Search results for: variable precision rough sets theory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8824

Search results for: variable precision rough sets theory

6184 Shia School of Thought and the Experience of Political Order in Contemporary Era

Authors: Abdulvahab Forati

Abstract:

Religious intellectualism is the only stream of consciousness in Iran that its religious theories formed Democracy. The theory of Religious intellectualism was utilized in Constitutional Revolution and Islamic Revolution. To instate Democracy in Iran, in compare with West and sunnis, the theory of Religious Intellectualism is being used differently. Unlike Democracy in the west that has started with the concept of Individualism and Natural Rights or in Sunni world that has started with the concept of consultation, it has started in Iran with mima-la-nas-fih (what we don’t have any proof for)or mantaqa-alfiraq-altashri’ (area of vacuum from reason). Shia scholars first acquainted with the concept of Democracy through theories of Sheikh Mortiza Ansari, and later some of his followers, including Akhund-e-khorasani and Mirzaye naeini, regarding Sheikh Ansari’s thoughts, began to analyze its Constitutional system and Democratic elements. But Imam Khomeini, the great founder of Islamic Republic of Iran, with respect to RAKHS (religious permission for having a choice)could make connection between Islam and Democracy. Instead of focusing on Civil contracts, he relied on Sirah Ughala (Tradition) and accepted many of the current conducts, e.g. Democracy and Political Parties and acknowledged the authority (Hujiat) of them even in absence of Infallibles. These two are the most notable experiences of shia political thoughts about Democracy within the last 100 years. In this article, the author tries to explain the second experience in Imam Khomeini’s thoughts and Sirah.

Keywords: Shia school, Islamic revolution, democracy, political order

Procedia PDF Downloads 318
6183 A Nonlinear Feature Selection Method for Hyperspectral Image Classification

Authors: Pei-Jyun Hsieh, Cheng-Hsuan Li, Bor-Chen Kuo

Abstract:

For hyperspectral image classification, feature reduction is an important pre-processing for avoiding the Hughes phenomena due to the difficulty for collecting training samples. Hence, lots of researches developed feature selection methods such as F-score, HSIC (Hilbert-Schmidt Independence Criterion), and etc., to improve hyperspectral image classification. However, most of them only consider the class separability in the original space, i.e., a linear class separability. In this study, we proposed a nonlinear class separability measure based on kernel trick for selecting an appropriate feature subset. The proposed nonlinear class separability was formed by a generalized RBF kernel with different bandwidths with respect to different features. Moreover, it considered the within-class separability and the between-class separability. A genetic algorithm was applied to tune these bandwidths such that the smallest with-class separability and the largest between-class separability simultaneously. This indicates the corresponding feature space is more suitable for classification. In addition, the corresponding nonlinear classification boundary can separate classes very well. These optimal bandwidths also show the importance of bands for hyperspectral image classification. The reciprocals of these bandwidths can be viewed as weights of bands. The smaller bandwidth, the larger weight of the band, and the more importance for classification. Hence, the descending order of the reciprocals of the bands gives an order for selecting the appropriate feature subsets. In the experiments, three hyperspectral image data sets, the Indian Pine Site data set, the PAVIA data set, and the Salinas A data set, were used to demonstrate the selected feature subsets by the proposed nonlinear feature selection method are more appropriate for hyperspectral image classification. Only ten percent of samples were randomly selected to form the training dataset. All non-background samples were used to form the testing dataset. The support vector machine was applied to classify these testing samples based on selected feature subsets. According to the experiments on the Indian Pine Site data set with 220 bands, the highest accuracies by applying the proposed method, F-score, and HSIC are 0.8795, 0.8795, and 0.87404, respectively. However, the proposed method selects 158 features. F-score and HSIC select 168 features and 217 features, respectively. Moreover, the classification accuracies increase dramatically only using first few features. The classification accuracies with respect to feature subsets of 10 features, 20 features, 50 features, and 110 features are 0.69587, 0.7348, 0.79217, and 0.84164, respectively. Furthermore, only using half selected features (110 features) of the proposed method, the corresponding classification accuracy (0.84168) is approximate to the highest classification accuracy, 0.8795. For other two hyperspectral image data sets, the PAVIA data set and Salinas A data set, we can obtain the similar results. These results illustrate our proposed method can efficiently find feature subsets to improve hyperspectral image classification. One can apply the proposed method to determine the suitable feature subset first according to specific purposes. Then researchers can only use the corresponding sensors to obtain the hyperspectral image and classify the samples. This can not only improve the classification performance but also reduce the cost for obtaining hyperspectral images.

Keywords: hyperspectral image classification, nonlinear feature selection, kernel trick, support vector machine

Procedia PDF Downloads 262
6182 Modeling of Maximum Rainfall Using Poisson-Generalized Pareto Distribution in Kigali, Rwanda

Authors: Emmanuel Iyamuremye

Abstract:

Extreme rainfall events have caused significant damage to agriculture, ecology, and infrastructure, disruption of human activities, injury, and loss of life. They also have significant social, economic, and environmental consequences because they considerably damage urban as well as rural areas. Early detection of extreme maximum rainfall helps to implement strategies and measures, before they occur, hence mitigating the consequences. Extreme value theory has been used widely in modeling extreme rainfall and in various disciplines, such as financial markets, the insurance industry, failure cases. Climatic extremes have been analyzed by using either generalized extreme value (GEV) or generalized Pareto (GP) distributions, which provides evidence of the importance of modeling extreme rainfall from different regions of the world. In this paper, we focused on Peak Over Thresholds approach, where the Poisson-generalized Pareto distribution is considered as the proper distribution for the study of the exceedances. This research also considers the use of the generalized Pareto (GP) distribution with a Poisson model for arrivals to describe peaks over a threshold. The research used statistical techniques to fit models that used to predict extreme rainfall in Kigali. The results indicate that the proposed Poisson-GP distribution provides a better fit to maximum monthly rainfall data. Further, the Poisson-GP models are able to estimate various return levels. The research also found a slow increase in return levels for maximum monthly rainfall for higher return periods, and further, the intervals are increasingly wider as the return period is increasing.

Keywords: exceedances, extreme value theory, generalized Pareto distribution, Poisson generalized Pareto distribution

Procedia PDF Downloads 134
6181 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine

Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li

Abstract:

Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.

Keywords: machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation

Procedia PDF Downloads 234
6180 Timely Detection and Identification of Abnormalities for Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

The detection and identification of multivariate manufacturing processes are quite important in order to maintain good product quality. Unusual behaviors or events encountered during its operation can have a serious impact on the process and product quality. Thus they should be detected and identified as soon as possible. This paper focused on the efficient representation of process measurement data in detecting and identifying abnormalities. This qualitative method is effective in representing fault patterns of process data. In addition, it is quite sensitive to measurement noise so that reliable outcomes can be obtained. To evaluate its performance a simulation process was utilized, and the effect of adopting linear and nonlinear methods in the detection and identification was tested with different simulation data. It has shown that the use of a nonlinear technique produced more satisfactory and more robust results for the simulation data sets. This monitoring framework can help operating personnel to detect the occurrence of process abnormalities and identify their assignable causes in an on-line or real-time basis.

Keywords: detection, monitoring, identification, measurement data, multivariate techniques

Procedia PDF Downloads 236
6179 Estimating The Population Mean by Using Stratified Double Extreme Ranked Set Sample

Authors: Mahmoud I. Syam, Kamarulzaman Ibrahim, Amer I. Al-Omari

Abstract:

Stratified double extreme ranked set sampling (SDERSS) method is introduced and considered for estimating the population mean. The SDERSS is compared with the simple random sampling (SRS), stratified ranked set sampling (SRSS) and stratified simple set sampling (SSRS). It is shown that the SDERSS estimator is an unbiased of the population mean and more efficient than the estimators using SRS, SRSS and SSRS when the underlying distribution of the variable of interest is symmetric or asymmetric.

Keywords: double extreme ranked set sampling, extreme ranked set sampling, ranked set sampling, stratified double extreme ranked set sampling

Procedia PDF Downloads 455
6178 A Dynamic Approach for Evaluating the Climate Change Risks on Building Performance

Authors: X. Lu, T. Lu, S. Javadi

Abstract:

A simple dynamic approach is presented for analyzing thermal and moisture dynamics of buildings, which is of particular relevance to understanding climate change impacts on buildings, including assessment of risks and applications of resilience strategies. With the goal to demonstrate the proposed modeling methodology, to verify the model, and to show that wooden materials provide a mechanism that can facilitate the reduction of moisture risks and be more resilient to global warming, a wooden church equipped with high precision measurement systems was taken as a test building for full-scale time-series measurements. Sensitivity analyses indicate a high degree of accuracy in the model prediction regarding the indoor environment. The model is then applied to a future projection of climate indoors aiming to identify significant environmental factors, the changing temperature and humidity, and effective response to the climate change impacts. The paper suggests that wooden building materials offer an effective and resilient response to anticipated future climate changes.

Keywords: dynamic model, forecast, climate change impact, wooden structure, buildings

Procedia PDF Downloads 150
6177 Improving the Employee Transfer Experience within an Organization

Authors: Drew Fockler

Abstract:

This research examines how to improve an employee’s experience when transferring between departments within an organization. This research includes a historical review of a Canadian retail organization. Based on this historical review, gaps are identified between current and future visions to show where problems with existing training and development practices need to be resolved to reduce front-line employee turnover within an organization. The strategies within this paper support leaders through the LEAD: Listen, Explore, Act and Develop, Change Management Model. The LEAD Change Management Model supports the change process. This research proposes three possible solutions to improve an employee who is transferring between departments. The best solution to resolve the problem of improving an employee moving between departments experience is creating a Training Manager position within the retail store. A Training Manager position could support both employees and leadership with training and development of staff who are moving between departments. Within this research, an implementation plan using the TransX Model was created. The TransX Model is a hybrid of Leader-Member Exchange Theory and Transformational Leadership Theory to facilitate this organizational change within an organization by creating a common vision. Finally, this research provides the next steps as well as future considerations to enhance the training manager role within an organization.

Keywords: employee transfers, employee engagement, human resources, employee induction, TransX model, lead change management model

Procedia PDF Downloads 75
6176 Analysis of CO₂ Two-Phase Ejector with Taguchi and ANOVA Optimization and Refrigerant Selection with Enviro Economic Concerns by TOPSIS Analysis

Authors: Karima Megdouli, Bourhan tachtouch

Abstract:

Ejector refrigeration cycles offer an alternative to conventional systems for producing cold from low-temperature heat. In this article, a thermodynamic model is presented. This model has the advantage of simplifying the calculation algorithm and describes the complex double-throttling mechanism that occurs in the ejector. The model assumption and calculation algorithm are presented first. The impact of each efficiency is evaluated. Validation is performed on several data sets. The ejector model is then used to simulate a RES (refrigeration ejector system), to validate its robustness and suitability for use in predicting thermodynamic cycle performance. A Taguchi and ANOVA optimization is carried out on a RES. TOPSIS analysis was applied to decide the optimum refrigerants with cost, safety, environmental and enviro economic concerns along with thermophysical properties.

Keywords: ejector, velocity distribution, shock circle, Taguchi and ANOVA optimization, TOPSIS analysis

Procedia PDF Downloads 87
6175 Bedouin Dispersion in Israel: Between Sustainable Development and Social Non-Recognition

Authors: Tamir Michal

Abstract:

The subject of Bedouin dispersion has accompanied the State of Israel from the day of its establishment. From a legal point of view, this subject has offered a launchpad for creative judicial decisions. Thus, for example, the first court decision in Israel to recognize affirmative action (Avitan), dealt with a petition submitted by a Jew appealing the refusal of the State to recognize the Petitioner’s entitlement to the long-term lease of a plot designated for Bedouins. The Supreme Court dismissed the petition, holding that there existed a public interest in assisting Bedouin to establish permanent urban settlements, an interest which justifies giving them preference by selling them plots at subsidized prices. In another case (The Forum for Coexistence in the Negev) the Supreme Court extended equitable relief for the purpose of constructing a bridge, even though the construction infringed the Law, in order to allow the children of dispersed Bedouin to reach school. Against this background, the recent verdict, delivered during the Protective Edge military campaign, which dismissed a petition aimed at forcing the State to spread out Protective Structures in Bedouin villages in the Negev against the risk of being hit from missiles launched from Gaza (Abu Afash) is disappointing. Even if, in arguendo, no selective discrimination was involved in the State’s decision not to provide such protection, the decision, and its affirmation by the Court, is problematic when examined through the prism of the Theory of Recognition. The article analyses the issue by tools of theory of Recognition, according to which people develop their identities through mutual relations of recognition in different fields. In the social context, the path to recognition is cognitive respect, which is provided by means of legal rights. By seeing other participants in Society as bearers of rights and obligations, the individual develops an understanding of his legal condition as reflected in the attitude to others. Consequently, even if the Court’s decision may be justified on strict legal grounds, the fact that Jewish settlements were protected during the military operation, whereas Bedouin villages were not, is a setback in the struggle to make the Bedouin citizens with equal rights in Israeli society. As the Court held, ‘Beyond their protective function, the Migunit [Protective Structures] may make a moral and psychological contribution that should not be undervalued’. This contribution is one that the Bedouin did not receive in the Abu Afash verdict. The basic thesis is that the Court’s verdict analyzed above clearly demonstrates that the reliance on classical liberal instruments (e.g., equality) cannot secure full appreciation of all aspects of Bedouin life, and hence it can in fact prejudice them. Therefore, elements of the recognition theory should be added, in order to find the channel for cognitive dignity, thereby advancing the Bedouins’ ability to perceive themselves as equal human beings in the Israeli society.

Keywords: bedouin dispersion, cognitive respect, recognition theory, sustainable development

Procedia PDF Downloads 350
6174 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG

Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan

Abstract:

Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.

Keywords: EEG, functional connectivity, graph theory, TFCMI

Procedia PDF Downloads 431
6173 A Mathematical Investigation of the Turkevich Organizer Theory in the Citrate Method for the Synthesis of Gold Nanoparticles

Authors: Emmanuel Agunloye, Asterios Gavriilidis, Luca Mazzei

Abstract:

Gold nanoparticles are commonly synthesized by reducing chloroauric acid with sodium citrate. This method, referred to as the citrate method, can produce spherical gold nanoparticles (NPs) in the size range 10-150 nm. Gold NPs of this size are useful in many applications. However, the NPs are usually polydisperse and irreproducible. A better understanding of the synthesis mechanisms is thus required. This work thoroughly investigated the only model that describes the synthesis. This model combines mass and population balance equations, describing the NPs synthesis through a sequence of chemical reactions. Chloroauric acid reacts with sodium citrate to form aurous chloride and dicarboxy acetone. The latter organizes aurous chloride in a nucleation step and concurrently degrades into acetone. The unconsumed precursor then grows the formed nuclei. However, depending on the pH, both the precursor and the reducing agent react differently thus affecting the synthesis. In this work, we investigated the model for different conditions of pH, temperature and initial reactant concentrations. To solve the model, we used Parsival, a commercial numerical code, whilst to test it, we considered various conditions studied experimentally by different researchers, for which results are available in the literature. The model poorly predicted the experimental data. We believe that this is because the model does not account for the acid-base properties of both chloroauric acid and sodium citrate.

Keywords: citrate method, gold nanoparticles, Parsival, population balance equations, Turkevich organizer theory

Procedia PDF Downloads 199
6172 Chemical Control Management Strategies for Corm Rot in Gladiolus communis L. under Field Conditions

Authors: Shahbaz Ahmad, Muhammad Ali, Sahar Naz

Abstract:

Corm rot is caused by the fungus Fusarium oxysporum f.sp. gladioli and it causes remarkable losses to the growers. Experiment was conducted in order to find some viable recommendations for this agronomically as well as economically important problem. Four fungicides, namely Carbendazim, Mancozeb, Thiophanate methyl and Chlorothalonil were used to control corm rot in gladiolus field. Fungicides were applied singly as foliar, in irrigation as well as with sulphuric acid in variable doses. The results revealed that application of all fungicides was variably effective to control corm rot in acid mixed irrigation followed by fungicide in irrigation. The application of all fungicides in various combinations was observed to be ineffective at all three doses.

Keywords: gladiolus, corm rot, Fusarium oxysporum, fungicides

Procedia PDF Downloads 430
6171 Navigating Rough Seas: A Qualitative Exploration of National Sociotechnical Imaginaries of Myanmar’s Future Marine Fisheries

Authors: Hannes Groeneweg

Abstract:

Myanmar is considered one of the largest fishing nations in the world. The country’s rapid economic and political reform process since 2011 entails both challenges and opportunities for its marine fishing sector. The development pathway of the sector remains unclear. Which future will eventually materialize is shaped and determined by the various visions and actions of the stakeholders engaging in political debates and decision-making. These visions can be conceptualized through the Science and Technology Studies (STS) concept of sociotechnical imaginaries. The research of this article is guided by the question of which imaginaries are currently relevant, who is propagating these imaginaries, and how are these imaginaries produced and contested. Using qualitative documentary analysis of policy documents, reports, and media articles as well as in-depth interviews with key stakeholders, three archetypical national sociotechnical imaginaries of Myanmar’s future marine fisheries were identified: The industrial scale extractivism imaginary views marine fishing sector as a driver for national economic growth and focuses on the industrial and technological development of the production chain, increasing yield and exports. Sustainable fishing management encompasses the vulnerability of marine ecosystems and views increasing efficient sustainability governance, planning, and management into existing fishing practices. In the traditional sufficiency fishing imaginary, small-scale fishing practices are viewed as an important livelihood practice for millions of coastal dwellers. The need to conserve them through strengthening the self-reliance, autonomy, and resilience of these communities is stressed. In national debates, the first two imaginaries are currently dominant. The imaginaries, as well as their contestations, are also linked to other critical political issues. The paper suggests that participatory decision-making processes are needed to create an inclusive imaginary of the future marine fishing sector.

Keywords: science and technology studies, sociotechnical imaginaries, marine fishing, knowledge coproduction, Myanmar

Procedia PDF Downloads 179
6170 Towards a Balancing Medical Database by Using the Least Mean Square Algorithm

Authors: Kamel Belammi, Houria Fatrim

Abstract:

imbalanced data set, a problem often found in real world application, can cause seriously negative effect on classification performance of machine learning algorithms. There have been many attempts at dealing with classification of imbalanced data sets. In medical diagnosis classification, we often face the imbalanced number of data samples between the classes in which there are not enough samples in rare classes. In this paper, we proposed a learning method based on a cost sensitive extension of Least Mean Square (LMS) algorithm that penalizes errors of different samples with different weight and some rules of thumb to determine those weights. After the balancing phase, we applythe different classifiers (support vector machine (SVM), k- nearest neighbor (KNN) and multilayer neuronal networks (MNN)) for balanced data set. We have also compared the obtained results before and after balancing method.

Keywords: multilayer neural networks, k- nearest neighbor, support vector machine, imbalanced medical data, least mean square algorithm, diabetes

Procedia PDF Downloads 531
6169 Characterization of Petrophysical Properties of Reservoirs in Bima Formation, Northeastern Nigeria: Implication for Hydrocarbon Exploration

Authors: Gabriel Efomeh Omolaiye, Jimoh Ajadi, Olatunji Seminu, Yusuf Ayoola Jimoh, Ubulom Daniel

Abstract:

Identification and characterization of petrophysical properties of reservoirs in the Bima Formation were undertaken to understand their spatial distribution and impacts on hydrocarbon saturation in the highly heterolithic siliciclastic sequence. The study was carried out using nine well logs from Maiduguri and Baga/Lake sub-basins within the Borno Basin. The different log curves were combined to decipher the lithological heterogeneity of the serrated sand facies and to aid the geologic correlation of sand bodies within the sub-basins. Evaluation of the formation reveals largely undifferentiated to highly serrated and lenticular sand bodies from which twelve reservoirs named Bima Sand-1 to Bima Sand-12 were identified. The reservoir sand bodies are bifurcated by shale beds, which reduced their thicknesses variably from 0.61 to 6.1 m. The shale content in the sand bodies ranged from 11.00% (relatively clean) to high shale content of 88.00%. The formation also has variable porosity values, with calculated total porosity ranged as low as 10.00% to as high as 35.00%. Similarly, effective porosity values spanned between 2.00 to 24.00%. The irregular porosity values also accounted for a wide range of field average permeability estimates computed for the formation, which measured between 0.03 to 319.49 mD. Hydrocarbon saturation (Sh) in the thin lenticular sand bodies also varied from 40.00 to 78.00%. Hydrocarbon was encountered in three intervals in Ga-1, four intervals in Da-1, two intervals in Ar-1, and one interval in Ye-1. Ga-1 well encountered 30.78 m thick of hydrocarbon column in 14 thin sand lobes in Bima Sand-1, with thicknesses from 0.60 m to 5.80 m and average saturation of 51.00%, while Bima Sand-2 intercepted 45.11 m thick of hydrocarbon column in 12 thin sand lobes with an average saturation of 61.00% and Bima Sand-9 has 6.30 m column in 4 thin sand lobes. Da-1 has hydrocarbon in Bima Sand-8 (5.30 m, Sh of 58.00% in 5 sand lobes), Bima Sand-10 (13.50 m, Sh of 52.00% in 6 sand lobes), Bima Sand-11 (6.20 m, Sh of 58.00% in 2 sand lobes) and Bima Sand-12 (16.50 m, Sh of 66% in 6 sand lobes). In the Ar-1 well, hydrocarbon occurs in Bima Sand-3 (2.40 m column, Sh of 48% in a sand lobe) and Bima Sand-9 (6.0 m, Sh of 58% in a sand lobe). Ye-1 well only intersected 0.5 m hydrocarbon in Bima Sand-1 with 78% saturation. Although Bima Formation has variable saturation of hydrocarbon, mainly gas in Maiduguri, and Baga/Lake sub-basins of the research area, its highly thin serrated sand beds, coupled with very low effective porosity and permeability in part, would pose a significant exploitation challenge. The sediments were deposited in a fluvio-lacustrine environment, resulting in a very thinly laminated or serrated alternation of sand and shale beds lithofacies.

Keywords: Bima, Chad Basin, fluvio-lacustrine, lithofacies, serrated sand

Procedia PDF Downloads 169
6168 Indoor Localization by Pattern Matching Method Based on Extended Database

Authors: Gyumin Hwang, Jihong Lee

Abstract:

This paper studied the CSS-based indoor localization system which is easy to implement, inexpensive to compose the systems, additionally CSS-based indoor localization system covers larger area than other system. However, this system has problem which is affected by reflected distance data. This problem in localization is caused by the multi-path effect. Error caused by multi-path is difficult to be corrected because the indoor environment cannot be described. In this paper, in order to solve the problem by multi-path, we have supplemented the localization system by using pattern matching method based on extended database. Thereby, this method improves precision of estimated. Also this method is verified by experiments in gymnasium. Database was constructed by 1 m intervals, and 16 sample data were collected from random position inside the region of DB points. As a result, this paper shows higher accuracy than existing method through graph and table.

Keywords: chirp spread spectrum, indoor localization, pattern-matching, time of arrival, multi-path, mahalanobis distance, reception rate, simultaneous localization and mapping, laser range finder

Procedia PDF Downloads 241
6167 A Comparative Study of Innovative Regions in the World Based on the Theory of Innovation Ecosystem: Cases of the Silicon Valley, Cambridge, Tsukuba and Zhongguancun

Authors: Xinlan Zhang, Dandong Ge, Bingying Liu, Haoyang Liang

Abstract:

With the rapid development of technology and urbanization, innovation has become an important driving force for urban development. Since the late 20th Century, a number of cities and regions have emerged in the world with innovation as the main driving force, and many of them are still the most important innovation centers in the world. Based on the perspective of innovation ecosystem theory, this paper compares Silicon Valley in the United States, Cambridge in the United Kingdom, Tsukuba in Japan and Zhongguancun in China to explore the reasons for the success of innovative regions and their respective characteristics, hoping to provide a reference for the development of other innovative cities. The main conclusions of this study are the following; firstly, different countries have different social backgrounds. The development model of innovative regions is closely related to the regional backgrounds. Secondly, the market force and the government power have important significance for the development of the innovation regions. The influence of the government power in the early stage of development is great, and in the latter stage, development is dominated by the market force. In addition, the self-organizing ability of the region has a great impact on the innovation ability of the region. Strong self-organizing ability is conducive to the development of innovation economy.

Keywords: contrastive study, development model, innovation ecosystem, innovative regions

Procedia PDF Downloads 156
6166 The Impact of Corporate Social Responsibilities on Employees’ Green Behavior: The Moderating Role of Organizational Trust

Authors: Zubair Ahmad

Abstract:

Drawing from social exchange theory, this study proposes to explore the association between corporate social responsibility as external CSR and Internal CSR with employees' green behavior. Furthermore, the author also analyzed the moderating role of organizational trust among the aforementioned associations. The target respondents for this descriptive study were employees working hotel industry of Pakistan. An online questionnaire link was sent to hotel managers and is requested to share the questionnaire link with employees. The respondents for this study were selected through the convenience sampling technique. The collected data from participants is analyzed through AMOS and SPSS. The findings show that both internal corporate social responsibility and external corporate social responsibility exert a positive and significant influence on employees' green behavior. Thus it is concluded that the key driver behind the green behavior of hotel employees is the social setting of their workplace. Findings also revealed that organizational trust plays a positive role in enhancing the green behavior of hotel employees. This study extends the literature on corporate social responsibility by exploring the boundary role of organizational trust between internal and external corporate social responsibility and employees' green behavior in hotels. Moreover, CSR activities should be performed for attaining a competitive edge and maintaining a balance between progress and sustainability of the environment.

Keywords: corporate social responsibility, internal corporate social responsibility, external corporate social responsibility, social exchange theory, employee green behavior, organizational trust

Procedia PDF Downloads 106
6165 Using Lean-Six Sigma Philosophy to Enhance Revenues and Improve Customer Satisfaction: Case Studies from Leading Telecommunications Service Providers in India

Authors: Senthil Kumar Anantharaman

Abstract:

Providing telecommunications based network services in developing countries like India which has a population of 1.5 billion people, so that these services reach every individual, is one of the greatest challenges the country has been facing in its journey towards economic growth and development. With growing number of telecommunications service providers in the country, a constant challenge that has been faced by these providers is in providing not only quality but also delightful customer experience while simultaneously generating enhanced revenues and profits. Thus, the role played by process improvement methodologies like Six Sigma cannot be undermined and specifically in telecom service provider based operations, it has provided substantial benefits. Therefore, it advantages are quite comparable to its applications and advantages in other sectors like manufacturing, financial services, information technology-based services and Healthcare services. One of the key reasons that this methodology has been able to reap great benefits in telecommunications sector is that this methodology has been combined with many of its competing process improvement techniques like Theory of Constraints, Lean and Kaizen to give the maximum benefit to the service providers thereby creating a winning combination of organized process improvement methods for operational excellence thereby leading to business excellence. This paper discusses about some of the key projects and areas in the end to end ‘Quote to Cash’ process at big three Indian telecommunication companies that have been highly assisted by applying Six Sigma along with other process improvement techniques. While the telecommunication companies which we have considered, is primarily in India and run by both private operators and government based setups, the methodology can be applied equally well in any other part of developing countries around the world having similar context. This study also compares the enhanced revenues that can arise out of appropriate opportunities in emerging market scenarios, that Six Sigma as a philosophy and methodology can provide if applied with vigour and robustness. Finally, the paper also comes out with a winning framework in combining Six Sigma methodology with Kaizen, Lean and Theory of Constraints that will enhance both the top-line as well as the bottom-line while providing the customers a delightful experience.

Keywords: emerging markets, lean, process improvement, six sigma, telecommunications, theory of constraints

Procedia PDF Downloads 163
6164 A Secure System for Handling Information from Heterogeous Sources

Authors: Shoohira Aftab, Hammad Afzal

Abstract:

Information integration is a well known procedure to provide consolidated view on sets of heterogeneous information sources. It not only provides better statistical analysis of information but also facilitates users to query without any knowledge on the underlying heterogeneous information sources The problem of providing a consolidated view of information can be handled using Semantic data (information stored in such a way that is understandable by machines and integrate-able without manual human intervention). However, integrating information using semantic web technology without any access management enforced, will results in increase of privacy and confidentiality concerns. In this research we have designed and developed a framework that would allow information from heterogeneous formats to be consolidated, thus resolving the issue of interoperability. We have also devised an access control system for defining explicit privacy constraints. We designed and applied our framework on both semantic and non-semantic data from heterogeneous resources. Our approach is validated using scenario based testing.

Keywords: information integration, semantic data, interoperability, security, access control system

Procedia PDF Downloads 354
6163 Comparison of Due Date Assignment Rules in a Dynamic Job Shop

Authors: Mumtaz Ipek, Burak Erkayman

Abstract:

Due date is assigned as an input for scheduling problems. At the same time, due date is selected as a decision variable for real time scheduling applications. Correct determination of due dates increases shop floor performance and number of jobs completed on time. This subject has been mentioned widely in the literature. Moreover rules for due date determination have been developed from analytical analysis. When a job arrives to the shop floor, a due date is assigned for delivery. Various due date determination methods are used in the literature. In this study six different due date methods are implemented for a hypothetical dynamic job shop and the performances of the due date methods are compared.

Keywords: scheduling, dynamic job shop, due date assignment, management engineering

Procedia PDF Downloads 552
6162 Beneficiation of Dye Sensitized Solar Cell as Energy Saving from Apple Skin with TiO2 Electrolysis

Authors: Astari Indarsari, Bastian B. Purba, Muhammad Fadlilah

Abstract:

In Indonesian climates that have the tropic climate, one of the potential energy sources is coming from solar energy. From the solar energy, we can convert it into the others energy, such as electrical energy. In this topic, we want to do the research about Dye Sensitized Solar Cell (DSSC). The materials that we use as sensitizer is anthocyanin that we extract from apple skin, because the anthocyanin is one of the most effective as a sensitizer for DSSC. The variable in this research is pH. The pH that we used are pH 0,5; pH 1; pH 1,5; pH 2; pH 2,5. The method is electrolysis, and we use TiO2 as sensitized material. The hypothesis from this research is the smaller pH can make higher the efficiency of the absorbent of the solar energy.

Keywords: anthocyanin, TiO2, DSSC, apple skin

Procedia PDF Downloads 290
6161 Diagnosis of Static Eccentricity in 400 kW Induction Machine Based on the Analysis of Stator Currents

Authors: Saleh Elawgali

Abstract:

Current spectrums of a four pole-pair, 400 kW induction machine were calculated for the cases of full symmetry and static eccentricity. The calculations involve integration of 93 electrical plus four mechanical ordinary differential equations. Electrical equations account for variable inductances affected by slotting and eccentricities. The calculations were followed by Fourier analysis of the stator currents in steady state operation. Zooms of the current spectrums, around the 50 Hz fundamental harmonic as well as of the main slot harmonic zone, were included. The spectrums included refer to both calculated and measured currents.

Keywords: diagnostic, harmonic, induction machine, spectrum

Procedia PDF Downloads 520
6160 Autonomy and Other Variables Related to the Expression of Love among Saudi Couples

Authors: Reshaa Alruwaili

Abstract:

The primary aim of this study was to examine the hypothesis presented by Self Determination theory which suggests that autonomy impacts positively the expression of love. Other hypotheses were also examined which suggest that other variables explain the expression of love, including: dyadic adjustment (dyadic consensus, dyadic satisfaction and dyadic cohesion), couple satisfaction, age, gender, the length of marriage, number of children and attachment styles. The participants were Saudi couples, which provided the opportunity to consider the influence of Saudi culture on the expression of love. A questionnaire was employed to obtain measures of all the relevant variables, including a measure of expression of love that was built from 27 items, constituting verbal, physical and caring features, and a measure of autonomy based on three features: authorship, interest-taking and susceptibility. Data were collected from both members of 34 Saudi couples. Descriptive analysis of both expression of love and autonomy was conducted. Correlation and regression were used to assess the relationships between expression of love and autonomy and other variables. Results indicated that Saudi couples who most often express their love tend to be more than somewhat autonomous. Not much difference was found between husbands and wives in expressing love, although wives were slightly more autonomous than husbands. Expression of love was enhanced by the autonomy of the participants to a greater extent when dyadic satisfaction was controlled, since the latter was negatively correlated with autonomy and had no effect on the expression of love. Basic psychological needs, dyadic consensus and dismissive-avoidant attachment improve the expression of love, while it is decreased by the number of children.

Keywords: autonomy, determination theory, expression of love, dyadic adjustment

Procedia PDF Downloads 230
6159 Eco-Infrastructures: A Multidimensional System Approach for Urban Ecology

Authors: T. A. Mona M. Salem, Ali F. Bakr

Abstract:

Given the potential devastation associated with future climate change related disasters, it is vital to change the way we build and manage our cities, through new strategies to reconfigure them and their infrastructures in ways that help secure their reproduction. This leads to a kaleidoscopic view of the city that recognizes the interrelationships of energy, water, transportation, and solid waste. These interrelationships apply across sectors and with respect to the built form of the city. The paper aims at a long-term climate resilience of cities and their critical infrastructures, and sets out an argument for including an eco-infrastructure-based approach in strategies to address climate change. As these ecosystems have a critical role to play in building resilience and reducing vulnerabilities in cities, communities and economies at risk, the enhanced protection and management of ecosystems, biological resources and habitats can mitigate impacts and contribute to solutions as nations and cities strive to adapt to climate change.

Keywords: ecology, ecosystem, infrastructure, climate change, urban

Procedia PDF Downloads 304
6158 Planning for Location and Distribution of Regional Facilities Using Central Place Theory and Location-Allocation Model

Authors: Danjuma Bawa

Abstract:

This paper aimed at exploring the capabilities of Location-Allocation model in complementing the strides of the existing physical planning models in the location and distribution of facilities for regional consumption. The paper was designed to provide a blueprint to the Nigerian government and other donor agencies especially the Fertilizer Distribution Initiative (FDI) by the federal government for the revitalization of the terrorism ravaged regions. Theoretical underpinnings of central place theory related to spatial distribution, interrelationships, and threshold prerequisites were reviewed. The study showcased how Location-Allocation Model (L-AM) alongside Central Place Theory (CPT) was applied in Geographic Information System (GIS) environment to; map and analyze the spatial distribution of settlements; exploit their physical and economic interrelationships, and to explore their hierarchical and opportunistic influences. The study was purely spatial qualitative research which largely used secondary data such as; spatial location and distribution of settlements, population figures of settlements, network of roads linking them and other landform features. These were sourced from government ministries and open source consortium. GIS was used as a tool for processing and analyzing such spatial features within the dictum of CPT and L-AM to produce a comprehensive spatial digital plan for equitable and judicious location and distribution of fertilizer deports in the study area in an optimal way. Population threshold was used as yardstick for selecting suitable settlements that could stand as service centers to other hinterlands; this was accomplished using the query syntax in ArcMapTM. ArcGISTM’ network analyst was used in conducting location-allocation analysis for apportioning of groups of settlements around such service centers within a given threshold distance. Most of the techniques and models ever used by utility planners have been centered on straight distance to settlements using Euclidean distances. Such models neglect impedance cutoffs and the routing capabilities of networks. CPT and L-AM take into consideration both the influential characteristics of settlements and their routing connectivity. The study was undertaken in two terrorism ravaged Local Government Areas of Adamawa state. Four (4) existing depots in the study area were identified. 20 more depots in 20 villages were proposed using suitability analysis. Out of the 300 settlements mapped in the study area about 280 of such settlements where optimally grouped and allocated to the selected service centers respectfully within 2km impedance cutoff. This study complements the giant strides by the federal government of Nigeria by providing a blueprint for ensuring proper distribution of these public goods in the spirit of bringing succor to these terrorism ravaged populace. This will ardently at the same time help in boosting agricultural activities thereby lowering food shortage and raising per capita income as espoused by the government.

Keywords: central place theory, GIS, location-allocation, network analysis, urban and regional planning, welfare economics

Procedia PDF Downloads 147
6157 Implementation of CNV-CH Algorithm Using Map-Reduce Approach

Authors: Aishik Deb, Rituparna Sinha

Abstract:

We have developed an algorithm to detect the abnormal segment/"structural variation in the genome across a number of samples. We have worked on simulated as well as real data from the BAM Files and have designed a segmentation algorithm where abnormal segments are detected. This algorithm aims to improve the accuracy and performance of the existing CNV-CH algorithm. The next-generation sequencing (NGS) approach is very fast and can generate large sequences in a reasonable time. So the huge volume of sequence information gives rise to the need for Big Data and parallel approaches of segmentation. Therefore, we have designed a map-reduce approach for the existing CNV-CH algorithm where a large amount of sequence data can be segmented and structural variations in the human genome can be detected. We have compared the efficiency of the traditional and map-reduce algorithms with respect to precision, sensitivity, and F-Score. The advantages of using our algorithm are that it is fast and has better accuracy. This algorithm can be applied to detect structural variations within a genome, which in turn can be used to detect various genetic disorders such as cancer, etc. The defects may be caused by new mutations or changes to the DNA and generally result in abnormally high or low base coverage and quantification values.

Keywords: cancer detection, convex hull segmentation, map reduce, next generation sequencing

Procedia PDF Downloads 135
6156 Multiaxial Stress Based High Cycle Fatigue Model for Adhesive Joint Interfaces

Authors: Martin Alexander Eder, Sergei Semenov

Abstract:

Many glass-epoxy composite structures, such as large utility wind turbine rotor blades (WTBs), comprise of adhesive joints with typically thick bond lines used to connect the different components during assembly. Performance optimization of rotor blades to increase power output by simultaneously maintaining high stiffness-to-low-mass ratios entails intricate geometries in conjunction with complex anisotropic material behavior. Consequently, adhesive joints in WTBs are subject to multiaxial stress states with significant stress gradients depending on the local joint geometry. Moreover, the dynamic aero-elastic interaction of the WTB with the airflow generates non-proportional, variable amplitude stress histories in the material. Empiricism shows that a prominent failure type in WTBs is high cycle fatigue failure of adhesive bond line interfaces, which in fact over time developed into a design driver as WTB sizes increase rapidly. Structural optimization employed at an early design stage, therefore, sets high demands on computationally efficient interface fatigue models capable of predicting the critical locations prone for interface failure. The numerical stress-based interface fatigue model presented in this work uses the Drucker-Prager criterion to compute three different damage indices corresponding to the two interface shear tractions and the outward normal traction. The two-parameter Drucker-Prager model was chosen because of its ability to consider shear strength enhancement under compression and shear strength reduction under tension. The governing interface damage index is taken as the maximum of the triple. The damage indices are computed through the well-known linear Palmgren-Miner rule after separate rain flow-counting of the equivalent shear stress history and the equivalent pure normal stress history. The equivalent stress signals are obtained by self-similar scaling of the Drucker-Prager surface whose shape is defined by the uniaxial tensile strength and the shear strength such that it intersects with the stress point at every time step. This approach implicitly assumes that the damage caused by the prevailing multiaxial stress state is the same as the damage caused by an amplified equivalent uniaxial stress state in the three interface directions. The model was implemented as Python plug-in for the commercially available finite element code Abaqus for its use with solid elements. The model was used to predict the interface damage of an adhesively bonded, tapered glass-epoxy composite cantilever I-beam tested by LM Wind Power under constant amplitude compression-compression tip load in the high cycle fatigue regime. Results show that the model was able to predict the location of debonding in the adhesive interface between the webfoot and the cap. Moreover, with a set of two different constant life diagrams namely in shear and tension, it was possible to predict both the fatigue lifetime and the failure mode of the sub-component with reasonable accuracy. It can be concluded that the fidelity, robustness and computational efficiency of the proposed model make it especially suitable for rapid fatigue damage screening of large 3D finite element models subject to complex dynamic load histories.

Keywords: adhesive, fatigue, interface, multiaxial stress

Procedia PDF Downloads 168
6155 The Evaluation and Assessment of Modernism

Authors: Mohammad Mirzaei

Abstract:

The term "modernism" is at the heart of debates about 20th-century literature and critical theory. Astradur Eysteinsson argues here that the notion of modernity does not emerge directly from the literature it encompasses but is actually a product of critical practices related to non-traditional literature. By intervening in and relating them to modernist works and contemporary literary theories, Esteinsson takes a comprehensive look at the idea of modernity. Eysteinsson critically examines various expressions of modernism in the rich spectrum of American, British, and European literature, criticism, and theory. He first explored a number of modernist paradigms and found a conflict between modernism's potential for cultural subversion and its relatively conservative status as a formalist project. In turn, he sees these paradigms as interpretations and inventions of literary history. Seen in this way, modernism presents both a historical change in the literary scene and the context of this change. Imbued with the connotations of tradition and modernity, modernity fulfills its primary function. Highlights and defines the complex relationship between history and post-realist literature. Eysteinsson focuses on how concepts of modernism guide our understanding of literature and literary history and how they influence the evaluation of experimental and 3post realist works in literature and art. He discusses in detail the relationship between modernism and the key terms postmodernism, avant-garde, and realism. In staging a crisis of subject and reference, modernity is not a form of discourse but its subversion, the "other" that may reveal important aspects of our social and linguistic experience in Western culture.

Keywords: literature, modernism, western cultures, postmodernism

Procedia PDF Downloads 66