Search results for: Comfort Nyarko
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 730

Search results for: Comfort Nyarko

490 Optimization-Based Design Improvement of Synchronizer in Transmission System for Efficient Vehicle Performance

Authors: Sanyka Banerjee, Saikat Nandi, P. K. Dan

Abstract:

Synchronizers as an integral part of gearbox is a key element in the transmission system in automotive. The performance of synchronizer affects transmission efficiency and driving comfort. Synchronizing mechanism as a major component of transmission system must be capable of preventing vibration and noise in the gears. Gear shifting efficiency improvement with an aim to achieve smooth, quick and energy efficient power transmission remains a challenge for the automotive industry. Performance of the synchronizer is dependent on the features and characteristics of its sub-components and therefore analysis of the contribution of such characteristics is necessary. An important exercise involved is to identify all such characteristics or factors which are associated with the modeling and analysis and for this purpose the literature was reviewed, rather extensively, to study the mathematical models, formulated considering such. It has been observed that certain factors are rather common across models; however, there are few factors which have specifically been selected for individual models, as reported. In order to obtain a more realistic model, an attempt here has been made to identify and assimilate practically all possible factors which may be considered in formulating the model more comprehensively. A simulation study, formulated as a block model, for such analysis has been carried out in a reliable environment like MATLAB. Lower synchronization time is desirable and hence, it has been considered here as the output factors in the simulation modeling for evaluating transmission efficiency. An improved synchronizer model requires optimized values of sub-component design parameters. A parametric optimization utilizing Taguchi’s design of experiment based response data and their analysis has been carried out for this purpose. The effectiveness of the optimized parameters for the improved synchronizer performance has been validated by the simulation study of the synchronizer block model with improved parameter values as input parameters for better transmission efficiency and driver comfort.

Keywords: design of experiments, modeling, parametric optimization, simulation, synchronizer

Procedia PDF Downloads 319
489 Three Types of Mud-Huts with Courtyards in Composite Climate: Thermal Performance in Summer and Winter

Authors: Janmejoy Gupta, Arnab Paul, Manjari Chakraborty

Abstract:

Jharkhand is a state located in the eastern part of India. The Tropic of Cancer (23.5 degree North latitude line) passes through Ranchi district in Jharkhand. Mud huts with burnt clay tiled roofs in Jharkhand are an integral component of the state’s vernacular architecture. They come in various shapes, with a number of them having a courtyard type of plan. In general, it has been stated that designing dwellings with courtyards in them is a climate-responsive strategy in composite climate. The truth behind this hypothesis is investigated in this paper. In this paper, three types of mud huts with courtyards situated in Ranchi district in Jharkhand are taken as a study and through temperature measurements in the south-side rooms and courtyards, in addition to Autodesk Ecotect (Version 2011) software simulations, their thermal performance throughout the year are observed. Temperature measurements are specifically taken during the peak of summer and winter and the average temperatures in the rooms and courtyards during seven day-periods in peak of summer and peak of winter are plotted graphically. Thereafter, on the basis of the study and software simulations, the hypothesis is verified and the thermally better performing dwelling types in summer and winter identified among the three sub-types studied. Certain recommendations with respect to increasing thermal comfort in courtyard type mud huts in general are also made. It is found that all courtyard type dwellings do not necessarily show better thermal performance in summer and winter in composite climate. The U shaped dwelling with open courtyard on southern side offers maximum amount of thermal-comfort inside the rooms in the hotter part of the year and the square hut with a central courtyard, with the courtyard being closed from all sides, shows superior thermal performance in winter. The courtyards in all the three case-studies are found to get excessively heated up during summer.

Keywords: courtyard, mud huts, simulations, temperature measurements, thermal performance

Procedia PDF Downloads 411
488 Study on Optimization of Air Infiltration at Entrance of a Commercial Complex in Zhejiang Province

Authors: Yujie Zhao, Jiantao Weng

Abstract:

In the past decade, with the rapid development of China's economy, the purchasing power and physical demand of residents have been improved, which results in the vast emergence of public buildings like large shopping malls. However, the architects usually focus on the internal functions and streamlines of these buildings, ignoring the impact of the environment on the subjective feelings of building users. Only in Zhejiang province, the infiltration of cold air in winter frequently occurs at the entrance of sizeable commercial complex buildings that have been in operation, which will affect the environmental comfort of the building lobby and internal public spaces. At present, to reduce these adverse effects, it is usually adopted to add active equipment, such as setting air curtains to block air exchange or adding heating air conditioners. From the perspective of energy consumption, the infiltration of cold air into the entrance will increase the heat consumption of indoor heating equipment, which will indirectly cause considerable economic losses during the whole winter heating stage. Therefore, it is of considerable significance to explore the suitable entrance forms for improving the environmental comfort of commercial buildings and saving energy. In this paper, a commercial complex with apparent cold air infiltration problem in Hangzhou is selected as the research object to establish a model. The environmental parameters of the building entrance, including temperature, wind speed, and infiltration air volume, are obtained by Computational Fluid Dynamics (CFD) simulation, from which the heat consumption caused by the natural air infiltration in the winter and its potential economic loss is estimated as the objective metric. This study finally obtains the optimization direction of the building entrance form of the commercial complex by comparing the simulation results of other local commercial complex projects with different entrance forms. The conclusions will guide the entrance design of the same type of commercial complex in this area.

Keywords: air infiltration, commercial complex, heat consumption, CFD simulation

Procedia PDF Downloads 137
487 Multi-Stage Optimization of Local Environmental Quality by Comprehensive Computer Simulated Person as Sensor for Air Conditioning Control

Authors: Sung-Jun Yoo, Kazuhide Ito

Abstract:

In this study, a comprehensive computer simulated person (CSP) that integrates computational human model (virtual manikin) and respiratory tract model (virtual airway), was applied for estimation of indoor environmental quality. Moreover, an inclusive prediction method was established by integrating computational fluid dynamics (CFD) analysis with advanced CSP which is combined with physiologically-based pharmacokinetic (PBPK) model, unsteady thermoregulation model for analysis targeting micro-climate around human body and respiratory area with high accuracy. This comprehensive method can estimate not only the contaminant inhalation but also constant interaction in the contaminant transfer between indoor spaces, i.e., a target area for indoor air quality (IAQ) assessment, and respiratory zone for health risk assessment. This study focused on the usage of the CSP as an air/thermal quality sensor in indoors, which means the application of comprehensive model for assessment of IAQ and thermal environmental quality. Demonstrative analysis was performed in order to examine the applicability of the comprehensive model to the heating, ventilation, air conditioning (HVAC) control scheme. CSP was located at the center of the simple model room which has dimension of 3m×3m×3m. Formaldehyde which is generated from floor material was assumed as a target contaminant, and flow field, sensible/latent heat and contaminant transfer analysis in indoor space were conducted by using CFD simulation coupled with CSP. In this analysis, thermal comfort was evaluated by thermoregulatory analysis, and respiratory exposure risks represented by adsorption flux/concentration at airway wall surface were estimated by PBPK-CFD hybrid analysis. These Analysis results concerning IAQ and thermal comfort will be fed back to the HVAC control and could be used to find a suitable ventilation rate and energy requirement for air conditioning system.

Keywords: CFD simulation, computer simulated person, HVAC control, indoor environmental quality

Procedia PDF Downloads 363
486 Efficiency Validation of Hybrid Geothermal and Radiant Cooling System Implementation in Hot and Humid Climate Houses of Saudi Arabia

Authors: Jamil Hijazi, Stirling Howieson

Abstract:

Over one-quarter of the Kingdom of Saudi Arabia’s total oil production (2.8 million barrels a day) is used for electricity generation. The built environment is estimated to consume 77% of the total energy production. Of this amount, air conditioning systems consume about 80%. Apart from considerations surrounding global warming and CO2 production it has to be recognised that oil is a finite resource and the KSA like many other oil rich countries will have to start to consider a horizon where hydro-carbons are not the dominant energy resource. The employment of hybrid ground cooling pipes in combination with black body solar collection and radiant night cooling systems may have the potential to displace a significant proportion of oil currently used to run conventional air conditioning plant. This paper presents an investigation into the viability of such hybrid systems with the specific aim of reducing carbon emissions while providing all year round thermal comfort in a typical Saudi Arabian urban housing block. At the outset air and soil temperatures were measured in the city of Jeddah. A parametric study then was carried out by computational simulation software (Design Builder) that utilised the field measurements and predicted the cooling energy consumption of both a base case and an ideal scenario (typical block retro-fitted with insulation, solar shading, ground pipes integrated with hypocaust floor slabs/ stack ventilation and radiant cooling pipes embed in floor).Initial simulation results suggest that careful ‘ecological design’ combined with hybrid radiant and ground pipe cooling techniques can displace air conditioning systems, producing significant cost and carbon savings (both capital and running) without appreciable deprivation of amenity.

Keywords: energy efficiency, ground pipe, hybrid cooling, radiative cooling, thermal comfort

Procedia PDF Downloads 265
485 Improving Pediatric Patient Experience

Authors: Matthew Pleshaw, Caroline Lynch, Caleb Eaton, Ali Kiapour

Abstract:

The problem addressed in this proposal is that of the lacking comfort and safety of inpatient rooms, specifically at Boston Children’s Hospital, with the implementation of a system that will allow inpatient children to feel more comfortable in the unfamiliar environment of a hospital. The focus is that of advancing and enhancing the healing process for children in a long-term inpatient stay at the hospital, though a combination of announcing a clinician or hospital staff’s arrival utilizing RFID (Fig. 1), and improving communication between clinicians, parents/guardians, patients, etc. by integrating a mobile application.

Keywords: Pediatrics, Hospital, RFID, Technology

Procedia PDF Downloads 161
484 Interactive Glare Visualization Model for an Architectural Space

Authors: Florina Dutt, Subhajit Das, Matthew Swartz

Abstract:

Lighting design and its impact on indoor comfort conditions are an integral part of good interior design. Impact of lighting in an interior space is manifold and it involves many sub components like glare, color, tone, luminance, control, energy efficiency, flexibility etc. While other components have been researched and discussed multiple times, this paper discusses the research done to understand the glare component from an artificial lighting source in an indoor space. Consequently, the paper discusses a parametric model to convey real time glare level in an interior space to the designer/ architect. Our end users are architects and likewise for them it is of utmost importance to know what impression the proposed lighting arrangement and proposed furniture layout will have on indoor comfort quality. This involves specially those furniture elements (or surfaces) which strongly reflect light around the space. Essentially, the designer needs to know the ramification of the ‘discomfortable glare’ at the early stage of design cycle, when he still can afford to make changes to his proposed design and consider different routes of solution for his client. Unfortunately, most of the lighting analysis tools that are present, offer rigorous computation and analysis on the back end eventually making it challenging for the designer to analyze and know the glare from interior light quickly. Moreover, many of them do not focus on glare aspect of the artificial light. That is why, in this paper, we explain a novel approach to approximate interior glare data. Adding to that we visualize this data in a color coded format, expressing the implications of their proposed interior design layout. We focus on making this analysis process very fluid and fast computationally, enabling complete user interaction with the capability to vary different ranges of user inputs adding more degrees of freedom for the user. We test our proposed parametric model on a case study, a Computer Lab space in our college facility.

Keywords: computational geometry, glare impact in interior space, info visualization, parametric lighting analysis

Procedia PDF Downloads 352
483 Intelligent Control Design of Car Following Behavior Using Fuzzy Logic

Authors: Abdelkader Merah, Kada Hartani

Abstract:

A reference model based control approach for improving behavior following car is proposed in this paper. The reference model is nonlinear and provides dynamic solutions consistent with safety constraints and comfort specifications. a robust fuzzy logic based control strategy is further proposed in this paper. A set of simulation results showing the suitability of the proposed technique for various demanding cenarios is also included in this paper.

Keywords: reference model, longitudinal control, fuzzy logic, design of car

Procedia PDF Downloads 432
482 Thermal Behaviour of a Low-Cost Passive Solar House in Somerset East, South Africa

Authors: Ochuko K. Overen, Golden Makaka, Edson L. Meyer, Sampson Mamphweli

Abstract:

Low-cost housing provided for people with small incomes in South Africa are characterized by poor thermal performance. This is due to inferior craftsmanship with no regard to energy efficient design during the building process. On average, South African households spend 14% of their total monthly income on energy needs, in particular space heating; which is higher than the international benchmark of 10% for energy poverty. Adopting energy efficient passive solar design strategies and superior thermal building materials can create a stable thermal comfort environment indoors. Thereby, reducing energy consumption for space heating. The aim of this study is to analyse the thermal behaviour of a low-cost house integrated with passive solar design features. A low-cost passive solar house with superstructure fly ash brick walls was designed and constructed in Somerset East, South Africa. Indoor and outdoor meteorological parameters of the house were monitored for a period of one year. The ASTM E741-11 Standard was adopted to perform ventilation test in the house. In summer, the house was found to be thermally comfortable for 66% of the period monitored, while for winter it was about 79%. The ventilation heat flow rate of the windows and doors were found to be 140 J/s and 68 J/s, respectively. Air leakage through cracks and openings in the building envelope was 0.16 m3/m2h with a corresponding ventilation heat flow rate of 24 J/s. The indoor carbon dioxide concentration monitored overnight was found to be 0.248%, which is less than the maximum range limit of 0.500%. The prediction percentage dissatisfaction of the house shows that 86% of the occupants will express the thermal satisfaction of the indoor environment. With a good operation of the house, it can create a well-ventilated, thermal comfortable and nature luminous indoor environment for the occupants. Incorporating passive solar design in low-cost housing can be one of the long and immediate solutions to the energy crisis facing South Africa.

Keywords: energy efficiency, low-cost housing, passive solar design, rural development, thermal comfort

Procedia PDF Downloads 266
481 Proposed Pattern for Fitted Men's Suit Jacket Using the Method of Draping on the Mannequin

Authors: Hazem A. Abdelfattah, Salia H. Khafaji

Abstract:

Apparel industry needs to direct scientific researches to develop it , and because of the importance of a men’s suit jacket industry, the study of the basics of men’s jacket pattern making requires a high degree of accuracy and efficiency which contain a lot of technical and skill aspects to give the jacket a drape, comfort and good fitting , prompting researchers to think about the use of men’s mannequin with sizes (M-L-XL) to devise a method to draft a paper pattern for the men's suit jacket to use it in the industry easily and quickly and achieve the required good fitting.

Keywords: draping, pattern, men, jacket

Procedia PDF Downloads 353
480 2023 Targets of the Republic of Turkey State Railways

Authors: Hicran Açıkel, Hüseyin Arak, D. Ali Açıkel

Abstract:

Train or high-speed train is a land transportation vehicle, which is safe and offers passengers flight-like comfort while it is preferred for busy lines with respect to passengers. In this study, TCDD’s (Turkish State Railroads Company) targets for the year of 2023, the planned high-speed train lines, improvements, which are considered for the existing lines, and achievability of these targets are examined.

Keywords: train, high-speed train, TCDD, transportation

Procedia PDF Downloads 250
479 Delusive versus Genuine Needs: Examining Human Needs within the Islamic Framework of Orbit of Needs

Authors: Abdolmoghset Banikamal

Abstract:

This study looks at the issue of human needs from Islamic perspectives. The key objective of the study is to contribute in regulating the persuasion of needs. It argues that all needs are not necessarily genuine, rather a significant part of them are delusive. To distinguish genuine needs from delusive ones, the study suggests looking at the purpose of the persuasion of that particular need as a key criterion. In doing so, the paper comes with a model namely Orbit of Needs. The orbit has four circles. The central one is a necessity, followed by comfort, beautification, and exhibition. According to the model, all those needs that fall into one of the first three circles in terms of purpose are genuine, while any need which falls into the fourth circle is delusive.

Keywords: desire, human need, Islam, orbit of needs

Procedia PDF Downloads 286
478 Performance Assessment of Ventilation Systems for Operating Theatres

Authors: Clemens Bulitta, Sasan Sadrizadeh, Sebastian Buhl

Abstract:

Introduction: Ventilation technology in operating theatres (OT)is internationally regulated by dif-ferent standards, which define basic specifications for technical equipment and many times also the necessary operating and performance parameters. This confronts the operators of healthcare facilities with the question of finding the best ventilation and air conditioning system for the OT in order to achieve the goal of a large and robust surgicalworkzone with appropriate air quality and climate for patient safety and occupational health. Additionally, energy consumption and the potential need for clothing that limits transmission of bacteria must be considered as well as the total life cycle cost. However, the evaluation methodology of ventilation systems regarding these matters are still a topic of discussion. To date, there are neither any uniform standardized specifications nor any common validation criteria established. Thus, this study aimed to review data in the literature and add ourown research results to compare and assess the performance of different ventilations systems regarding infection preventive effects, energy efficiency, and staff comfort. Methods: We have conducted a comprehensive literature review on OT ventilation-related topics to understand the strengths and limitations of different ventilation systems. Furthermore, data from experimental assessments on OT ventilation systems at the University of Amberg-Weidenin Germany were in-cluded to comparatively assess the performance of Laminar Airflow (LAF), Turbulent Mixing Air-flow(TMA), and Temperature-controlled Airflow (TcAF) with regards to patient and occupational safety as well as staff comfort including indoor climate.CFD simulations from the Royal Institute of Technology in Sweden (KTH) were also studied to visualize the differences between these three kinds of ventilation systems in terms of the size of the surgical workzone, resilience to obstacles in the airflow, and energy use. Results: A variety of ventilation concepts are in use in the OT today. Each has its advantages and disadvantages, and thus one may be better suited than another depend-ing on the built environment and clinical workflow. Moreover, the proper functioning of OT venti-lation is also affected by multiple external and internal interfering factors. Based on the available data TcAF and LAF seem to provide the greatest effects regarding infection control and minimizing airborne risks for surgical site infections without the need for very tight surgical clothing systems. Resilience to obstacles, staff comfort, and energy efficiency seem to be favourable with TcAF. Conclusion: Based on literature data in current publications and our studies at the Technical Uni-versity of Applied Sciences Amberg-Weidenand the Royal Institute of Technoclogy, LAF and TcAF are more suitable for minimizing the risk for surgical site infections leading to improved clin-ical outcomes. Nevertheless, regarding the best management of thermal loads, atmosphere, energy efficiency, and occupational safety, overall results and data suggest that TcAF systems could pro-vide the economically most efficient and clinically most effective solution under routine clinical conditions.

Keywords: ventilation systems, infection control, energy efficiency, operating theatre, airborne infection risks

Procedia PDF Downloads 101
477 Desing of Woven Fabric with Increased Sound Transmission Loss Property

Authors: U. Gunal, H. I. Turgut, H. Gurler, S. Kaya

Abstract:

There are many ever-increasing and newly emerging problems with rapid population growth in the world. With the increase in people's quality of life in our daily life, acoustic comfort has become an important feature in the textile industry. In order to meet all these expectations in people's comfort areas and survive in challenging competitive conditions in the market without compromising the customer product quality expectations of textile manufacturers, it has become a necessity to bring functionality to the products. It is inevitable to research and develop materials and processes that will bring these functionalities to textile products. The noise we encounter almost everywhere in our daily life, in the street, at home and work, is one of the problems which textile industry is working on. It brings with it many health problems, both mentally and physically. Therefore, noise control studies become more of an issue. Besides, materials used in noise control are not sufficient to reduce the effect of the noise level. The fabrics used in acoustic studies in the textile industry do not show sufficient performance according to their weight and high cost. Thus, acoustic textile products can not be used in daily life. In the thesis study, the attributions used in the noise control and building acoustics studies in the literature were analyzed, and the product with the highest damping value that a textile material will have was designed, manufactured, and tested. Optimum values were obtained by using different material samples that may affect the performance of the acoustic material. Acoustic measurement methods should be applied to verify the acoustic performances shown by the parameters and the designed three-dimensional structure at different values. In the measurements made in the study, the device designed for determining the acoustic performance of the material for both the impedance tube according to the relevant standards and the different noise types in the study was used. In addition, sound records of noise types encountered in daily life are taken and applied to the acoustic absorbent fabric with the aid of the device, and the feasibility of the results and the commercial ability of the product are examined. MATLAB numerical computing programming language and libraries were used in the frequency and sound power analyses made in the study.

Keywords: acoustic, egg crate, fabric, textile

Procedia PDF Downloads 110
476 Comparison of Illuminance Levels in Old Omani and Portuguese Forts in Oman

Authors: Maatouk Khoukhi

Abstract:

Nowadays the reduction of the energy consumed by buildings to achieve mainly the thermal comfort for the occupants represent the main concern for architects and building designers. The common and traditional solution to achieve this target is the design of a highly insulated envelope and reduce the opening and the transparent elements such windows. However, this will lead to the artificial lighting system to consume more energy to compensate the lack of natural lighting coming through the glazed parts of the building envelope. Therefore, a good balance between sufficient daylight and control thermal heat through the building envelope should be considered for energy saving purpose. To achieve a better indoor environment the windows size and spacing including the interior finishing and the location of the partition must be assessed accurately. Daylighting is the controlled admission of natural light into space through windows and transparent elements of the building envelope which helps create a visually stimulating and productive environment for building occupants. The main concern is not to provide enough daylight to an occupied space, but how to achieve this without any undesirable side effect. Indeed, the glare is a major problem in glazed façade buildings, and this could be reduced by using tinted windows. The main target of this research is to investigate the daylight adequacy of functional needs in old Omani Forts and how they have been designed and built to avoid glare and overheating with the appropriate window-to-floor ratio. Because more windows do not automatically result in more daylighting but that is natural light has been controlled and distributed properly throughout the space. Spaces from different Omani and Portuguese Forts under the same climate conditions are considered in order to compare the daylight illuminance levels and examine the similarities and differences in visual attributes between them. The result of this study indicates that lighting preference is not universal and people from different geographical locations are adapted to certain illuminance levels. Therefore, the standards could not be generalized for the entire world. This would be useful to practitioners who are designing to effectively address the diversity of user’s lighting levels preferences in our globally connected society.

Keywords: day lighting, energy, forts, thermal comfort

Procedia PDF Downloads 170
475 Thermal Perception by Older People in Open Spaces in Madrid: Relationships between Weather Parameters and Personal Characteristics

Authors: María Teresa Baquero, Ester Higueras

Abstract:

One of the challenges facing 21st century cities, is their adaptation to the phenomenon of an ageing population. International policies have been developed, such as the "Global Network for Age-friendly Cities and Communities". These cities must recognize the diversity of the elderly population, and facilitate an active, healthy, satisfied aging and promote inclusion. In order to promote active and healthy aging, older people should be encouraged to engage in physical activity, sunbathe, socialize and enjoy the public open spaces in the city. Some studies recognize thermal comfort as one of the factors that most influence the use of public open spaces. However, although some studies have shown vulnerability to thermal extremes and environmental conditions in older people, there is little research on thermal comfort for older adults, because it is usually analyzed based on the characteristics of the ¨average young person¨ without considering the physiological, physical and psychological differences that characterize the elderly. This study analyzes the relationship between the microclimate parameters as air temperature, relative humidity, wind speed and sky view factor (SVF) with the personal thermal perception of older adults in three public spaces in Madrid, through a mixed methodology that combines weather measurements with interviews, made during the year 2018. Statistical test like Chi-square, Spearman, and analysis of variance were used to analyze the relationship between preference votes and thermal sensation votes with environmental and personal parameters. The results show that there is a significant correlation between thermal sensation and thermal preference with the measured air temperature, age, level of clothing, the color of clothing, season, time of the day and kind of space while no influence of gender or other environmental variables was detected. These data would contribute to the design of comfortable public spaces that improve the welfare of the elderly contributing to "active and healthy aging" as one of the 21st century challenges cities face.

Keywords: healthy ageing, older adults, outdoor public space, thermal perception

Procedia PDF Downloads 138
474 DSF Elements in High-Rise Timber Buildings

Authors: Miroslav Premrov, Andrej Štrukelj, Erika Kozem Šilih

Abstract:

The utilization of prefabricated timber-wall elements with double glazing, called as double-skin façade element (DSF), represents an innovative structural approach in the context of new high-rise timber construction, simultaneously combining sustainable solutions with improved energy efficiency and living quality. In addition to the minimum energy needs of buildings, the design of modern buildings is also increasingly focused on the optimal indoor comfort, in particular on sufficient natural light indoors. An optimally energy-designed building with an optimal layout of glazed areas around the building envelope represents a great potential in modern timber construction. Usually, all these transparent façade elements, because of energy benefits, are primary asymmetrical oriented and if they are considered as non-resisting against a horizontal load impact, a strong torsion effects in the building can appear. The problem of structural stability against a strong horizontal load impact of such modern timber buildings especially increase in a case of high-rise structures where additional bracing elements have to be used. In such a case, special diagonal bracing systems or other bracing solutions with common timber wall elements have to be incorporated into the structure of the building to satisfy all prescribed resisting requirements given by the standards. However, all such structural solutions are usually not environmentally friendly and also not contribute to an improved living comfort, or they are not accepted by the architects at all. Consequently, it is a special need to develop innovative load-bearing timber-glass wall elements which are in the same time environmentally friendly, can increase internal comfort in the building, but are also load-bearing. The new developed load-bearing DSF elements can be a good answer on all these requirements. Timber-glass façade elements DSF wall elements consist of two transparent layers, thermal-insulated three-layered glass pane on the internal side and an additional single-layered glass pane on the external side of the wall. The both panes are separated by an air channel which can be of any dimensions and can have a significant influence on the thermal insulation or acoustic response of such a wall element. Most already published studies on DSF elements primarily deal only with energy and LCA solutions and do not address any structural problems. In previous studies according to experimental analysis and mathematical modeling it was already presented a possible benefit of such load-bearing DSF elements, especially comparing with previously developed load-bearing single-skin timber wall elements, but they were not applicate yet in any high-rise timber structure. Therefore, in the presented study specially selected 10-storey prefabricated timber building constructed in a cross-laminated timber (CLT) structural wall system is analyzed using the developed DSF elements in a sense to increase a structural lateral stability of the whole building. The results evidently highlight the importance the load-bearing DSF elements, as their incorporation can have a significant impact on the overall behavior of the structure through their influence on the stiffness properties. Taking these considerations into account is crucial to ensure compliance with seismic design codes and to improve the structural resilience of high-rise timber buildings.

Keywords: glass, high-rise buildings, numerical analysis, timber

Procedia PDF Downloads 48
473 Resin Finishing of Cotton: Teaching and Learning Materials

Authors: C. W. Kan

Abstract:

Cotton is the most commonly used material for apparel purpose because of its durability, good perspiration absorption characteristics, comfort during wear and dyeability. However, proneness to creasing and wrinkling give cotton garments a poor rating during actual wear. Resin finishing is a process to bring out crease or wrinkle free/resistant effect to cotton fabric. Thus, the aim of this study is to illustrate the proper application of resin finishing to cotton fabric, and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, resin, textiles, wrinkle

Procedia PDF Downloads 259
472 Methodological Support for Teacher Training in English Language

Authors: Comfort Aina

Abstract:

Modern English, as we all know it to be a foreign language to many, will require training and re-training on the path of the teacher and learners alike. As a teacher, you cannot give that which you do not have. Teachers, many of whom are non-native speakers, are required to be competent in solving problems occurring in the teaching and learning processes. They should be conscious of up to date information about new approaches, methods, techniques as well as they should be capable in the use of information and communication technology (ICT) and, of course, should work on the improvement of their language components and competence. For teachers to be successful in these goals, they need to be encouraged and motivated. So, for EFL teachers to be successful, they are enrolled to in-service teacher training, ICT training, some of the training they undergo and the benefits accrued to it will be the focus of the paper.

Keywords: training, management, method, english language, EFL teachers

Procedia PDF Downloads 120
471 End-Users Tools to Empower and Raise Awareness of Behavioural Change towards Energy Efficiency

Authors: G. Calleja-Rodriguez, N. Jimenez-Redondo, J. J. Peralta Escalante

Abstract:

This research work aims at developing a solution to take advantage of the potential energy saving related to occupants behaviour estimated in between 5-30 % according to existing studies. For that purpose, the following methodology has been followed: 1) literature review and gap analysis, 2) define concept and functional requirements, 3) evaluation and feedback by experts. As result, the concept for a tool-box that implements continuous behavior change interventions named as engagement methods and based on increasing energy literacy, increasing energy visibility, using bonus system, etc. has been defined. These engagement methods are deployed through a set of ICT tools: Building Automation and Control System (BACS) add-ons services installed in buildings and Users Apps installed in smartphones, smart-TVs or dashboards. The tool-box called eTEACHER identifies energy conservation measures (ECM) based on energy behavioral change through a what-if analysis that collects information about the building and its users (comfort feedback, behavior, etc.) and carry out cost-effective calculations to provide outputs such us efficient control settings of building systems. This information is processed and showed in an attractive way as tailored advice to the energy end-users. Therefore, eTEACHER goal is to change the behavior of building´s energy users towards energy efficiency, comfort and better health conditions by deploying customized ICT-based interventions taking into account building typology (schools, residential, offices, health care centres, etc.), users profile (occupants, owners, facility managers, employers, etc.) as well as cultural and demographic factors. One of the main findings of this work is the common failure when technological interventions on behavioural change are done to not consult, train and support users regarding technological changes leading to poor performance in practices. As conclusion, a strong need to carry out social studies to identify relevant behavioural issues and to identify effective pro-evironmental behavioral change strategies has been identified.

Keywords: energy saving, behavioral bhange, building users, engagement methods, energy conservation measures

Procedia PDF Downloads 171
470 Techno-Economic Assessment of Distributed Heat Pumps Integration within a Swedish Neighborhood: A Cosimulation Approach

Authors: Monica Arnaudo, Monika Topel, Bjorn Laumert

Abstract:

Within the Swedish context, the current trend of relatively low electricity prices promotes the electrification of the energy infrastructure. The residential heating sector takes part in this transition by proposing a switch from a centralized district heating system towards a distributed heat pumps-based setting. When it comes to urban environments, two issues arise. The first, seen from an electricity-sector perspective, is related to the fact that existing networks are limited with regards to their installed capacities. Additional electric loads, such as heat pumps, can cause severe overloads on crucial network elements. The second, seen from a heating-sector perspective, has to do with the fact that the indoor comfort conditions can become difficult to handle when the operation of the heat pumps is limited by a risk of overloading on the distribution grid. Furthermore, the uncertainty of the electricity market prices in the future introduces an additional variable. This study aims at assessing the extent to which distributed heat pumps can penetrate an existing heat energy network while respecting the technical limitations of the electricity grid and the thermal comfort levels in the buildings. In order to account for the multi-disciplinary nature of this research question, a cosimulation modeling approach was adopted. In this way, each energy technology is modeled in its customized simulation environment. As part of the cosimulation methodology: a steady-state power flow analysis in pandapower was used for modeling the electrical distribution grid, a thermal balance model of a reference building was implemented in EnergyPlus to account for space heating and a fluid-cycle model of a heat pump was implemented in JModelica to account for the actual heating technology. With the models set in place, different scenarios based on forecasted electricity market prices were developed both for present and future conditions of Hammarby Sjöstad, a neighborhood located in the south-east of Stockholm (Sweden). For each scenario, the technical and the comfort conditions were assessed. Additionally, the average cost of heat generation was estimated in terms of levelized cost of heat. This indicator enables a techno-economic comparison study among the different scenarios. In order to evaluate the levelized cost of heat, a yearly performance simulation of the energy infrastructure was implemented. The scenarios related to the current electricity prices show that distributed heat pumps can replace the district heating system by covering up to 30% of the heating demand. By lowering of 2°C, the minimum accepted indoor temperature of the apartments, this level of penetration can increase up to 40%. Within the future scenarios, if the electricity prices will increase, as most likely expected within the next decade, the penetration of distributed heat pumps can be limited to 15%. In terms of levelized cost of heat, a residential heat pump technology becomes competitive only within a scenario of decreasing electricity prices. In this case, a district heating system is characterized by an average cost of heat generation 7% higher compared to a distributed heat pumps option.

Keywords: cosimulation, distributed heat pumps, district heating, electrical distribution grid, integrated energy systems

Procedia PDF Downloads 155
469 Sliding Mode Control of a Bus Suspension System

Authors: Mujde Turkkan, Nurkan Yagiz

Abstract:

The vibrations, caused by the irregularities of the road surface, are to be suppressed via suspension systems. In this paper, sliding mode control for a half bus model with air suspension system is presented. The bus is modelled as five degrees of freedom (DoF) system. The mathematical model of the half bus is developed using Lagrange Equations. For time domain analysis, the bus model is assumed to travel at certain speed over the bump road. The numerical results of the analysis indicate that the sliding mode controllers can be effectively used to suppress the vibrations and to improve the ride comfort of the busses.

Keywords: active suspension system, air suspension, bus model, sliding mode control

Procedia PDF Downloads 390
468 Textile-Based Sensing System for Sleep Apnea Detection

Authors: Mary S. Ruppert-Stroescu, Minh Pham, Bruce Benjamin

Abstract:

Sleep apnea is a condition where a person stops breathing and can lead to cardiovascular disease, hypertension, and stroke. In the United States, approximately forty percent of overnight sleep apnea detection tests are cancelled. The purpose of this study was to develop a textile-based sensing system that acquires biometric signals relevant to cardiovascular health, to transmit them wirelessly to a computer, and to quantitatively assess the signals for sleep apnea detection. Patient interviews, literature review and market analysis defined a need for a device that ubiquitously integrated into the patient’s lifestyle. A multi-disciplinary research team of biomedical scientists, apparel designers, and computer engineers collaborated to design a textile-based sensing system that gathers EKG, Sp02, and respiration, then wirelessly transmits the signals to a computer in real time. The electronic components were assembled from existing hardware, the Health Kit which came pre-set with EKG and Sp02 sensors. The respiration belt was purchased separately and its electronics were built and integrated into the Health Kit mother board. Analog ECG signals were amplified and transmitted to the Arduino™ board where the signal was converted from analog into digital. By using textile electrodes, ECG lead-II was collected, and it reflected the electrical activity of the heart. Signals were collected when the subject was in sitting position and at sampling rate of 250 Hz. Because sleep apnea most often occurs in people with obese body types, prototypes were developed for a man’s size medium, XL, and XXL. To test user acceptance and comfort, wear tests were performed on 12 subjects. Results of the wear tests indicate that the knit fabric and t-shirt-like design were acceptable from both lifestyle and comfort perspectives. The airflow signal and respiration signal sensors return good signals regardless of movement intensity. Future study includes reconfiguring the hardware to a smaller size, developing the same type of garment for the female body, and further enhancing the signal quality.

Keywords: sleep apnea, sensors, electronic textiles, wearables

Procedia PDF Downloads 277
467 Computer-Assisted Management of Building Climate and Microgrid with Model Predictive Control

Authors: Vinko Lešić, Mario Vašak, Anita Martinčević, Marko Gulin, Antonio Starčić, Hrvoje Novak

Abstract:

With 40% of total world energy consumption, building systems are developing into technically complex large energy consumers suitable for application of sophisticated power management approaches to largely increase the energy efficiency and even make them active energy market participants. Centralized control system of building heating and cooling managed by economically-optimal model predictive control shows promising results with estimated 30% of energy efficiency increase. The research is focused on implementation of such a method on a case study performed on two floors of our faculty building with corresponding sensors wireless data acquisition, remote heating/cooling units and central climate controller. Building walls are mathematically modeled with corresponding material types, surface shapes and sizes. Models are then exploited to predict thermal characteristics and changes in different building zones. Exterior influences such as environmental conditions and weather forecast, people behavior and comfort demands are all taken into account for deriving price-optimal climate control. Finally, a DC microgrid with photovoltaics, wind turbine, supercapacitor, batteries and fuel cell stacks is added to make the building a unit capable of active participation in a price-varying energy market. Computational burden of applying model predictive control on such a complex system is relaxed through a hierarchical decomposition of the microgrid and climate control, where the former is designed as higher hierarchical level with pre-calculated price-optimal power flows control, and latter is designed as lower level control responsible to ensure thermal comfort and exploit the optimal supply conditions enabled by microgrid energy flows management. Such an approach is expected to enable the inclusion of more complex building subsystems into consideration in order to further increase the energy efficiency.

Keywords: price-optimal building climate control, Microgrid power flow optimisation, hierarchical model predictive control, energy efficient buildings, energy market participation

Procedia PDF Downloads 468
466 Experience in Caring for a Patient with Terminal Aortic Dissection of Lung Cancer and Paralysis of the Lower Limbs after Surgery

Authors: Pei-Shan Liang

Abstract:

Objective: This article explores the care experience of a terminal lung cancer patient who developed lower limb paralysis after surgery for aortic dissection. The patient, diagnosed with aortic dissection during chemotherapy for lung cancer, faced post-surgical lower limb paralysis, leading to feelings of helplessness and hopelessness as they approached death with reduced mobility. Methods: The nursing period was from July 19 to July 27, during which the author, alongside the intensive care team and palliative care specialists, conducted a comprehensive assessment through observation, direct care, conversations, physical assessments, and medical record review. Gordon's eleven functional health patterns were used for a holistic evaluation, identifying four nursing health issues: "pain related to terminal lung cancer and invasive procedures," "decreased cardiac tissue perfusion due to hemodynamic instability," "impaired physical mobility related to lower limb paralysis," and "hopelessness due to the unpredictable prognosis of terminal lung cancer." Results: The medical team initially focused on symptom relief, administering Morphine 5mg in 0.9% N/S 50ml IVD q6h for pain management and continuing chemotherapy as prescribed. Open communication was employed to address the patient's physical, psychological, and spiritual concerns. Non-pharmacological interventions, including listening, caring, companionship, opioid medication, and distraction techniques like comfortable positioning and warm foot baths, were used to alleviate pain, reducing the pain score to 3 on the numeric rating scale and easing respiratory discomfort. The palliative care team was also involved, guiding the patient and family through the "Four Paths of Life," helping the patient achieve a good end-of-life experience and the family to experience a peaceful life. This process also served to promote the concept of palliative care, enabling more patients and families to receive high-quality and dignified care. The patient was encouraged to express inner anxiety through drawing or writing, which helped reduce the hopelessness caused by psychological distress and uncertainty about the disease's prognosis, as assessed by the Hospital Anxiety and Depression Scale, reaching a level of mild anxiety but acceptable without affecting sleep. Conclusion: What left a deep impression during the care process was the need for intensive care providers to consider the patient's psychological state, not just their physical condition, when the patient's situation changes. Family support and involvement often provide the greatest solace for the patient, emphasizing the importance of comfort and dignity. This includes oral care to maintain cleanliness and comfort, frequent repositioning to alleviate pressure and discomfort, and timely removal of invasive devices and unnecessary medications to avoid unnecessary suffering. The nursing process should also address the patient's psychological needs, offering comfort and support to ensure that they can face the end of life with peace and dignity.

Keywords: intensive care, lung cancer, aortic dissection, lower limb paralysis

Procedia PDF Downloads 33
465 Specification Requirements for a Combined Dehumidifier/Cooling Panel: A Global Scale Analysis

Authors: Damien Gondre, Hatem Ben Maad, Abdelkrim Trabelsi, Frédéric Kuznik, Joseph Virgone

Abstract:

The use of a radiant cooling solution would enable to lower cooling needs which is of great interest when the demand is initially high (hot climate). But, radiant systems are not naturally compatibles with humid climates since a low-temperature surface leads to condensation risks as soon as the surface temperature is close to or lower than the dew point temperature. A radiant cooling system combined to a dehumidification system would enable to remove humidity for the space, thereby lowering the dew point temperature. The humidity removal needs to be especially effective near the cooled surface. This requirement could be fulfilled by a system using a single desiccant fluid for the removal of both excessive heat and moisture. This task aims at providing an estimation of the specification requirements of such system in terms of cooling power and dehumidification rate required to fulfill comfort issues and to prevent any condensation risk on the cool panel surface. The present paper develops a preliminary study on the specification requirements, performances and behavior of a combined dehumidifier/cooling ceiling panel for different operating conditions. This study has been carried using the TRNSYS software which allows nodal calculations of thermal systems. It consists of the dynamic modeling of heat and vapor balances of a 5m x 3m x 2.7m office space. In a first design estimation, this room is equipped with an ideal heating, cooling, humidification and dehumidification system so that the room temperature is always maintained in between 21C and 25C with a relative humidity in between 40% and 60%. The room is also equipped with a ventilation system that includes a heat recovery heat exchanger and another heat exchanger connected to a heat sink. Main results show that the system should be designed to meet a cooling power of 42W.m−2 and a desiccant rate of 45 gH2O.h−1. In a second time, a parametric study of comfort issues and system performances has been achieved on a more realistic system (that includes a chilled ceiling) under different operating conditions. It enables an estimation of an acceptable range of operating conditions. This preliminary study is intended to provide useful information for the system design.

Keywords: dehumidification, nodal calculation, radiant cooling panel, system sizing

Procedia PDF Downloads 179
464 A Robust Implementation of a Building Resources Access Rights Management System

Authors: Eugen Neagoe, Victor Balanica

Abstract:

A Smart Building Controller (SBC) is a server software that offers secured access to a pool of building specific resources, executes monitoring tasks and performs automatic administration of a building, thus optimizing the exploitation cost and maximizing comfort. This paper brings to discussion the issues that arise with the secure exploitation of the SBC administered resources and proposes a technical solution to implement a robust secure access system based on roles, individual rights and privileges (special rights).

Keywords: smart building controller, software security, access rights, access authorization

Procedia PDF Downloads 444
463 Investigating Effects of Vehicle Speed and Road PSDs on Response of a 35-Ton Heavy Commercial Vehicle (HCV) Using Mathematical Modelling

Authors: Amal G. Kurian

Abstract:

The use of mathematical modeling has seen a considerable boost in recent times with the development of many advanced algorithms and mathematical modeling capabilities. The advantages this method has over other methods are that they are much closer to standard physics theories and thus represent a better theoretical model. They take lesser solving time and have the ability to change various parameters for optimization, which is a big advantage, especially in automotive industry. This thesis work focuses on a thorough investigation of the effects of vehicle speed and road roughness on a heavy commercial vehicle ride and structural dynamic responses. Since commercial vehicles are kept in operation continuously for longer periods of time, it is important to study effects of various physical conditions on the vehicle and its user. For this purpose, various experimental as well as simulation methodologies, are adopted ranging from experimental transfer path analysis to various road scenario simulations. To effectively investigate and eliminate several causes of unwanted responses, an efficient and robust technique is needed. Carrying forward this motivation, the present work focuses on the development of a mathematical model of a 4-axle configuration heavy commercial vehicle (HCV) capable of calculating responses of the vehicle on different road PSD inputs and vehicle speeds. Outputs from the model will include response transfer functions and PSDs and wheel forces experienced. A MATLAB code will be developed to implement the objectives in a robust and flexible manner which can be exploited further in a study of responses due to various suspension parameters, loading conditions as well as vehicle dimensions. The thesis work resulted in quantifying the effect of various physical conditions on ride comfort of the vehicle. An increase in discomfort is seen with velocity increase; also the effect of road profiles has a considerable effect on comfort of the driver. Details of dominant modes at each frequency are analysed and mentioned in work. The reduction in ride height or deflection of tire and suspension with loading along with load on each axle is analysed and it is seen that the front axle supports a greater portion of vehicle weight while more of payload weight comes on fourth and third axles. The deflection of the vehicle is seen to be well inside acceptable limits.

Keywords: mathematical modeling, HCV, suspension, ride analysis

Procedia PDF Downloads 263
462 Control Algorithm for Home Automation Systems

Authors: Marek Długosz, Paweł Skruch

Abstract:

One of purposes of home automation systems is to provide appropriate comfort to the users by suitable air temperature control and stabilization inside the rooms. The control of temperature level is not a simple task and the basic difficulty results from the fact that accurate parameters of the object of control, that is a building, remain unknown. Whereas the structure of the model is known, the identification of model parameters is a difficult task. In this paper, a control algorithm allowing the present temperature to be reached inside the building within the specified time without the need to know accurate parameters of the building itself is presented.

Keywords: control, home automation system, wireless networking, automation engineering

Procedia PDF Downloads 621
461 Will My Home Remain My Castle? Tenants’ Interview Topics regarding an Eco-Friendly Refurbishment Strategy in a Neighborhood in Germany

Authors: Karin Schakib-Ekbatan, Annette Roser

Abstract:

According to the Federal Government’s plans, the German building stock should be virtually climate neutral by 2050. Thus, the “EnEff.Gebäude.2050” funding initiative was launched, complementing the projects of the Energy Transition Construction research initiative. Beyond the construction and renovation of individual buildings, solutions must be found at the neighborhood level. The subject of the presented pilot project is a building ensemble from the Wilhelminian period in Munich, which is planned to be refurbished based on a socially compatible, energy-saving, innovative-technical modernization concept. The building ensemble, with about 200 apartments, is part of the building cooperative. To create an optimized network and possible synergies between researchers and projects of the funding initiative, a Scientific Accompanying Research was established for cross-project analyses of findings and results in order to identify further research needs and trends. Thus, the project is characterized by an interdisciplinary approach that combines constructional, technical, and socio-scientific expertise based on a participatory understanding of research by involving the tenants at an early stage. The research focus is on getting insights into the tenants’ comfort requirements, attitudes, and energy-related behaviour. Both qualitative and quantitative methods are applied based on the Technology-Acceptance-Model (TAM). The core of the refurbishment strategy is a wall heating system intended to replace conventional radiators. A wall heating provides comfortable and consistent radiant heat instead of convection heat, which often causes drafts and dust turbulence. Besides comfort and health, the advantage of wall heating systems is an energy-saving operation. All apartments would be supplied by a uniform basic temperature control system (around perceived room temperature of 18 °C resp. 64,4 °F), which could be adapted to individual preferences via individual heating options (e. g. infrared heating). The new heating system would affect the furnishing of the walls, in terms of not allowing the wall surface to be covered too much with cupboards or pictures. Measurements and simulations of the energy consumption of an installed wall heating system are currently being carried out in a show apartment in this neighborhood to investigate energy-related, economical aspects as well as thermal comfort. In March, interviews were conducted with a total of 12 people in 10 households. The interviews were analyzed by MAXQDA. The main issue of the interview was the fear of reduced self-efficacy within their own walls (not having sufficient individual control over the room temperature or being very limited in furnishing). Other issues concerned the impact that the construction works might have on their daily life, such as noise or dirt. Despite their basically positive attitude towards a climate-friendly refurbishment concept, tenants were very concerned about the further development of the project and they expressed a great need for information events. The results of the interviews will be used for project-internal discussions on technical and psychological aspects of the refurbishment strategy in order to design accompanying workshops with the tenants as well as to prepare a written survey involving all households of the neighbourhood.

Keywords: energy efficiency, interviews, participation, refurbishment, residential buildings

Procedia PDF Downloads 128