Search results for: biological data mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27305

Search results for: biological data mining

27065 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components

Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea

Abstract:

Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.

Keywords: assessment, part of speech, sentiment analysis, student feedback

Procedia PDF Downloads 142
27064 Exploring the Correlation between Population Distribution and Urban Heat Island under Urban Data: Taking Shenzhen Urban Heat Island as an Example

Authors: Wang Yang

Abstract:

Shenzhen is a modern city of China's reform and opening-up policy, the development of urban morphology has been established on the administration of the Chinese government. This city`s planning paradigm is primarily affected by the spatial structure and human behavior. The subjective urban agglomeration center is divided into several groups and centers. In comparisons of this effect, the city development law has better to be neglected. With the continuous development of the internet, extensive data technology has been introduced in China. Data mining and data analysis has become important tools in municipal research. Data mining has been utilized to improve data cleaning such as receiving business data, traffic data and population data. Prior to data mining, government data were collected by traditional means, then were analyzed using city-relationship research, delaying the timeliness of urban development, especially for the contemporary city. Data update speed is very fast and based on the Internet. The city's point of interest (POI) in the excavation serves as data source affecting the city design, while satellite remote sensing is used as a reference object, city analysis is conducted in both directions, the administrative paradigm of government is broken and urban research is restored. Therefore, the use of data mining in urban analysis is very important. The satellite remote sensing data of the Shenzhen city in July 2018 were measured by the satellite Modis sensor and can be utilized to perform land surface temperature inversion, and analyze city heat island distribution of Shenzhen. This article acquired and classified the data from Shenzhen by using Data crawler technology. Data of Shenzhen heat island and interest points were simulated and analyzed in the GIS platform to discover the main features of functional equivalent distribution influence. Shenzhen is located in the east-west area of China. The city’s main streets are also determined according to the direction of city development. Therefore, it is determined that the functional area of the city is also distributed in the east-west direction. The urban heat island can express the heat map according to the functional urban area. Regional POI has correspondence. The research result clearly explains that the distribution of the urban heat island and the distribution of urban POIs are one-to-one correspondence. Urban heat island is primarily influenced by the properties of the underlying surface, avoiding the impact of urban climate. Using urban POIs as analysis object, the distribution of municipal POIs and population aggregation are closely connected, so that the distribution of the population corresponded with the distribution of the urban heat island.

Keywords: POI, satellite remote sensing, the population distribution, urban heat island thermal map

Procedia PDF Downloads 104
27063 Sexting Phenomenon in Educational Settings: A Data Mining Approach

Authors: Koutsopoulou Ioanna, Gkintoni Evgenia, Halkiopoulos Constantinos, Antonopoulou Hera

Abstract:

Recent advances in Internet Computer Technology (ICT) and the ever-increasing use of technological equipment amongst adolescents and young adults along with unattended access to the internet and social media and uncontrolled use of smart phones and PCs have caused social problems like sexting to emerge. The main purpose of the present article is first to present an analytic theoretical framework of sexting as a recent social phenomenon based on studies that have been conducted the last decade or so; and second to investigate Greek students’ and also social network users, sexting perceptions and to record how often social media users exchange sexual messages and to retrace demographic variables predictors. Data from 1,000 students were collected and analyzed and all statistical analysis was done by the software package WEKA. The results indicate among others, that the use of data mining methods is an important tool to draw conclusions that could affect decision and policy making especially in the field and related social topics of educational psychology. To sum up, sexting lurks many risks for adolescents and young adults students in Greece and needs to be better addressed in relevance to the stakeholders as well as society in general. Furthermore, policy makers, legislation makers and authorities will have to take action to protect minors. Prevention strategies based on Greek cultural specificities are being proposed. This social problem has raised concerns in recent years and will most likely escalate concerns in global communities in the future.

Keywords: educational ethics, sexting, Greek sexters, sex education, data mining

Procedia PDF Downloads 182
27062 Improving University Operations with Data Mining: Predicting Student Performance

Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević

Abstract:

The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.

Keywords: data mining, knowledge discovery in databases, prediction models, student success

Procedia PDF Downloads 407
27061 Understanding the Complexity of Corruption and Anti-Corruption in Indonesia's Mining Industry: Challenges and Opportunities

Authors: Ahmad Khoirul Umam, Iin Mayasari

Abstract:

Indonesia is blessed with rich natural resources and frequently dubbed as the 6th richest country in the world in terms of mining resources, including minerals and coal. Mining can contribute to the socio-economic development by generating state revenue for development, elevating poverty through employment, opening and developing remote areas, putting in basic infrastructure and creating new centres of developments. However, favouritism and rent-seeking behaviour committed by government officials, politicians, and business players in licensing and permit giving in mining and forestry sectors have resisted reforms. Even though Indonesia’s Corruption Eradication Commission (KPK) successfully targeted untouchable actors, public criticism continues to focus on questions of why corruption apparently remains systemic in mining industry in the country? This paper revealed that structural anomalies, as well as legacies of the Soeharto era’s power inequities, have severely inhibited Indonesia’s bureaucratic arrangements that continue to influence adversely the elements of transparency and accountability in mining industry governance. In the more liberalized and decentralized political system, the deficiencies have gradually assisted vested interest groups to band together, thus creating a coalition that can challenge, resist, and contain anti-graft actions. Therefore, Indonesia needs much more serious anti-corruption actions that would require eliminating the monopoly over power, enhancing competition, limiting discretion, and clarifying the rules of business and political competition in the mining sector in the country.

Keywords: anti-corruption, public integrity, private integrity, mining industry, democratization

Procedia PDF Downloads 111
27060 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining

Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj

Abstract:

Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.

Keywords: data mining, SME growth, success factors, web mining

Procedia PDF Downloads 267
27059 A Near-Optimal Domain Independent Approach for Detecting Approximate Duplicates

Authors: Abdelaziz Fellah, Allaoua Maamir

Abstract:

We propose a domain-independent merging-cluster filter approach complemented with a set of algorithms for identifying approximate duplicate entities efficiently and accurately within a single and across multiple data sources. The near-optimal merging-cluster filter (MCF) approach is based on the Monge-Elkan well-tuned algorithm and extended with an affine variant of the Smith-Waterman similarity measure. Then we present constant, variable, and function threshold algorithms that work conceptually in a divide-merge filtering fashion for detecting near duplicates as hierarchical clusters along with their corresponding representatives. The algorithms take recursive refinement approaches in the spirit of filtering, merging, and updating, cluster representatives to detect approximate duplicates at each level of the cluster tree. Experiments show a high effectiveness and accuracy of the MCF approach in detecting approximate duplicates by outperforming the seminal Monge-Elkan’s algorithm on several real-world benchmarks and generated datasets.

Keywords: data mining, data cleaning, approximate duplicates, near-duplicates detection, data mining applications and discovery

Procedia PDF Downloads 387
27058 Delivery Service and Online-and-Offline Purchasing for Collaborative Recommendations on Retail Cross-Channels

Authors: S. H. Liao, J. M. Huang

Abstract:

The delivery service business model is the final link in logistics for both online-and-offline businesses. The online-and-offline business model focuses on the entire customer purchasing process online and offline, placing greater emphasis on the importance of data to optimize overall retail operations. For the retail industry, it is an important task of information and management to strengthen the collection and investigation of consumers' online and offline purchasing data to better understand customers and then recommend products. This study implements two-stage data mining analytics for clustering and association rules analysis to investigate Taiwanese consumers' (n=2,209) preferences for delivery service. This process clarifies online-and-offline purchasing behaviors and preferences to find knowledge profiles/patterns/rules for cross-channel collaborative recommendations. Finally, theoretical and practical implications for methodology and enterprise are presented.

Keywords: delivery service, online-and-offline purchasing, retail cross-channel, collaborative recommendations, data mining analytics

Procedia PDF Downloads 31
27057 The Significance of Picture Mining in the Fashion and Design as a New Research Method

Authors: Katsue Edo, Yu Hiroi

Abstract:

T Increasing attention has been paid to using pictures and photographs in research since the beginning of the 21th century in social sciences. Meanwhile we have been studying the usefulness of Picture mining, which is one of the new ways for a these picture using researches. Picture Mining is an explorative research analysis method that takes useful information from pictures, photographs and static or moving images. It is often compared with the methods of text mining. The Picture Mining concept includes observational research in the broad sense, because it also aims to analyze moving images (Ochihara and Edo 2013). In the recent literature, studies and reports using pictures are increasing due to the environmental changes. These are identified as technological and social changes (Edo et.al. 2013). Low price digital cameras and i-phones, high information transmission speed, low costs for information transferring and high performance and resolution of the cameras of mobile phones have changed the photographing behavior of people. Consequently, there is less resistance in taking and processing photographs for most of the people in the developing countries. In these studies, this method of collecting data from respondents is often called as ‘participant-generated photography’ or ‘respondent-generated visual imagery’, which focuses on the collection of data and its analysis (Pauwels 2011, Snyder 2012). But there are few systematical and conceptual studies that supports it significance of these methods. We have discussed in the recent years to conceptualize these picture using research methods and formalize theoretical findings (Edo et. al. 2014). We have identified the most efficient fields of Picture mining in the following areas inductively and in case studies; 1) Research in Consumer and Customer Lifestyles. 2) New Product Development. 3) Research in Fashion and Design. Though we have found that it will be useful in these fields and areas, we must verify these assumptions. In this study we will focus on the field of fashion and design, to determine whether picture mining methods are really reliable in this area. In order to do so we have conducted an empirical research of the respondents’ attitudes and behavior concerning pictures and photographs. We compared the attitudes and behavior of pictures toward fashion to meals, and found out that taking pictures of fashion is not as easy as taking meals and food. Respondents do not often take pictures of fashion and upload their pictures online, such as Facebook and Instagram, compared to meals and food because of the difficulty of taking them. We concluded that we should be more careful in analyzing pictures in the fashion area for there still might be some kind of bias existing even if the environment of pictures have drastically changed in these years.

Keywords: empirical research, fashion and design, Picture Mining, qualitative research

Procedia PDF Downloads 363
27056 Environmental Impact Assessments in Peru: Tools for Violence

Authors: Nadia Degregori

Abstract:

This paper focuses on Peru’s Environmental Impact Assessment’s communication and participation mechanisms, whose rationale is to prevent conflictive situations by –supposedly- providing high-quality information about mining projects and their impacts to affected stakeholders. It is argued that, in fact, these mechanisms enhance citizens’ feelings of fear and/or mistrust towards mining projects and the companies behind them because their design follows a top-down perspective that limits “participation” to a passive reception of information, and which does not address power unbalances between communities and companies or government. As well, the paper contends that this way of managing the social aspects of Environmental Impact Assessments in Peru leads stakeholders who possess less power (typically communities) to incline towards maintaining the status quo and avoiding negotiations with either the central government or mining companies as a defence mechanism for avoiding a bad negotiation.

Keywords: community relations, environmental impact assessments, governance and participation, mining, Peru

Procedia PDF Downloads 433
27055 Design of Personal Job Recommendation Framework on Smartphone Platform

Authors: Chayaporn Kaensar

Abstract:

Recently, Job Recommender Systems have gained much attention in industries since they solve the problem of information overload on the recruiting website. Therefore, we proposed Extended Personalized Job System that has the capability of providing the appropriate jobs for job seeker and recommending some suitable information for them using Data Mining Techniques and Dynamic User Profile. On the other hands, company can also interact to the system for publishing and updating job information. This system have emerged and supported various platforms such as web application and android mobile application. In this paper, User profiles, Implicit User Action, User Feedback, and Clustering Techniques in WEKA libraries have gained attention and implemented for this application. In additions, open source tools like Yii Web Application Framework, Bootstrap Front End Framework and Android Mobile Technology were also applied.

Keywords: recommendation, user profile, data mining, web and mobile technology

Procedia PDF Downloads 313
27054 Analyzing the Water Quality of Settling Pond after Revegetation at Ex-Mining Area

Authors: Iis Diatin, Yani Hadiroseyani, Muhammad Mujahid, Ahmad Teduh, Juang R. Matangaran

Abstract:

One of silica quarry managed by a mining company is located at Sukabumi District of West Java Province Indonesia with an area of approximately 70 hectares. Since 2013 this company stopped the mining activities. The company tries to restore the ecosystem post-mining with rehabilitation activities such as reclamation and revegetation of their ex-mining area. After three years planting the area the trees grown well. Not only planting some tree species but also some cover crop has covered the soil surface. There are two settling ponds located in the middle of the ex-mining area. Those settling pond were built in order to prevent the effect of acid mine drainage. Acid mine drainage (AMD) or the acidic water is created when sulphide minerals are exposed to air and water and through a natural chemical reaction produce sulphuric acid. AMD is the main pollutant at the open pit mining. The objective of the research was to analyze the effect of revegetation on water quality change at the settling pond. The physical and chemical of water quality parameter were measured and analysed at site and at the laboratory. Physical parameter such as temperature, turbidity and total organic matter were analyse. Also heavy metal and some other chemical parameter such as dissolved oxygen, alkalinity, pH, total ammonia nitrogen, nitrate and nitrite were analysed. The result showed that the acidity of first settling pond was higher than that of the second settling pond. Both settling pond water’s contained heavy metal. The turbidity and total organic matter were the parameter of water quality which become better after revegetation.

Keywords: acid mine drainage, ex-mining area, revegetation, settling pond, water quality

Procedia PDF Downloads 303
27053 Defining Processes of Gender Restructuring: The Case of Displaced Tribal Communities of North East India

Authors: Bitopi Dutta

Abstract:

Development Induced Displacement (DID) of subaltern groups has been an issue of intense debate in India. This research will do a gender analysis of displacement induced by the mining projects in tribal indigenous societies of North East India, centering on the primary research question which is 'How does DID reorder gendered relationship in tribal matrilineal societies?' This paper will not focus primarily on the impacts of the displacement induced by coal mining on indigenous tribal women in the North East India; it will rather study 'what' are the processes that lead to these transformations and 'how' do they operate. In doing so, the paper will locate the cracks in traditional social systems that the discourse of displacement manipulates for its own benefit. DID in this sense will not only be understood as only physical displacement, but also as social and cultural displacement. The study will cover one matrilineal tribe in the state of Meghalaya in the North East India affected by several coal mining projects in the last 30 years. In-depth unstructured interviews used to collect life narratives will be the primary mode of data collection because the indigenous culture of the tribes in Meghalaya, including the matrilineal tribes, is based on oral history where knowledge and experiences produced under a tradition of oral history exist in a continuum. This is unlike modern societies which produce knowledge in a compartmentalized system. An interview guide designed around specific themes will be used rather than specific questions to ensure the flow of narratives from the interviewee. In addition to this, a number of focus groups will be held. The data collected through the life narrative will be supplemented and contextualized through documentary research using government data, and local media sources of the region.

Keywords: displacement, gender-relations, matriliny, mining

Procedia PDF Downloads 195
27052 Integrating of Multi-Criteria Decision Making and Spatial Data Warehouse in Geographic Information System

Authors: Zohra Mekranfar, Ahmed Saidi, Abdellah Mebrek

Abstract:

This work aims to develop multi-criteria decision making (MCDM) and spatial data warehouse (SDW) methods, which will be integrated into a GIS according to a ‘GIS dominant’ approach. The GIS operating tools will be operational to operate the SDW. The MCDM methods can provide many solutions to a set of problems with various and multiple criteria. When the problem is so complex, integrating spatial dimension, it makes sense to combine the MCDM process with other approaches like data mining, ascending analyses, we present in this paper an experiment showing a geo-decisional methodology of SWD construction, On-line analytical processing (OLAP) technology which combines both basic multidimensional analysis and the concepts of data mining provides powerful tools to highlight inductions and information not obvious by traditional tools. However, these OLAP tools become more complex in the presence of the spatial dimension. The integration of OLAP with a GIS is the future geographic and spatial information solution. GIS offers advanced functions for the acquisition, storage, analysis, and display of geographic information. However, their effectiveness for complex spatial analysis is questionable due to their determinism and their decisional rigor. A prerequisite for the implementation of any analysis or exploration of spatial data requires the construction and structuring of a spatial data warehouse (SDW). This SDW must be easily usable by the GIS and by the tools offered by an OLAP system.

Keywords: data warehouse, GIS, MCDM, SOLAP

Procedia PDF Downloads 177
27051 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance

Authors: Sokkhey Phauk, Takeo Okazaki

Abstract:

The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.

Keywords: academic performance prediction system, educational data mining, dominant factors, feature selection method, prediction model, student performance

Procedia PDF Downloads 106
27050 Mine Production Index (MPi): New Method to Evaluate Effectiveness of Mining Machinery

Authors: Amol Lanke, Hadi Hoseinie, Behzad Ghodrati

Abstract:

OEE has been used in many industries as measure of performance. However due to limitations of original OEE, it has been modified by various researchers. OEE for mining application is special version of classic equation, carries these limitation over. In this paper it has been aimed to modify the OEE for mining application by introducing the weights to the elements of it and termed as Mine Production index (MPi). As a special application of new index MPi shovel has been developed by team of experts and researchers for evaluating the shovel effectiveness. Based on analysis, utilization followed by performance and availability were ranked in this order. To check the applicability of this index, a case study was done on four electrical and one hydraulic shovel in a Swedish mine. The results shows that MPishovelcan properly evaluate production effectiveness of shovels and determine effectiveness values in optimistic view compared to OEE. MPi with calculation not only give the effectiveness but also can predict which elements should be focused for improving the productivity.

Keywords: mining, overall equipment efficiency (OEE), mine production index, shovels

Procedia PDF Downloads 463
27049 Clustering Categorical Data Using the K-Means Algorithm and the Attribute’s Relative Frequency

Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami

Abstract:

Clustering is a well known data mining technique used in pattern recognition and information retrieval. The initial dataset to be clustered can either contain categorical or numeric data. Each type of data has its own specific clustering algorithm. In this context, two algorithms are proposed: the k-means for clustering numeric datasets and the k-modes for categorical datasets. The main encountered problem in data mining applications is clustering categorical dataset so relevant in the datasets. One main issue to achieve the clustering process on categorical values is to transform the categorical attributes into numeric measures and directly apply the k-means algorithm instead the k-modes. In this paper, it is proposed to experiment an approach based on the previous issue by transforming the categorical values into numeric ones using the relative frequency of each modality in the attributes. The proposed approach is compared with a previously method based on transforming the categorical datasets into binary values. The scalability and accuracy of the two methods are experimented. The obtained results show that our proposed method outperforms the binary method in all cases.

Keywords: clustering, unsupervised learning, pattern recognition, categorical datasets, knowledge discovery, k-means

Procedia PDF Downloads 259
27048 Discerning Divergent Nodes in Social Networks

Authors: Mehran Asadi, Afrand Agah

Abstract:

In data mining, partitioning is used as a fundamental tool for classification. With the help of partitioning, we study the structure of data, which allows us to envision decision rules, which can be applied to classification trees. In this research, we used online social network dataset and all of its attributes (e.g., Node features, labels, etc.) to determine what constitutes an above average chance of being a divergent node. We used the R statistical computing language to conduct the analyses in this report. The data were found on the UC Irvine Machine Learning Repository. This research introduces the basic concepts of classification in online social networks. In this work, we utilize overfitting and describe different approaches for evaluation and performance comparison of different classification methods. In classification, the main objective is to categorize different items and assign them into different groups based on their properties and similarities. In data mining, recursive partitioning is being utilized to probe the structure of a data set, which allow us to envision decision rules and apply them to classify data into several groups. Estimating densities is hard, especially in high dimensions, with limited data. Of course, we do not know the densities, but we could estimate them using classical techniques. First, we calculated the correlation matrix of the dataset to see if any predictors are highly correlated with one another. By calculating the correlation coefficients for the predictor variables, we see that density is strongly correlated with transitivity. We initialized a data frame to easily compare the quality of the result classification methods and utilized decision trees (with k-fold cross validation to prune the tree). The method performed on this dataset is decision trees. Decision tree is a non-parametric classification method, which uses a set of rules to predict that each observation belongs to the most commonly occurring class label of the training data. Our method aggregates many decision trees to create an optimized model that is not susceptible to overfitting. When using a decision tree, however, it is important to use cross-validation to prune the tree in order to narrow it down to the most important variables.

Keywords: online social networks, data mining, social cloud computing, interaction and collaboration

Procedia PDF Downloads 157
27047 Feature Based Unsupervised Intrusion Detection

Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein

Abstract:

The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.

Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka

Procedia PDF Downloads 296
27046 Clustering Ethno-Informatics of Naming Village in Java Island Using Data Mining

Authors: Atje Setiawan Abdullah, Budi Nurani Ruchjana, I. Gede Nyoman Mindra Jaya, Eddy Hermawan

Abstract:

Ethnoscience is used to see the culture with a scientific perspective, which may help to understand how people develop various forms of knowledge and belief, initially focusing on the ecology and history of the contributions that have been there. One of the areas studied in ethnoscience is etno-informatics, is the application of informatics in the culture. In this study the science of informatics used is data mining, a process to automatically extract knowledge from large databases, to obtain interesting patterns in order to obtain a knowledge. While the application of culture described by naming database village on the island of Java were obtained from Geographic Indonesia Information Agency (BIG), 2014. The purpose of this study is; first, to classify the naming of the village on the island of Java based on the structure of the word naming the village, including the prefix of the word, syllable contained, and complete word. Second to classify the meaning of naming the village based on specific categories, as well as its role in the community behavioral characteristics. Third, how to visualize the naming of the village to a map location, to see the similarity of naming villages in each province. In this research we have developed two theorems, i.e theorems area as a result of research studies have collected intersection naming villages in each province on the island of Java, and the composition of the wedge theorem sets the provinces in Java is used to view the peculiarities of a location study. The methodology in this study base on the method of Knowledge Discovery in Database (KDD) on data mining, the process includes preprocessing, data mining and post processing. The results showed that the Java community prioritizes merit in running his life, always working hard to achieve a more prosperous life, and love as well as water and environmental sustainment. Naming villages in each location adjacent province has a high degree of similarity, and influence each other. Cultural similarities in the province of Central Java, East Java and West Java-Banten have a high similarity, whereas in Jakarta-Yogyakarta has a low similarity. This research resulted in the cultural character of communities within the meaning of the naming of the village on the island of Java, this character is expected to serve as a guide in the behavior of people's daily life on the island of Java.

Keywords: ethnoscience, ethno-informatics, data mining, clustering, Java island culture

Procedia PDF Downloads 283
27045 Compliance with the Health and Safety Standards/Regulations in the South African Mining Industry: A Literature Review

Authors: Livhuwani Muthelo, Tebogo Maria Mothiba, Rambelani Nancy Malema

Abstract:

Background: Despite occupational legislation/standards being in place in the industry, there are many reported health and safety incidents, including both occupational injuries and illnesses in the South African mining industry. Purpose: This systematic literature review aimed to describe and identify the existing gaps in health and safety compliance within the South African mining industry and propose future research areas. Methodology: A systematic literature review was conducted using the key concepts of health and safety, compliance, standards, and mining. A total of 102 papers issued from 1994 to April 2020 were extracted from an online database search, which included a combination of South African and international government OHS legislation documents, policies, standards, reports from the mineral departments and international labour office, qualitative and quantitative journal articles, dissertations, seminars and conference proceedings. Results: The literature review revealed that, though there are laws, regulations, standards to guide the industry on health and safety issues in South Africa, the main challenge is with the compliance with the existing health and safety systems, wherein systems are not being implemented. Conclusion: Gaps between research, policy, and implementation in occupational health practice in the South African mining industry were also identified.

Keywords: circumstances, non-compliance, health and safety, standards, mining industry

Procedia PDF Downloads 288
27044 Forest Risk and Vulnerability Assessment: A Case Study from East Bokaro Coal Mining Area in India

Authors: Sujata Upgupta, Prasoon Kumar Singh

Abstract:

The expansion of large scale coal mining into forest areas is a potential hazard for the local biodiversity and wildlife. The objective of this study is to provide a picture of the threat that coal mining poses to the forests of the East Bokaro landscape. The vulnerable forest areas at risk have been assessed and the priority areas for conservation have been presented. The forested areas at risk in the current scenario have been assessed and compared with the past conditions using classification and buffer based overlay approach. Forest vulnerability has been assessed using an analytical framework based on systematic indicators and composite vulnerability index values. The results indicate that more than 4 km2 of forests have been lost from 1973 to 2016. Large patches of forests have been diverted for coal mining projects. Forests in the northern part of the coal field within 1-3 km radius around the coal mines are at immediate risk. The original contiguous forests have been converted into fragmented and degraded forest patches. Most of the collieries are located within or very close to the forests thus threatening the biodiversity and hydrology of the surrounding regions. Based on the vulnerability values estimated, it was concluded that more than 90% of the forested grids in East Bokaro are highly vulnerable to mining. The forests in the sub-districts of Bermo and Chandrapura have been identified as the most vulnerable to coal mining activities. This case study would add to the capacity of the forest managers and mine managers to address the risk and vulnerability of forests at a small landscape level in order to achieve sustainable development.

Keywords: forest, coal mining, indicators, vulnerability

Procedia PDF Downloads 389
27043 Planning Urban Sprawl in Mining Areas in Africa: How to Ensure Coherent Development

Authors: Pascal Rey, Anaïs Weber

Abstract:

Many mining projects are being developed in Africa the last decades. Due to the economic opportunities they offer, these projects result in a massive and rapid influx of migrants to the surrounding area. In areas where central government representation is low and local administration lack financial resources, urban development is often anarchical, beyond all public control. It leads to socio-spatial segregation, insecurity and the risk of social conflicts rising. Aware that their economic development is very correlated with local situation, mining companies get more and more involved in regional planning in setting up tools and Strategic Directions document. One of the commonly used tools in this regard is the “Influx Management Plan”. It consists in looking at the region’s absorption capacities in order to ensure its coherent development and by developing several urban centers than one macrocephalic city. It includes many other measures such as urban governance support, skills transfer, creation of strategic guidelines, financial support (local taxes, mining taxes, development funds etc.) local development projects. Through various examples of mining projects in Guinea, A country that is host to many large mining projects, we will look at the implications of regional and urban planning of which mining companies are key playor as well as public authorities. While their investment capacity offers advantages and accelerates development, their actions raise questions of the unilaterality of interests and local governance. By interfering in public affairs are mining companies not increasing the risk of central and local government shirking their responsibilities in terms of regional development, or even calling their legitimacy into question? Is such public-private collaboration really sustainable for the region as a whole and for all stakeholders?

Keywords: Africa, guinea, mine, urban planning

Procedia PDF Downloads 498
27042 Assessment for the Backfill Using the Run of the Mine Tailings and Portland Cement

Authors: Javad Someehneshin, Weizhou Quan, Abdelsalam Abugharara, Stephen Butt

Abstract:

Narrow vein mining (NVM) is exploiting very thin but valuable ore bodies that are uneconomical to extract by conventional mining methods. NVM applies the technique of Sustainable Mining by Drilling (SMD). The SMD method is used to mine stranded, steeply dipping ore veins, which are too small or isolated to mine economically using conventional methods since the dilution is minimized. This novel mining technique uses drilling rigs to extract the ore through directional drilling surgically. This paper is focusing on utilizing the run of the mine tailings and Portland cement as backfill material to support the hanging wall for providing safe mine operation. Cemented paste backfill (CPB) is designed by mixing waste tailings, water, and cement of the precise percentage for optimal outcomes. It is a non-homogenous material that contains 70-85% solids. Usually, a hydraulic binder is added to the mixture to increase the strength of the CPB. The binder fraction mostly accounts for 2–10% of the total weight. In the mining industry, CPB has been improved and expanded gradually because it provides safety and support for the mines. Furthermore, CPB helps manage the waste tailings in an economical method and plays a significant role in environmental protection.

Keywords: backfilling, cement backfill, tailings, Portland cement

Procedia PDF Downloads 138
27041 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques

Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas

Abstract:

The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.

Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining

Procedia PDF Downloads 121
27040 Perceptions of Greenhouse Vegetable Growers Regarding Use of Biological Control Practices: A Case Study in Jiroft County, Iran

Authors: Hossein Shabanali Fami, Omid Sharifi, Javad Ghasemi, Mahtab Pouratashi, Mona Sadat Moghadasian

Abstract:

The main purpose of this study was to investigate perception of greenhouse vegetable growers regarding use of biological control practices during the growing season. The statistical population of the study included greenhouse vegetable growers in Jiroft county (N=1862). A sample of 137 vegetable growers was selected, using random sampling method. Data were collected via a questionnaire. The validity of the instrument was obtained by the faculty members of the Department of Agricultural Development and Management in the University of Tehran. Cronbach’s alpha was applied to estimate the reliability which showed a high reliability for the instrument. Data was analyzed using SPSS/Windows 13.5. The results revealed that greenhouse vegetable growers had moderate level of perception regarding biological control practices. Levels of vegetable growers’ perceptions regarding biological control practices were different on the basis of their academic qualifications as well as educational level and job. In addition, the results indicated that about 54.1% of variations in vegetable growers’ perceptions could be explained by variables such as awareness of biological control practices, knowledge on pests, annual production and age.

Keywords: greenhouse, biological control, biological agents, perception, vegetable grower

Procedia PDF Downloads 346
27039 Use of Quasi-3D Inversion of VES Data Based on Lateral Constraints to Characterize the Aquifer and Mining Sites of an Area Located in the North-East of Figuil, North Cameroon

Authors: Fofie Kokea Ariane Darolle, Gouet Daniel Hervé, Koumetio Fidèle, Yemele David

Abstract:

The electrical resistivity method is successfully used in this paper in order to have a clearer picture of the subsurface of the North-East ofFiguil in northern Cameroon. It is worth noting that this method is most often used when the objective of the study is to image the shallow subsoils by considering them as a set of stratified ground layers. The problem to be solved is very often environmental, and in this case, it is necessary to perform an inversion of the data in order to have a complete and accurate picture of the parameters of the said layers. In the case of this work, thirty-three (33) Schlumberger VES have been carried out on an irregular grid to investigate the subsurface of the study area. The 1D inversion applied as a preliminary modeling tool and in correlation with the mechanical drillings results indicates a complex subsurface lithology distribution mainly consisting of marbles and schists. Moreover, the quasi-3D inversion with lateral constraint shows that the misfit between the observed field data and the model response is quite good and acceptable with a value low than 10%. The method also reveals existence of two water bearing in the considered area. The first is the schist or weathering aquifer (unsuitable), and the other is the marble or the fracturing aquifer (suitable). The final quasi 3D inversion results and geological models indicate proper sites for groundwaters prospecting and for mining exploitation, thus allowing the economic development of the study area.

Keywords: electrical resistivity method, 1D inversion, quasi 3D inversion, groundwaters, mining

Procedia PDF Downloads 155
27038 The Use of Classifiers in Image Analysis of Oil Wells Profiling Process and the Automatic Identification of Events

Authors: Jaqueline Maria Ribeiro Vieira

Abstract:

Different strategies and tools are available at the oil and gas industry for detecting and analyzing tension and possible fractures in borehole walls. Most of these techniques are based on manual observation of the captured borehole images. While this strategy may be possible and convenient with small images and few data, it may become difficult and suitable to errors when big databases of images must be treated. While the patterns may differ among the image area, depending on many characteristics (drilling strategy, rock components, rock strength, etc.). Previously we developed and proposed a novel strategy capable of detecting patterns at borehole images that may point to regions that have tension and breakout characteristics, based on segmented images. In this work we propose the inclusion of data-mining classification strategies in order to create a knowledge database of the segmented curves. These classifiers allow that, after some time using and manually pointing parts of borehole images that correspond to tension regions and breakout areas, the system will indicate and suggest automatically new candidate regions, with higher accuracy. We suggest the use of different classifiers methods, in order to achieve different knowledge data set configurations.

Keywords: image segmentation, oil well visualization, classifiers, data-mining, visual computer

Procedia PDF Downloads 303
27037 Application of Association Rule Using Apriori Algorithm for Analysis of Industrial Accidents in 2013-2014 in Indonesia

Authors: Triano Nurhikmat

Abstract:

Along with the progress of science and technology, the development of the industrialized world in Indonesia took place very rapidly. This leads to a process of industrialization of society Indonesia faster with the establishment of the company and the workplace are diverse. Development of the industry relates to the activity of the worker. Where in these work activities do not cover the possibility of an impending crash on either the workers or on a construction project. The cause of the occurrence of industrial accidents was the fault of electrical damage, work procedures, and error technique. The method of an association rule is one of the main techniques in data mining and is the most common form used in finding the patterns of data collection. In this research would like to know how relations of the association between the incidence of any industrial accidents. Therefore, by using methods of analysis association rule patterns associated with combination obtained two iterations item set (2 large item set) when every factor of industrial accidents with a West Jakarta so industrial accidents caused by the occurrence of an electrical value damage = 0.2 support and confidence value = 1, and the reverse pattern with value = 0.2 support and confidence = 0.75.

Keywords: association rule, data mining, industrial accidents, rules

Procedia PDF Downloads 299
27036 Information Management Approach in the Prediction of Acute Appendicitis

Authors: Ahmad Shahin, Walid Moudani, Ali Bekraki

Abstract:

This research aims at presenting a predictive data mining model to handle an accurate diagnosis of acute appendicitis with patients for the purpose of maximizing the health service quality, minimizing morbidity/mortality, and reducing cost. However, acute appendicitis is the most common disease which requires timely accurate diagnosis and needs surgical intervention. Although the treatment of acute appendicitis is simple and straightforward, its diagnosis is still difficult because no single sign, symptom, laboratory or image examination accurately confirms the diagnosis of acute appendicitis in all cases. This contributes in increasing morbidity and negative appendectomy. In this study, the authors propose to generate an accurate model in prediction of patients with acute appendicitis which is based, firstly, on the segmentation technique associated to ABC algorithm to segment the patients; secondly, on applying fuzzy logic to process the massive volume of heterogeneous and noisy data (age, sex, fever, white blood cell, neutrophilia, CRP, urine, ultrasound, CT, appendectomy, etc.) in order to express knowledge and analyze the relationships among data in a comprehensive manner; and thirdly, on applying dynamic programming technique to reduce the number of data attributes. The proposed model is evaluated based on a set of benchmark techniques and even on a set of benchmark classification problems of osteoporosis, diabetes and heart obtained from the UCI data and other data sources.

Keywords: healthcare management, acute appendicitis, data mining, classification, decision tree

Procedia PDF Downloads 350