR = 1.696, 95% CI: 1.105, 2.061) have a higher risk of readmission. Conclusions: This study finds that multi-morbidity was independent risk factor for unplanned readmissions at 14 days, recommended that the interventional treatment of the medical team be provided to provide integrated care for multi-morbidity to improve the patient's self-care ability and reduce the 14-day unplanned readmission rate.

Keywords: unplanned readmission, comorbidities, Charlson comorbidity index, logistic regression

Procedia PDF Downloads 129
8585 Evaluating the Energy Efficiency Measures for an Educational Building in a Hot-Humid Region

Authors: Rafia Akbar

Abstract:

This paper assesses different Energy Efficiency Measures (EEMs) and their impact on energy consumption and carbon footprint of an educational building located in Islamabad. A base case was first developed in accordance with typical construction practices in Pakistan. Several EEMs were separately applied to the baseline design to quantify their impact on operational energy reduction of the building and the resultant carbon emissions. Results indicate that by applying these measures, there is a potential to reduce energy consumption up to 49% as compared to the base case. It was observed that energy efficient ceiling fans and lights, insulation of the walls and roof and an efficient air conditioning system for the building can provide significant energy savings. The results further indicate that the initial investment cost of these energy efficiency measures can be recovered within 6 to 7 years of building’s service life.

Keywords: CO2 savings, educational building, energy efficiency measures, payback period

Procedia PDF Downloads 148
8584 Assessment of Energy Use and Energy Efficiency in Two Portuguese Slaughterhouses

Authors: M. Feliciano, F. Rodrigues, A. Gonçalves, J. M. R. C. A. Santos, V. Leite

Abstract:

With the objective of characterizing the profile and performance of energy use by slaughterhouses, surveys and audits were performed in two different facilities located in the northeastern region of Portugal. Energy consumption from multiple energy sources was assessed monthly, along with production and costs, for the same reference year. Gathered data was analyzed to identify and quantify the main consuming processes and to estimate energy efficiency indicators for benchmarking purposes. Main results show differences between the two slaughterhouses concerning energy sources, consumption by source and sector, and global energy efficiency. Electricity is the most used source in both slaughterhouses with a contribution of around 50%, being essentially used for meat processing and refrigeration. Natural gas, in slaughterhouse A, and pellets, in slaughterhouse B, used for heating water take the second place, with a mean contribution of about 45%. On average, a 62 kgoe/t specific energy consumption (SEC) was found, although with differences between slaughterhouses. A prominent negative correlation between SEC and carcass production was found specially in slaughterhouse A. Estimated Specific Energy Cost and Greenhouse Gases Intensity (GHGI) show mean values of about 50 €/t and 1.8 tCO2e/toe, respectively. Main results show that there is a significant margin for improving energy efficiency and therefore lowering costs in this type of non-energy intensive industries.

Keywords: meat industry, energy intensity, energy efficiency, GHG emissions

Procedia PDF Downloads 341