Search results for: Hidden Markov Chain
2160 Assessing the Impact of Autonomous Vehicles on Supply Chain Performance – A Case Study of Agri-Food Supply Chain
Authors: Nitish Suvarna, Anjali Awasthi
Abstract:
In an era marked by rapid technological advancements, the integration of Autonomous Vehicles into supply chain networks represents a transformative shift, promising to redefine the paradigms of logistics and transportation. This thesis delves into a comprehensive assessment of the impact of autonomous vehicles on supply chain performance, with a particular focus on network design, operational efficiency, and environmental sustainability. Employing the advanced simulation capabilities of anyLogistix (ALX), the study constructs a digital twin of a conventional supply chain network, encompassing suppliers, production facilities, distribution centers, and customer endpoints. The research methodically integrates Autonomous Vehicles into this intricate network, aiming to unravel the multifaceted effects on transportation logistics including transit times, cost-efficiency, and sustainability. Through simulations and scenarios analysis, the study scrutinizes the operational resilience and adaptability of supply chains in the face of dynamic market conditions and disruptive technologies like Autonomous Vehicles. Furthermore, the thesis undertakes carbon footprint analysis, quantifying the environmental benefits and challenges associated with the adoption of Autonomous Vehicles in supply chain operations. The insights from this research are anticipated to offer a strategic framework for industry stakeholders, guiding the adoption of Autonomous Vehicles to foster a more efficient, responsive, and sustainable supply chain ecosystem. The findings aim to serve as a cornerstone for future research and practical implementations in the realm of intelligent transportation and supply chain management.Keywords: autonomous vehicle, agri-food supply chain, ALX simulation, anyLogistix
Procedia PDF Downloads 752159 Inventory Policy with Continuous Price Reduction in Solar Photovoltaic Supply Chain
Authors: Xiangrong Liu, Chuanhui Xiong
Abstract:
With the concern of large pollution emissions from coal-fired power plants and new commitment to green energy, global solar power industry was emerging recently. Due to the advanced technology, the price of solar photovoltaic(PV) module was reduced at a fast rate, which arose an interesting but challenge question to solar supply chain. This research is modeling the inventory strategies for a PV supply chain with a PV manufacturer, an assembler and an end customer. Through characterizing the manufacturer's and PV assembler's optimal decision in decentralized and centralized situation, this study shed light on how to improve supply chain performance through parameters setting in the contract design. The results suggest the assembler to lower the optimal stock level gradually each period before price reduction and set up a newsvendor base-stock policy in all periods after price reduction. As to the PV module manufacturer, a non-stationary produce-up-to policy is optimal.Keywords: photovoltaic, supply chain, inventory policy, base-stock policy
Procedia PDF Downloads 3482158 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks
Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez
Abstract:
Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning
Procedia PDF Downloads 3392157 Contribution of Supply Chain Management Practices for Enhancing Healthcare Service Quality: A Quantitative Analysis in Delhi’s Healthcare Sector
Authors: Chitrangi Gupta, Arvind Bhardwaj
Abstract:
This study seeks to investigate and quantify the influence of various dimensions of supply chain management (namely, supplier relationships, compatibility, specifications and standards, delivery processes, and after-sales service) on distinct dimensions of healthcare service quality (specifically, responsiveness, trustworthiness, and security) within the operational framework of XYZ Superspeciality Hospital, situated in Delhi. The name of the Hospital is not being mentioned here because of the privacy policy of the hospital. The primary objective of this research is to elucidate the impact of supply chain management practices on the overall quality of healthcare services offered within hospital settings. Employing a quantitative research design, this study utilizes a hypothesis-testing approach to systematically discern the relationship between supply chain management dimensions and the quality of health services. The findings of this study underscore the significant influence exerted by supply chain management dimensions, specifically supplier relationships, specifications and standards, delivery processes, and after-sales service, on the enhancement of healthcare service quality. Moreover, the study's results reveal that demographic factors such as gender, qualifications, age, and experience do not yield discernible disparities in the relationship between supply chain management and healthcare service quality.Keywords: supply chain management, healthcare, hospital operations, service delivery
Procedia PDF Downloads 672156 Reshoring Strategies for Enhanced Supply Chain Resilience: A Comprehensive Analysis of Procurement Challenges and Solutions in the United States
Authors: Emilia Segun-Ajao
Abstract:
The strategy of relocation aimed at strengthening supply chain resilience in the United States is examined, taking into account recent global disturbances and vulnerabilities in offshore manufacturing. It explains the procurement challenges faced by enterprises and offers solutions to mitigate risks and improve resilience. Through the analysis of innovative approaches, including technological advances, policy considerations, and strategic frameworks, this study provides insights to decision-makers about the complexity of supply chain management. Reshoring has gained attention as a strategy to improve supply chain resilience in the face of global disruptions. This analysis focuses on the importance of relocating as a multifaceted approach to strengthening supply chains, advocating economic benefits, technological advances, and policy frameworks to create a more robust supply landscape in the United States.Keywords: collaborative partnerships, supply chain resilience, procurement challenges, technology adoption
Procedia PDF Downloads 622155 Presenting a Model in the Analysis of Supply Chain Management Components by Using Statistical Distribution Functions
Authors: Ramin Rostamkhani, Thurasamy Ramayah
Abstract:
One of the most important topics of today’s industrial organizations is the challenging issue of supply chain management. In this field, scientists and researchers have published numerous practical articles and models, especially in the last decade. In this research, to our best knowledge, the discussion of data modeling of supply chain management components using well-known statistical distribution functions has been considered. The world of science owns mathematics, and showing the behavior of supply chain data based on the characteristics of statistical distribution functions is innovative research that has not been published anywhere until the moment of doing this research. In an analytical process, describing different aspects of functions including probability density, cumulative distribution, reliability, and failure function can reach the suitable statistical distribution function for each of the components of the supply chain management. It can be applied to predict the behavior data of the relevant component in the future. Providing a model to adapt the best statistical distribution function in the supply chain management components will be a big revolution in the field of the behavior of the supply chain management elements in today's industrial organizations. Demonstrating the final results of the proposed model by introducing the process capability indices before and after implementing it alongside verifying the approach through the relevant assessment as an acceptable verification is a final step. The introduced approach can save the required time and cost to achieve the organizational goals. Moreover, it can increase added value in the organization.Keywords: analyzing, process capability indices, statistical distribution functions, supply chain management components
Procedia PDF Downloads 872154 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification
Authors: Abdelhadi Lotfi, Abdelkader Benyettou
Abstract:
In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.Keywords: classification, probabilistic neural networks, network optimization, pattern recognition
Procedia PDF Downloads 2612153 Factors Affecting Green Supply Chain Management of Lampang Ceramics Industry
Authors: Nattida Wannaruk, Wasawat Nakkiew
Abstract:
This research aims to study the factors that affect the performance of green supply chain management in the Lampang ceramics industry. The data investigation of this research was questionnaires which were gathered from 20 factories in the Lampang ceramics industry. The research factors are divided into five major groups which are green design, green purchasing, green manufacturing, green logistics and reverse logistics. The questionnaire has consisted of four parts that related to factors green supply chain management and general information of the Lampang ceramics industry. Then, the data were analyzed using descriptive statistic and priority of each factor by using the analytic hierarchy process (AHP). The understanding of factors affecting the green supply chain management of Lampang ceramics industry was indicated in the summary result along with each factor weight. The result of this research could be contributed to the development of indicators or performance evaluation in the future.Keywords: Lampang ceramics industry, green supply chain management, analysis hierarchy process (AHP), factors affecting
Procedia PDF Downloads 3322152 Digitalization, Supply Chain Integration and Financial Performance: Case of Tunisian Agro-Industrial Sector
Authors: Rym Ghariani, Younes Boujelbene
Abstract:
This study aimed to examine the impact of digitalization and supply chain integration on the financial performance of companies in the agro-industrial sector in Tunisia, highlighting the growing importance of digital technologies in modern economies. The results were analyzed using a questionnaire and using principal component analysis, as well as linear regression modeling with SPSS26. The results demonstrate that the digitalization and integration of the supply chain have a significant impact on the financial results of Tunisian agro-industrial companies. In theory, this study provides a better understanding of the effects of digital advancements and supply chain strategies on financial results in this specific area. This study, therefore, studies the relationship between these variables and financial efficiency, highlighting the significant impacts of these technological and strategic elements on the financial results of agro-industrial companies in Tunisia.Keywords: digitalization, supply chain integration, financial performance, Tunisian agro-industrial sector
Procedia PDF Downloads 432151 Regional Advantages Analysis: An Interactive Approach of Comparative and Competitive Advantages
Authors: Abdolrasoul Ghasemi, Ali Arabmazar Yazdi, Yasaman Boroumand, Aliasghar Banouei
Abstract:
In regional studies, choosing an appropriate approach to analyze regional success or failure has always been a challenge. Hence, this study introduces an innovative approach to establish a link between regional success and failure in the past as well as the potential success of a region in the future. The former can be sought in the historical evaluation of comparative advantages, while the latter is portrayed as competitive advantage analysis with a forward-looking approach. Based on the interaction of comparative and competitive advantages, activities are classified into four groups, including activities with no advantage, hidden advantage, fragile advantage and synergistic advantage. In analyzing the comparative advantage of activities, the location quotient method is applied, and in analyzing their competitive advantage, Porter`s diamond model using the survey method is applied. According to the results, the share of no advantage, fragile advantage, hidden advantage and synergic advantage activities are respectively 10%, 42%, 16%, and 32%. Also, to achieve economic development in regional activities, our model provides various levels of priority. First, the activities with synergistic advantage should be prioritized, then the ones with hidden advantage, and finally the activities with fragile advantage.Keywords: regional advantage, comparative advantage, competitive advantage, Porter's diamond model
Procedia PDF Downloads 3532150 Knowledge, Attitude, and Practice Related to Potential Application of Artificial Intelligence in Health Supply Chain
Authors: Biniam Bahiru Tufa, Hana Delil Tesfaye, Seife Demisse Legesse, Manaye Tamire
Abstract:
The healthcare industry is witnessing a digital transformation, with artificial intelligence (AI) offering potential solutions for challenges in health supply chain management (HSCM). However, the adoption of AI in this field remains limited. This research aimed to assess the knowledge, attitude, and practice of AI among students and employees in the health supply chain sector in Ethiopia. Using an explanatory case study research design with a concurrent mixed approach, quantitative and qualitative data were collected simultaneously. The study included 153 participants comprising students and employed health supply chain professionals working in various sectors. The majority had a pharmacy background, and one-third of the participants were male. Most respondents were under 35 years old, and around 68.6% had less than 10 years of experience. The findings revealed that 94.1% of participants had prior knowledge of AI, but only 35.3% were aware of its application in the supply chain. Moreover, the majority indicated that their training curriculum did not cover AI in health supply chain management. Participants generally held positive attitudes toward the necessity of AI for improving efficiency, effectiveness, and cost savings in the supply chain. However, many expressed concerns about its impact on job security and satisfaction, considering it as a burden Graduate students demonstrated higher knowledge of AI compared to employed staff, while graduate students also exhibited a more positive attitude toward AI. The study indicated low previous utilization and potential future utilization of AI in the health supply chain, suggesting untapped opportunities for improvement. Overall, while supply chain experts and graduate students lacked sufficient understanding of AI and its significance, they expressed favorable views regarding its implementation in the sector. The study recommends that the Ethiopian government and international organizations consider introducing AI in the undergraduate pharmacy curriculum and promote its integration into the health supply chain field.Keywords: knowledge, attitude, practice, supply chain, articifial intellegence
Procedia PDF Downloads 912149 Inventory Optimization in Restaurant Supply Chain Outlets
Authors: Raja Kannusamy
Abstract:
The research focuses on reducing food waste in the restaurant industry. A study has been conducted on the chain of retail restaurant outlets. It has been observed that the food wastages are due to the inefficient inventory management systems practiced in the restaurant outlets. The major food items which are wasted more in quantity are being selected across the retail chain outlets. A moving average forecasting method has been applied for the selected food items so that their future demand could be predicted accurately and food wastage could be avoided. It has been found that the moving average prediction method helps in predicting forecasts accurately. The demand values obtained from the moving average method have been compared to the actual demand values and are found to be similar with minimum variations. The inventory optimization technique helps in reducing food wastage in restaurant supply chain outlets.Keywords: food wastage, restaurant supply chain, inventory optimisation, demand forecasting
Procedia PDF Downloads 912148 A Combinatorial Representation for the Invariant Measure of Diffusion Processes on Metric Graphs
Authors: Michele Aleandri, Matteo Colangeli, Davide Gabrielli
Abstract:
We study a generalization to a continuous setting of the classical Markov chain tree theorem. In particular, we consider an irreducible diffusion process on a metric graph. The unique invariant measure has an atomic component on the vertices and an absolutely continuous part on the edges. We show that the corresponding density at x can be represented by a normalized superposition of the weights associated to metric arborescences oriented toward the point x. A metric arborescence is a metric tree oriented towards its root. The weight of each oriented metric arborescence is obtained by the product of the exponential of integrals of the form ∫a/b², where b is the drift and σ² is the diffusion coefficient, along the oriented edges, for a weight for each node determined by the local orientation of the arborescence around the node and for the inverse of the diffusion coefficient at x. The metric arborescences are obtained by cutting the original metric graph along some edges.Keywords: diffusion processes, metric graphs, invariant measure, reversibility
Procedia PDF Downloads 1722147 The Development of a Comprehensive Sustainable Supply Chain Performance Measurement Theoretical Framework in the Oil Refining Sector
Authors: Dina Tamazin, Nicoleta Tipi, Sahar Validi
Abstract:
The oil refining industry plays vital role in the world economy. Oil refining companies operate in a more complex and dynamic environment than ever before. In addition, oil refining companies and the public are becoming more conscious of crude oil scarcity and climate changes. Hence, sustainability in the oil refining industry is becoming increasingly critical to the industry's long-term viability and to the environmental sustainability. Mainly, it is relevant to the measurement and evaluation of the company's sustainable performance to support the company in understanding their performance and its implication more objectively and establishing sustainability development plans. Consequently, the oil refining companies attempt to re-engineer their supply chain to meet the sustainable goals and standards. On the other hand, this research realized that previous research in oil refining sustainable supply chain performance measurements reveals that there is a lack of studies that consider the integration of sustainability in the supply chain performance measurement practices in the oil refining industry. Therefore, there is a need for research that provides performance guidance, which can be used to measure sustainability and assist in setting sustainable goals for oil refining supply chains. Accordingly, this paper aims to present a comprehensive oil refining sustainable supply chain performance measurement theoretical framework. In development of this theoretical framework, the main characteristics of oil refining industry have been identified. For this purpose, a thorough review of relevant literature on performance measurement models and sustainable supply chain performance measurement models has been conducted. The comprehensive oil refining sustainable supply chain performance measurement theoretical framework introduced in this paper aims to assist oil refining companies in measuring and evaluating their performance from a sustainability aspect to achieve sustainable operational excellence.Keywords: oil refining industry, oil refining sustainable supply chain, performance measurement, sustainability
Procedia PDF Downloads 2872146 Single Event Transient Tolerance Analysis in 8051 Microprocessor Using Scan Chain
Authors: Jun Sung Go, Jong Kang Park, Jong Tae Kim
Abstract:
As semi-conductor manufacturing technology evolves; the single event transient problem becomes more significant issue. Single event transient has a critical impact on both combinational and sequential logic circuits, so it is important to evaluate the soft error tolerance of the circuits at the design stage. In this paper, we present a soft error detecting simulation using scan chain. The simulation model generates a single event transient randomly in the circuit, and detects the soft error during the execution of the test patterns. We verified this model by inserting a scan chain in an 8051 microprocessor using 65 nm CMOS technology. While the test patterns generated by ATPG program are passing through the scan chain, we insert a single event transient and detect the number of soft errors per sub-module. The experiments show that the soft error rates per cell area of the SFR module is 277% larger than other modules.Keywords: scan chain, single event transient, soft error, 8051 processor
Procedia PDF Downloads 3472145 The Nexus between Downstream Supply Chain Losses and Food Security in Nigeria: Empirical Evidence from the Yam Industry
Authors: Alban Igwe, Ijeoma Kalu, Alloy Ezirim
Abstract:
Food insecurity is a global problem, and the search for food security has assumed a central stage in the global development agenda as the United Nations currently placed zero hunger as a goal number in its sustainable development goals. Nigeria currently ranks 107th out of 113 countries in the global food security index (GFSI), a metric that defines a country's ability to furnish its citizens with food and nutrients for healthy living. Paradoxically, Nigeria is a global leader in food production, ranking 1st in yam (over 70% of global output), beans (over 41% of global output), cassava (20% of global output) and shea nuts, where it commands 53% of global output. Furthermore, it ranks 2nd in millet, sweet potatoes, and cashew nuts. It is Africa's largest producer of rice. So, it is apparent that Nigeria's food insecurity woes must relate to a factor other than food production. We investigated the nexus between food security and downstream supply chain losses in the yam industry with secondary data from the Food and Agricultural Organization (FAOSTAT) and the National Bureau of Statics for the decade 2012-2021. In analyzing the data, multiple regression techniques were used, and findings reveal that downstream losses have a strong positive correlation with food security (r = .763*) and a 58.3% variation in food security is explainable by post-downstream supply chain food losses. The study discovered that yam supply chain losses within the period under review averaged 50.6%, suggestive of the fact that downstream supply chain losses are the drainpipe and the major source of food insecurity in Nigeria. Therefore, the study concluded that there is a significant relationship between downstream supply chain losses and food insecurity and recommended the establishment of food supply chain structures and policies to enhance food security in Nigeria.Keywords: food security, downstream supply chain losses, yam, nigeria, supply chain
Procedia PDF Downloads 902144 Supply Network Design for Production-Distribution of Fish: A Sustainable Approach Using Mathematical Programming
Authors: Nicolás Clavijo Buriticá, Laura Viviana Triana Sanchez
Abstract:
This research develops a productive context associated with the aquaculture industry in northern Tolima-Colombia, specifically in the town of Lerida. Strategic aspects of chain of fish Production-Distribution, especially those related to supply network design of an association devoted to cultivating, farming, processing and marketing of fish are addressed. This research is addressed from a special approach of Supply Chain Management (SCM) which guides management objectives to the system sustainability; this approach is called Sustainable Supply Chain Management (SSCM). The network design of fish production-distribution system is obtained for the case study by two mathematical programming models that aims to maximize the economic benefits of the chain and minimize total supply chain costs, taking into account restrictions to protect the environment and its implications on system productivity. The results of the mathematical models validated in the productive situation of the partnership under study, called Asopiscinorte shows the variation in the number of open or closed locations in the supply network that determines the final network configuration. This proposed result generates for the case study an increase of 31.5% in the partial productivity of storage and processing, in addition to possible favorable long-term implications, such as attending an agile or not a consumer area, increase or not the level of sales in several areas, to meet in quantity, time and cost of work in progress and finished goods to various actors in the chain.Keywords: Sustainable Supply Chain, mathematical programming, aquaculture industry, Supply Chain Design, Supply Chain Configuration
Procedia PDF Downloads 5392143 The Effects of Cost-Sharing Contracts on the Costs and Operations of E-Commerce Supply Chains
Authors: Sahani Rathnasiri, Pritee Ray, Sardar M. N. Isalm, Carlos A. Vega-Mejia
Abstract:
This study develops a cooperative game theory-based cost-sharing contract model for a business to consumer (B2C) e-commerce supply chain to minimize the overall supply chain costs and the individual costs within an information asymmetry scenario. The objective of this study is to address the issues of strategic interactions among the key players of the e-commerce supply chain operation, which impedes the optimal operational outcomes. Game theory has been included in the field of supply chain management to resolve strategic decision-making issues; however, most of the studies are limited only to two-echelons of the supply chains. Multi-echelon supply chain optimizations based on game-theoretic models are less explored in the previous literature. This study adopts a cooperative game model to focus on the common payoff of operations and addresses the issues of information asymmetry and coordination of a three-echelon e-commerce supply chain. The cost-sharing contract model integrates operational features such as production, inventory management and distribution with the contract related constraints. The outcomes of the model highlight the importance of maintaining lower operational costs by all players to obtain benefits from the cost-sharing contract. Further, the cost-sharing contract ensures true cost revelation, and hence eliminates the information asymmetry issues among the players. Comparing the results of the contract model with the de-centralized e-commerce supply chain operation further emphasizes that the cost-sharing contract derives Pareto-improved outcomes and minimizes the costs of overall e-commerce supply chain operation.Keywords: cooperative game theory, cost-sharing contract, e-commerce supply chain, information asymmetry
Procedia PDF Downloads 1282142 Design of Distribution Network for Gas Cylinders in Jordan
Authors: Hazem J. Smadi
Abstract:
Performance of a supply chain is directly related to a distribution network that entails the location of storing materials or products and how products are delivered to the end customer through different stages in the supply chain. This study analyses the current distribution network used for delivering gas cylinders to end customer in Jordan. Evaluation of current distribution has been conducted across customer service components. A modification on the current distribution network in terms of central warehousing in each city in the country improves the response time and customer experience.Keywords: distribution network, gas cylinder, Jordan, supply chain
Procedia PDF Downloads 4592141 Optimal Bayesian Control of the Proportion of Defectives in a Manufacturing Process
Authors: Viliam Makis, Farnoosh Naderkhani, Leila Jafari
Abstract:
In this paper, we present a model and an algorithm for the calculation of the optimal control limit, average cost, sample size, and the sampling interval for an optimal Bayesian chart to control the proportion of defective items produced using a semi-Markov decision process approach. Traditional p-chart has been widely used for controlling the proportion of defectives in various kinds of production processes for many years. It is well known that traditional non-Bayesian charts are not optimal, but very few optimal Bayesian control charts have been developed in the literature, mostly considering finite horizon. The objective of this paper is to develop a fast computational algorithm to obtain the optimal parameters of a Bayesian p-chart. The decision problem is formulated in the partially observable framework and the developed algorithm is illustrated by a numerical example.Keywords: Bayesian control chart, semi-Markov decision process, quality control, partially observable process
Procedia PDF Downloads 3182140 How Supply Chains Can Benefit from Open Innovation: Inspiration from Toyota Production System
Authors: Sam Solaimani, Jack A. A. van der Veen, Mehdi Latifi
Abstract:
Considering the increasingly VUCA (Volatile, Uncertain, Complex, Ambiguous) business market, innovation is the name of the game in contemporary business. Innovation is not solely created within the organization itself; its 'network environment' appears to be equally important for innovation. There are, at least, two streams of literature that emphasize the idea of using the extended organization to foster innovation capability, namely, Supply Chain Collaboration (SCC) (also rooted in the Lean philosophy) and Open Innovation (OI). Remarkably, these two concepts are still considered as being totally different in the sense that these appear in different streams of literature and applying different concepts in pursuing the same purposes. This paper explores the commonalities between the two concepts in order to conceptually further our understanding of how OI can effectively be applied in Supply Chain networks. Drawing on available literature in OI, SCC and Lean, the paper concludes with five principles that help firms to contextualize the implementation of OI to the peculiar setting of SC. Theoretically, the present paper aims at contributing to the relatively under-researched theme of Supply Chain Innovation. More in practical terms, the paper provides OI and SCC communities with a workable know-how to seize on and sustain OI initiatives.Keywords: lean philosophy, open innovation, supply chain collaboration, supply chain management
Procedia PDF Downloads 3222139 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods
Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow
Abstract:
A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.Keywords: forecasting model, steel demand uncertainty, hierarchical Bayesian framework, exponential smoothing method
Procedia PDF Downloads 3502138 Understanding Children’s Visual Attention to Personal Protective Equipment Using Eye-Tracking
Authors: Vanessa Cho, Janet Hsiao, Nigel King, Robert Anthonappa
Abstract:
Background: The personal protective equipment (PPE) requirements for health care workers (HCWs) have changed significantly during the COVID-19 pandemic. Aim: To ascertain, using eye-tracking technology, what children notice the most when seeing HCWs in various PPE. Design: A Tobii nano pro-eye-tracking camera tracked 156 children's visual attention while they viewed photographs of HCWs in various PPEs. Eye Movement analysis with Hidden Markov Models (EMHMM) was employed to analyse 624 recordings using two approaches, namely (i) data-driven where children's fixation determined the regions of interest (ROIs), and (ii) fixed ROIs where the investigators predefined the ROIs. Results: Two significant eye movement patterns, namely distributed(85.2%) and selective(14.7%), were identified(P<0.05). Most children fixated primarily on the face regardless of the different PPEs. Children fixated equally on all PPE images in the distributed pattern, while a strong preference for unmasked faces was evident in the selective pattern (P<0.01). Conclusion: Children as young as 2.5 years used a top-down visual search behaviour and demonstrated their face processing ability. Most children did not show a strong visual preference for a specific PPE, while a minority preferred PPE with distinct facial features, namely without masks and loupes.Keywords: COVID-19, PPE, dentistry, pediatric
Procedia PDF Downloads 902137 The COVID-19 Pandemic and Supply Chain Resilience of Food Banks: A Multiple-Case Study
Authors: Karima Afif, Jacinthe Clouthier, Marie-Ève Gaboury-Bonhomme, Véronique Provencher, Morgane Leclercq
Abstract:
This paper investigates how food banks have secured and improved their supply chain resilience to pursue their mission during COVID-19. More specifically, the implications of the COVID-19 outbreak on the food aid needs, donations, operations, and mission of food banks are explored. To develop an in-depth understanding of the reactions and actions that they have been taken, a qualitative approach has been adopted using a multiple case study design. Data from two focus groups, 12 semi-structured interviews with key informants covering all supply chain levels, and field notes from 7 workplace observations in donation points, food bank facilities, and community-based organizations in Québec (Canada) are triangulated. The results highlight that the pandemic has significantly and unpredictably increased the number of food aid demands, causing significant operational challenges for the food banks supply chain, as well as an unprecedented shortage of donations to food banks. Besides, the sanitary measures have required several adaptative strategies. These implications have caused food banks to enhance their operational flexibility, optimize their logistics operations, enhance their human resources management, and expand collaboration within their supply chain.Keywords: supply chain resilience, food banks, food donations, food aid, COVID-19
Procedia PDF Downloads 712136 Duality of Leagility and Governance: A New Normal Demand Network Management Paradigm under Pandemic
Authors: Jacky Hau
Abstract:
The prevalence of emerging technologies disrupts various industries as well as consumer behavior. Data collection has been in the fingertip and inherited through enabled Internet-of-things (IOT) devices. Big data analytics (BDA) becomes possible and allows real-time demand network management (DNM) through leagile supply chain. To enhance further on its resilience and predictability, governance is going to be examined to promote supply chain transparency and trust in an efficient manner. Leagility combines lean thinking and agile techniques in supply chain management. It aims at reducing costs and waste, as well as maintaining responsiveness to any volatile consumer demand by means of adjusting the decoupling point where the product flow changes from push to pull. Leagility would only be successful when collaborative planning, forecasting, and replenishment (CPFR) process or alike is in place throughout the supply chain business entities. Governance and procurement of the supply chain, however, is crucial and challenging for the execution of CPFR as every entity has to walk-the-talk generously for the sake of overall benefits of supply chain performance, not to mention the complexity of exercising the polices at both of within across various supply chain business entities on account of organizational behavior and mutual trust. Empirical survey results showed that the effective timespan on demand forecasting had been drastically shortening in the magnitude of months to weeks planning horizon, thus agility shall come first and preferably following by lean approach in a timely manner.Keywords: governance, leagility, procure-to-pay, source-to-contract
Procedia PDF Downloads 1112135 Medicinal Plants Supply Chain Innovations for Producer Surplus: Relationship Integration to Benefit the Rural Agrientrepreneurs in Bangladesh
Authors: Akm Shahidullah
Abstract:
This paper assessed the medicinal plants production and related entrepreneurial and management aspects with a focus to understand the present medicinal plants-based supply chain of Bangladesh. It delineated the overall supply chain and the extent of benefit that the plant-producingagrientrepreneursderive out of the existing system of the chain. The key objective was to put forward innovative supply chain strategiesthatcan leverage the benefit of the rural farmer-entrepreneur of medicinal plants. A field-based investigation was carried out in the Natore district of northwest Bangladesh, where a total of 225 farmers and households from eight villages were engaged in the production of medicinal plant species. The research had a survey with the agrientrepreneurs of two of those villages and focus group discussions at a union level to gather information about the price, buyers, seasonality, and overall supply infrastructure and trading mechanisms of the plant products. The research also gathered explanations on the overall supply chain system of the plants and plant-based processed products through key informant interviews with the local and regional selling agents, stockists, wholesalers, and secondary processors. The findings revealed that, in the existing supply chain system, the primary and wholesale secondary markets were mostly dominated by middlemen who cause market distortions and inflated prices due to a lack of coordination between the primary producers and secondary processors. The discoordination and inefficiencies in the supply chain system could be offset by the producer-processor relationship integration that could result in a multitude of benefits to both the parties in terms of price, quality, lead time, and overall control of the supply chain. Therefore, to ensure the growth of medicinal plants production, the industry users, secondary processors, and policy stakeholders should ensure that the primary producers get the fair share of the benefit; the producer-processor relationship integration in the supply chain offers to ensure that fairness with maximum producer surplus.Keywords: medicinal-plants, agrientrepreneur, supply chain, relationship integration, Bangladesh
Procedia PDF Downloads 932134 Persistent Homology of Convection Cycles in Network Flows
Authors: Minh Quang Le, Dane Taylor
Abstract:
Convection is a well-studied topic in fluid dynamics, yet it is less understood in the context of networks flows. Here, we incorporate techniques from topological data analysis (namely, persistent homology) to automate the detection and characterization of convective/cyclic/chiral flows over networks, particularly those that arise for irreversible Markov chains (MCs). As two applications, we study convection cycles arising under the PageRank algorithm, and we investigate chiral edges flows for a stochastic model of a bi-monomer's configuration dynamics. Our experiments highlight how system parameters---e.g., the teleportation rate for PageRank and the transition rates of external and internal state changes for a monomer---can act as homology regularizers of convection, which we summarize with persistence barcodes and homological bifurcation diagrams. Our approach establishes a new connection between the study of convection cycles and homology, the branch of mathematics that formally studies cycles, which has diverse potential applications throughout the sciences and engineering.Keywords: homology, persistent homolgy, markov chains, convection cycles, filtration
Procedia PDF Downloads 1362133 Identification of Landslide Features Using Back-Propagation Neural Network on LiDAR Digital Elevation Model
Authors: Chia-Hao Chang, Geng-Gui Wang, Jee-Cheng Wu
Abstract:
The prediction of a landslide is a difficult task because it requires a detailed study of past activities using a complete range of investigative methods to determine the changing condition. In this research, first step, LiDAR 1-meter by 1-meter resolution of digital elevation model (DEM) was used to generate six environmental factors of landslide. Then, back-propagation neural networks (BPNN) was adopted to identify scarp, landslide areas and non-landslide areas. The BPNN uses 6 environmental factors in input layer and 1 output layer. Moreover, 6 landslide areas are used as training areas and 4 landslide areas as test areas in the BPNN. The hidden layer is set to be 1 and 2; the hidden layer neurons are set to be 4, 5, 6, 7 and 8; the learning rates are set to be 0.01, 0.1 and 0.5. When using 1 hidden layer with 7 neurons and the learning rate sets to be 0.5, the result of Network training root mean square error is 0.001388. Finally, evaluation of BPNN classification accuracy by the confusion matrix shows that the overall accuracy can reach 94.4%, and the Kappa value is 0.7464.Keywords: digital elevation model, DEM, environmental factors, back-propagation neural network, BPNN, LiDAR
Procedia PDF Downloads 1442132 Supply Chain Coordination under Carbon Trading Mechanism in Case of Conflict
Authors: Fuqiang Wang, Jun Liu, Liyan Cai
Abstract:
This paper investigates the coordination of the conflicting two-stage low carbon supply chain consisting of upstream and downstream manufacturers. The conflict means that the upstream manufacturer takes action for carbon emissions reduction under carbon trading mechanism while the downstream manufacturer’s production cost rises. It assumes for the Stackelberg game that the upstream manufacturer plays as a leader and the downstream manufacturer does as a follower. Four kinds of the situation of decentralized decision making, centralized decision-making, the production cost sharing contract and the carbon emissions reduction revenue sharing contract under decentralized decision making are considered. The backward induction approach is adopted to solve the game. The results show that the more intense the conflict is, the lower the efficiency of carbon emissions reduction and the higher the retail price is. The optimal investment of the decentralized supply chain under the two contracts is unchanged and still lower than that of the centralized supply chain. Both the production cost sharing contract and the carbon emissions reduction revenue sharing contract cannot coordinate the supply chain, because that the sharing cost or carbon emissions reduction sharing revenue will transfer through the wholesale price mechanism. As a result, it requires more complicated contract forms to coordinate such a supply chain.Keywords: cap-and-trade mechanism, carbon emissions reduction, conflict, supply chain coordination
Procedia PDF Downloads 3402131 Greening of Supply Chains: Benefits and Challenges Faced
Authors: Anurag Reddy Ramireddy, Abrar Ahmed, G. Sourya Sri Harsha, Pushkala Muralidharan
Abstract:
Supply chains have been developing over time since the inception of commercial trade and barter. The Green Supply Chain Management (GSCM) is a powerful way to differentiate a company from its competitors and it can greatly influence the plan success. With increased awareness to corporate responsibility and the requirement to meet the terms with environmental policy, GSCM is becoming increasingly important for companies. This paper explains the concept of green supply chain management, the difference between conventional supply chain management and green supply management and how GSCM benefits organizations while at the same time supporting a sustainable environment system. An effort has also been made to analyse research already done in this field while exploring the challenges and barriers that organizations face in implementing GSCM practices in their existing systems.Keywords: corporate social responsibility, green supply chain management, sustainability
Procedia PDF Downloads 383