Search results for: pandemic. Economics variables shocks
3184 Potential Impacts of Climate Change on Hydrological Droughts in the Limpopo River Basin
Authors: Nokwethaba Makhanya, Babatunde J. Abiodun, Piotr Wolski
Abstract:
Climate change possibly intensifies hydrological droughts and reduces water availability in river basins. Despite this, most research on climate change effects in southern Africa has focused exclusively on meteorological droughts. This thesis projects the potential impact of climate change on the future characteristics of hydrological droughts in the Limpopo River Basin (LRB). The study uses regional climate model (RCM) measurements (from the Coordinated Regional Climate Downscaling Experiment, CORDEX) and a combination of hydrological simulations (using the Soil and Water Assessment Tool Plus model, SWAT+) to predict the impacts at four global warming levels (GWLs: 1.5℃, 2.0℃, 2.5℃, and 3.0℃) under the RCP8.5 future climate scenario. The SWAT+ model was calibrated and validated with a streamflow dataset observed over the basin, and the sensitivity of model parameters was investigated. The performance of the SWAT+LRB model was verified using the Nash-Sutcliffe efficiency (NSE), Percent Bias (PBIAS), Root Mean Square Error (RMSE), and coefficient of determination (R²). The Standardized Precipitation Evapotranspiration Index (SPEI) and the Standardized Precipitation Index (SPI) have been used to detect meteorological droughts. The Soil Water Index (SSI) has been used to define agricultural drought, while the Water Yield Drought Index (WYLDI), the Surface Run-off Index (SRI), and the Streamflow Index (SFI) have been used to characterise hydrological drought. The performance of the SWAT+ model simulations over LRB is sensitive to the parameters CN2 (initial SCS runoff curve number for moisture condition II) and ESCO (soil evaporation compensation factor). The best simulation generally performed better during the calibration period than the validation period. In calibration and validation periods, NSE is ≤ 0.8, while PBIAS is ≥ ﹣80.3%, RMSE ≥ 11.2 m³/s, and R² ≤ 0.9. The simulations project a future increase in temperature and potential evapotranspiration over the basin, but they do not project a significant future trend in precipitation and hydrological variables. However, the spatial distribution of precipitation reveals a projected increase in precipitation in the southern part of the basin and a decline in the northern part of the basin, with the region of reduced precipitation projected to increase with GWLs. A decrease in all hydrological variables is projected over most parts of the basin, especially over the eastern part of the basin. The simulations predict meteorological droughts (i.e., SPEI and SPI), agricultural droughts (i.e., SSI), and hydrological droughts (i.e., WYLDI, SRI) would become more intense and severe across the basin. SPEI-drought has a greater magnitude of increase than SPI-drought, and agricultural and hydrological droughts have a magnitude of increase between the two. As a result, this research suggests that future hydrological droughts over the LRB could be more severe than the SPI-drought projection predicts but less severe than the SPEI-drought projection. This research can be used to mitigate the effects of potential climate change on basin hydrological drought.Keywords: climate change, CORDEX, drought, hydrological modelling, Limpopo River Basin
Procedia PDF Downloads 1303183 Exergy: An Effective Tool to Quantify Sustainable Development of Biodiesel Production
Authors: Mahmoud Karimi, Golmohammad Khoobbakht
Abstract:
This study focuses on the exergy flow analysis in the transesterification of waste cooking oil with methanol to decrease the consumption of materials and energy and promote the use of renewable resources. The exergy analysis performed is based on the thermodynamic performance parameters namely exergy destruction and exergy efficiency to investigate the effects of variable parameters on renewability of transesterification. The experiment variables were methanol to WCO ratio, catalyst concentration and reaction temperature in the transesterification reaction. The optimum condition with yield of 90.2% and exergy efficiency of 95.2% was obtained at methanol to oil molar ratio of 8:1, 1 wt.% of KOH, at 55 °C. In this condition, the total waste exergy was found to be 45.4 MJ for 1 kg biodiesel production. However high yield in the optimal condition resulted high exergy efficiency in the transesterification of WCO with methanol.Keywords: biodiesel, exergy, thermodynamic analysis, transesterification, waste cooking oil
Procedia PDF Downloads 1953182 Naphtha Catalytic Reform: Modeling and Simulation of Unity
Authors: Leal Leonardo, Pires Carlos Augusto de Moraes, Casiraghi Magela
Abstract:
In this work were realized the modeling and simulation of the catalytic reformer process, of ample form, considering all the equipment that influence the operation performance. Considered it a semi-regenerative reformer, with four reactors in series intercalated with four furnaces, two heat exchanges, one product separator and one recycle compressor. A simplified reactional system was considered, involving only ten chemical compounds related through five reactions. The considered process was the applied to aromatics production (benzene, toluene, and xylene). The models developed to diverse equipment were interconnecting in a simulator that consists of a computer program elaborate in FORTRAN 77. The simulation of the global model representative of reformer unity achieved results that are compatibles with the literature ones. It was then possible to study the effects of operational variables in the products concentration and in the performance of the unity equipment.Keywords: catalytic reforming, modeling, simulation, petrochemical engineering
Procedia PDF Downloads 5183181 Empirical and Indian Automotive Equity Portfolio Decision Support
Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu
Abstract:
A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.Keywords: Indian automotive sector, stock market decisions, equity portfolio analysis, decision tree classifiers, statistical data analysis
Procedia PDF Downloads 4863180 Neural Network Based Control Algorithm for Inhabitable Spaces Applying Emotional Domotics
Authors: Sergio A. Navarro Tuch, Martin Rogelio Bustamante Bello, Leopoldo Julian Lechuga Lopez
Abstract:
In recent years, Mexico’s population has seen a rise of different physiological and mental negative states. Two main consequences of this problematic are deficient work performance and high levels of stress generating and important impact on a person’s physical, mental and emotional health. Several approaches, such as the use of audiovisual stimulus to induce emotions and modify a person’s emotional state, can be applied in an effort to decreases these negative effects. With the use of different non-invasive physiological sensors such as EEG, luminosity and face recognition we gather information of the subject’s current emotional state. In a controlled environment, a subject is shown a series of selected images from the International Affective Picture System (IAPS) in order to induce a specific set of emotions and obtain information from the sensors. The raw data obtained is statistically analyzed in order to filter only the specific groups of information that relate to a subject’s emotions and current values of the physical variables in the controlled environment such as, luminosity, RGB light color, temperature, oxygen level and noise. Finally, a neural network based control algorithm is given the data obtained in order to feedback the system and automate the modification of the environment variables and audiovisual content shown in an effort that these changes can positively alter the subject’s emotional state. During the research, it was found that the light color was directly related to the type of impact generated by the audiovisual content on the subject’s emotional state. Red illumination increased the impact of violent images and green illumination along with relaxing images decreased the subject’s levels of anxiety. Specific differences between men and women were found as to which type of images generated a greater impact in either gender. The population sample was mainly constituted by college students whose data analysis showed a decreased sensibility to violence towards humans. Despite the early stage of the control algorithm, the results obtained from the population sample give us a better insight into the possibilities of emotional domotics and the applications that can be created towards the improvement of performance in people’s lives. The objective of this research is to create a positive impact with the application of technology to everyday activities; nonetheless, an ethical problem arises since this can also be applied to control a person’s emotions and shift their decision making.Keywords: data analysis, emotional domotics, performance improvement, neural network
Procedia PDF Downloads 1433179 Teleconsultations and The Need of Onsite Additional Medical Services
Authors: Cristina Hotoleanu
Abstract:
Introduction: The recent Covid-19 pandemic accelerated the development of e-health, including telemedicine, smartphone applications, and medical wearable devices. Providing remote teleconsultations supposes challenges which may require further face-to-face medical interactions. The aim of this study was to assess the correlation between the types of teleconsultations and the need of onsite medical services (investigations and medical visits) for the diagnosis and treatment. Methods: a retrospective study including all the teleconsultations using the platform offered by a telehealth provider in Romania (Telios Care SA) between May 1, 2021- April 30, 2022, was performed. Binary data were analysed using the chi-square test with a significance level of p < 0.05. Results: out of 7163 consultations, 3961 were phone calls, 1981 were online messages, and 1221 were video calls. Onsite medical services were indicated in 3327 (46.44%) cases; the onsite investigations or the onsite visits were recommended for 2908 patients as follows: 2326 in case of phone calls, 582 in case of online messages, none in case of video calls. Both onsite investigations and visits were indicated for 419 patients. The need for onsite additional medical services was significantly higher in the case of phone calls than in the other 2 types of teleconsultations (Chi square= 1207.06, p= 0.00001). The indication for onsite services was done mainly after teleconsultations covering medical specialties (87.34%), significantly higher than the other specialties (Chi square=914.59, p=0.00001). Teleconsultations in surgical specialties and other fields (pharmacy, dentistry, psychology, wellbeing- nutrition, fitness) resulted in 12.13%, respective less than 1%, indication for onsite investigations or visits, explained by using of video calls in most of the cases. Conclusion: a further onsite medical service was necessary in less than a half of the teleconsultations. This indication was done mainly after phone calls and teleconsultations in medical specialties. Video calls were used mostly in psychology, nutrition, and fitness teleconsultations and did not require a further onsite medical service. Other studies are necessary to assess better the types of teleconsultations and the specialties bringing the biggest benefit for the patients.Keywords: onsite medical services, phone calls, teleconsultations, telemedicine
Procedia PDF Downloads 1023178 The Fiscal-Monetary Policy and Economic Growth in Algeria: VECM Approach
Authors: K. Bokreta, D. Benanaya
Abstract:
The objective of this study is to examine the relative effectiveness of monetary and fiscal policy in Algeria using the econometric modelling techniques of cointegration and vector error correction modelling to analyse and draw policy inferences. The chosen variables of fiscal policy are government expenditure and net taxes on products, while the effect of monetary policy is presented by the inflation rate and the official exchange rate. From the results, we find that in the long-run, the impact of government expenditures is positive, while the effect of taxes is negative on growth. Additionally, we find that the inflation rate is found to have little effect on GDP per capita but the impact of the exchange rate is insignificant. We conclude that fiscal policy is more powerful then monetary policy in promoting economic growth in Algeria.Keywords: economic growth, monetary policy, fiscal policy, VECM
Procedia PDF Downloads 3123177 The Role of Chemokine Family, CXCL-10 Urine as a Marker Diagnosis of Active Lung Tuberculosis in HIV/AIDS Patients
Authors: Dwitya Elvira, Raveinal Masri, Rohayat Bilmahdi
Abstract:
Human Immunodeficiency Virus (HIV) pandemic increased significantly worldwide. The rise in cases of HIV/AIDS was also followed by an increase in the incidence of opportunistic infection, with tuberculosis being the most opportunistic infection found in HIV/AIDS and the main cause of mortality in HIV/AIDS patients. Diagnosis of tuberculosis in HIV/AIDS patients is often difficult because of the uncommon symptom in HIV/AIDS patients compared to those without the disease. Thus, diagnostic tools are required that are more effective and efficient to diagnose tuberculosis in HIV/AIDS. CXCL-10/IP-10 is a chemokine that binds to the CXCR3 receptor found in HIV/AIDS patients with a weakened immune system. Tuberculosis infection in HIV/AIDS activates chemokine IP-10 in urine, which is used as a marker for diagnosis of infection. The aim of this study was to prove whether IP-10 urine can be a biomarker diagnosis of active lung tuberculosis in HIV-AIDS patients. Design of this study is a cross sectional study involving HIV/AIDS patients with lung tuberculosis as the subject of this study. Forty-seven HIV/AIDS patients with tuberculosis based on clinical and biochemical laboratory were asked to collect urine samples and IP-10/CXCL-10 urine being measured using ELISA method with 18 healthy human urine samples as control. Forty-seven patients diagnosed as HIV/AIDS were included as a subject of this study. HIV/AIDS were more common in male than in women with the percentage in male 85.1% vs. 14.5% of women. In this study, most diagnosed patients were aged 31-40 years old, followed by those 21-30 years, and > 40 years old, with one case diagnosed at age less than 20 years of age. From the result of the urine IP-10 using ELISA method, there was significant increase of the mean value of IP-10 urine in patients with TB-HIV/AIDS co-infection compared to the healthy control with mean 61.05 pg/mL ± 78.01 pg/mL vs. mean 17.2 pg/mL. Based on this research, there was significant increase of urine IP-10/CXCL-10 in active lung tuberculosis with HIV/AIDS compared to the healthy control. From this finding, it is necessary to conduct further research into whether urine IP-10/CXCL-10 plays a significant role in TB-HIV/AIDS co-infection, which can also be used as a biomarker in the early diagnosis of TB-HIV.Keywords: chemokine, HIV/AIDS, IP-10 urine, tuberculosis
Procedia PDF Downloads 2343176 Evolving Credit Scoring Models using Genetic Programming and Language Integrated Query Expression Trees
Authors: Alexandru-Ion Marinescu
Abstract:
There exist a plethora of methods in the scientific literature which tackle the well-established task of credit score evaluation. In its most abstract form, a credit scoring algorithm takes as input several credit applicant properties, such as age, marital status, employment status, loan duration, etc. and must output a binary response variable (i.e. “GOOD” or “BAD”) stating whether the client is susceptible to payment return delays. Data imbalance is a common occurrence among financial institution databases, with the majority being classified as “GOOD” clients (clients that respect the loan return calendar) alongside a small percentage of “BAD” clients. But it is the “BAD” clients we are interested in since accurately predicting their behavior is crucial in preventing unwanted loss for loan providers. We add to this whole context the constraint that the algorithm must yield an actual, tractable mathematical formula, which is friendlier towards financial analysts. To this end, we have turned to genetic algorithms and genetic programming, aiming to evolve actual mathematical expressions using specially tailored mutation and crossover operators. As far as data representation is concerned, we employ a very flexible mechanism – LINQ expression trees, readily available in the C# programming language, enabling us to construct executable pieces of code at runtime. As the title implies, they model trees, with intermediate nodes being operators (addition, subtraction, multiplication, division) or mathematical functions (sin, cos, abs, round, etc.) and leaf nodes storing either constants or variables. There is a one-to-one correspondence between the client properties and the formula variables. The mutation and crossover operators work on a flattened version of the tree, obtained via a pre-order traversal. A consequence of our chosen technique is that we can identify and discard client properties which do not take part in the final score evaluation, effectively acting as a dimensionality reduction scheme. We compare ourselves with state of the art approaches, such as support vector machines, Bayesian networks, and extreme learning machines, to name a few. The data sets we benchmark against amount to a total of 8, of which we mention the well-known Australian credit and German credit data sets, and the performance indicators are the following: percentage correctly classified, area under curve, partial Gini index, H-measure, Brier score and Kolmogorov-Smirnov statistic, respectively. Finally, we obtain encouraging results, which, although placing us in the lower half of the hierarchy, drive us to further refine the algorithm.Keywords: expression trees, financial credit scoring, genetic algorithm, genetic programming, symbolic evolution
Procedia PDF Downloads 1203175 The Factors to Determine the Content About Gender and Sexuality Education Among Adolescents in China
Authors: Yixiao Tang
Abstract:
The risks of adolescents being exposed to sexually transmitted diseases (STDs) and participating in unsafe sexual practices are increasing. There is the necessity and significance of providing adolescents with appropriate sex education, considering they are at the stage of life exploration and risk-taking. However, in delivering sex education, the contents and instruction methods are usually discussed with contextual differences. In the Chinese context, the socially prejudiced perceptions of homosexuality can be attributed to the traditional Chinese Confucian philosophy, which has been dominating Chinese education for thousands of years. In China, students rarely receive adequate information about HIV, STDs, the use of contraceptives, pregnancies, and other sexually related topics in their formal education. Underlying the Confucian cultural background, this essay will analyze the variables that determine the subject matter of sex education for adolescents and then discuss how this cultural form affects social views and policy on sex education.Keywords: homosexuality education, adolescent, China, education policy
Procedia PDF Downloads 793174 A Strategy for the Application of Second-Order Monte Carlo Algorithms to Petroleum Exploration and Production Projects
Authors: Obioma Uche
Abstract:
Due to the recent volatility in oil & gas prices as well as increased development of non-conventional resources, it has become even more essential to critically evaluate the profitability of petroleum prospects prior to making any investment decisions. Traditionally, simple Monte Carlo (MC) algorithms have been used to randomly sample probability distributions of economic and geological factors (e.g. price, OPEX, CAPEX, reserves, productive life, etc.) in order to obtain probability distributions for profitability metrics such as Net Present Value (NPV). In recent years, second-order MC algorithms have been shown to offer an advantage over simple MC techniques due to the added consideration of uncertainties associated with the probability distributions of the relevant variables. Here, a strategy for the application of the second-order MC technique to a case study is demonstrated to analyze its effectiveness as a tool for portfolio management.Keywords: Monte Carlo algorithms, portfolio management, profitability, risk analysis
Procedia PDF Downloads 3383173 Agent-Base Modeling of IoT Applications by Using Software Product Line
Authors: Asad Abbas, Muhammad Fezan Afzal, Muhammad Latif Anjum, Muhammad Azmat
Abstract:
The Internet of Things (IoT) is used to link up real objects that use the internet to interact. IoT applications allow handling and operating the equipment in accordance with environmental needs, such as transportation and healthcare. IoT devices are linked together via a number of agents that act as a middleman for communications. The operation of a heat sensor differs indoors and outside because agent applications work with environmental variables. In this article, we suggest using Software Product Line (SPL) to model IoT agents and applications' features on an XML-based basis. The contextual diversity within the same domain of application can be handled, and the reusability of features is increased by XML-based feature modelling. For the purpose of managing contextual variability, we have embraced XML for modelling IoT applications, agents, and internet-connected devices.Keywords: IoT agents, IoT applications, software product line, feature model, XML
Procedia PDF Downloads 973172 Parental Rejection and Psychological Adjustment among Adolescents: Does the Peer Rejection Mediate?
Authors: Sultan Shujja, Farah Malik
Abstract:
The study examined the mediating role of peer rejection in direct relationship of parental rejection and psychological adjustment among adolescents. Researchers used self-report measures e.g., Parental Acceptance-Rejection Questionnaire (PARQ), Children Rejection Sensitivity Questionnaire (PARQ), and Personality Assessment Questionnaire (PAQ) to assess perception of parent-peer rejection, psychological adjustment among adolescents (14-18 years). Findings revealed that peer rejection did not mediate the parental rejection and psychological adjustment whereas parental rejection emerged as strong predictor when demographic variables were statistically controlled. On average, girls were psychologically less adjusted than that of boys. Despite of equal perception of peer rejection, girls more anxiously anticipated peer rejection than did the boys. It is suggested that peer influence on adolescents, specifically girls, should not be underestimated.Keywords: peer relationships, parental perception, psychological adjustment, applied psychology
Procedia PDF Downloads 5143171 Relationship of Workplace Stress and Mental Wellbeing among Health Professionals
Authors: Rabia Mushtaq, Uroosa Javaid
Abstract:
It has been observed that health professionals are at higher danger of stress in light of the fact that being a specialist is physically and emotionally demanding. The study aimed to investigate the relationship between workplace stress and mental wellbeing among health professionals. Sample of 120 male and female health professionals belonging to two age groups, i.e., early adulthood and middle adulthood, was employed through purposive sampling technique. Job stress scale, mindful attention awareness scale, and Warwick Edinburgh mental wellbeing scales were used for the measurement of study variables. Results of the study indicated that job stress has a significant negative relationship with mental wellbeing among health professionals. The current study opened the door for more exploratory work on mindfulness among health professionals. Yielding outcomes helped in consolidating adapting procedures among workers to improve their mental wellbeing and lessen the job stress.Keywords: health professionals, job stress, mental wellbeing, mindfulness
Procedia PDF Downloads 1763170 Corporate Governance in Africa: A Review of Literature
Authors: Kisanga Arsene
Abstract:
The abundant literature on corporate governance identifies four main objectives: the configuration of power within firms, control, conflict prevention and the equitable distribution of value created. The persistent dysfunctions in companies in developing countries in general and in African countries, in particular, show that these objectives are generally not achieved, which supports the idea of analyzing corporate governance practices in Africa. Indeed, the objective of this paper is to review the literature on corporate governance in Africa, to outline the specific practices and challenges of corporate governance in Africa and to identify reliable indicators and variables to capture corporate governance in Africa. In light of the existing literature, we argue that corporate governance in Africa can only be studied in the light of African realities and by taking into account the institutional environment. These studies show the existence of a divide between governance practices and the legislative and regulatory texts in force in the African context.Keywords: institutional environment, transparency, accountability, Africa
Procedia PDF Downloads 1783169 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 1303168 Palliative Care Referral Behavior Among Nurse Practitioners in Hospital Medicine
Authors: Sharon Jackson White
Abstract:
Purpose: Nurse practitioners (NPs) practicing within hospital medicine play a significant role in caring for patients who might benefit from palliative care (PC) services. Using the Theory of Planned Behavior, the purpose of this study was to examine the relationships among facilitators to referral, barriers to referral, self-efficacy with end-of-life discussions, history of referral, and referring to PC among NPs in hospital medicine. Hypotheses: 1) Perceived facilitators to referral will be associated with a higher history of referral and a higher number of referrals to PC. 2) Perceived barriers to referral will be associated with a lower history of referral and a lower number of referrals to PC. 3) Increased self-efficacy with end-of-life discussions will be associated with a higher history of referral and a higher number of referrals to PC. 4) Perceived facilitators to referral, perceived barriers to referral, and self–efficacy with end-of-life discussions will contribute to a significant variance in the history of referral to PC. 5) Perceived facilitators to referral, perceived barriers to referral, and self–efficacy with end-of-life discussions will contribute to a significant variance in the number of referrals to PC. Significance: Previous studies of referring patients to PC within the hospital setting care have focused on physician practices. Identifying factors that influence NPs referring hospitalized patients to PC is essential to ensure that patients have access to these important services. This study incorporates the SNRS mission of advancing nursing research through the dissemination of research findings and the promotion of nursing science. Methods: A cross-sectional, predictive correlational study was conducted. History of referral to PC, facilitators to referring to PC, barriers to referring to PC, self-efficacy in end-of-life discussions, and referral to PC were measured using the PC referral case study survey, facilitators and barriers to PC referral survey, and self-assessment with end-of-life discussions survey. Data were analyzed descriptively and with Pearson’s Correlation, Spearman’s Rho, point-biserial correlation, multiple regression, logistic regression, Chi-Square test, and the Mann-Whitney U test. Results: Only one facilitator (PC team being helpful with establishing goals of care) was significantly associated with referral to PC. Three variables were statistically significant in relation to the history of referring to PC: “Inclined to refer: PC can help decrease the length of stay in hospital”, “Most inclined to refer: Patients with serious illnesses and/or poor prognoses”, and “Giving bad news to a patient or family member”. No predictor variables contributed a significant variance in the number of referrals to PC for all three case studies. There were no statistically significant results showing a relationship between the history of referral and referral to PC. All five hypotheses were partially supported. Discussion: Findings from this study emphasize the need for further research on NPs who work in hospital settings and what factors influence their behaviors of referring to PC. Since there is an increase in NPs practicing within hospital settings, future studies should use a larger sample size and incorporate hospital medicine NPs and other types of NPs that work in hospitals.Keywords: palliative care, nurse practitioners, hospital medicine, referral
Procedia PDF Downloads 753167 Optimum Dispatching Rule in Solar Ingot-Wafer Manufacturing System
Authors: Wheyming Song, Hung-Hsiang Lin, Scott Lian
Abstract:
In this research, we investigate the optimal dispatching rule for machines and manpower allocation in the solar ingot-wafer systems. The performance of the method is measured by the sales profit for each dollar paid to the operators in a one week at steady-state. The decision variables are identification-number of machines and operators when each job is required to be served in each process. We propose a rule which is a function of operator’s ability, corresponding salary, and standing location while in the factory. The rule is named ‘Multi-nominal distribution dispatch rule’. The proposed rule performs better than many traditional rules including generic algorithm and particle swarm optimization. Simulation results show that the proposed Multi-nominal distribution dispatch rule improvement on the sales profit dramatically.Keywords: dispatching, solar ingot, simulation, flexsim
Procedia PDF Downloads 3013166 Targeted Effects of Subsidies on Prices of Selected Commodities in Iran Market
Authors: Sayedramin Hashemianesfehani, Seyed Hossein Hosseinilargani
Abstract:
In this study, we attempt to realize that to what extent the increase in selected commodities in Iran Market is originated from the implementation of the targeted subsidies law. Hence, an econometric model based on existing theories of increasing and transferring prices in order to transferring inflation is developed. In other words, world price index and virtual variables defined for targeted subsidies has significant and positive impact on the producer price index. The obtained results indicated that the targeted subsidies act in Iran has influential long and short-term impacts on producer price indexes. Finally, world prices of dairy products and dairy price with respect to major parameters is carried out to obtain some managerial results.Keywords: econometric models, targeted subsidies, consumer price index (CPI), producer price index (PPI)
Procedia PDF Downloads 3613165 The Food and Nutritional Effects of Smallholders’ Participation in Milk Value Chain in Ethiopia
Authors: Geday Elias, Montaigne Etienne, Padilla Martine, Tollossa Degefa
Abstract:
Smallholder farmers’ participation in agricultural value chain identified as a pathway to get out of poverty trap in Ethiopia. The smallholder dairy activities have a huge potential in poverty reduction through enhancing income, achieving food and nutritional security in the country. However, much less is known about the effects of smallholder’s participation in milk value chain on household food security and nutrition. This paper therefore, aims at evaluating the effects of smallholders’ participation in milk value chain on household food security taking in to account the four pillars of food security measurements (availability, access, utilization and stability). Using a semi-structured interview, a cross sectional farm household data collected from a randomly selected sample of 333 households (170 in Amhara and 163 in Oromia regions).Binary logit and propensity score matching( PSM) models are employed to examine the mechanisms through which smallholder’s participation in the milk value chain affects household food security where crop production, per capita calorie intakes, diet diversity score, and food insecurity access scale are used to measure food availability, access, utilization and stability respectively. Our findings reveal from 333 households, only 34.5% of smallholder farmers are participated in the milk value chain. Limited access to inputs and services, limited access to inputs markets and high transaction costs are key constraints for smallholders’ limited access to the milk value chain. To estimate the true average participation effects of milk value chain for participated households, the outcome variables (food security) of farm households who participated in milk value chain are compared with the outcome variables if the farm households had not participated. The PSM analysis reveals smallholder’s participation in milk value chain has a significant positive effect on household income, food security and nutrition. Smallholder farmers who are participated in milk chain are better by 15 quintals crops production and 73 percent of per capita calorie intakes in food availability and access respectively than smallholder farmers who are not participated in the market. Similarly, the participated households are better in dietary quality by 112 percents than non-participated households. Finally, smallholders’ who are participated in milk value chain are better in reducing household vulnerability to food insecurity by an average of 130 percent than non participated households. The results also shows income earned from milk value chain participation contributed to reduce capital’s constraints of the participated households’ by higher farm income and total household income by 5164 ETB and 14265 ETB respectively. This study therefore, confirms the potential role of smallholders’ participation in food value chain to get out of poverty trap through improving rural household income, food security and nutrition. Therefore, identified the determinants of smallholder participation in milk value chain and the participation effects on food security in the study areas are worth considering as a positive knock for policymakers and development agents to tackle the poverty trap in the study area in particular and in the country in general.Keywords: effects, food security and nutrition, milk, participation, smallholders, value chain
Procedia PDF Downloads 3433164 Optimization of Ultrasound-Assisted Extraction of Oil from Spent Coffee Grounds Using a Central Composite Rotatable Design
Authors: Malek Miladi, Miguel Vegara, Maria Perez-Infantes, Khaled Mohamed Ramadan, Antonio Ruiz-Canales, Damaris Nunez-Gomez
Abstract:
Coffee is the second consumed commodity worldwide, yet it also generates colossal waste. Proper management of coffee waste is proposed by converting them into products with higher added value to achieve sustainability of the economic and ecological footprint and protect the environment. Based on this, a study looking at the recovery of coffee waste is becoming more relevant in recent decades. Spent coffee grounds (SCG's) resulted from brewing coffee represents the major waste produced among all coffee industry. The fact that SCGs has no economic value be abundant in nature and industry, do not compete with agriculture and especially its high oil content (between 7-15% from its total dry matter weight depending on the coffee varieties, Arabica or Robusta), encourages its use as a sustainable feedstock for bio-oil production. The bio-oil extraction is a crucial step towards biodiesel production by the transesterification process. However, conventional methods used for oil extraction are not recommended due to their high consumption of energy, time, and generation of toxic volatile organic solvents. Thus, finding a sustainable, economical, and efficient extraction technique is crucial to scale up the process and to ensure more environment-friendly production. Under this perspective, the aim of this work was the statistical study to know an efficient strategy for oil extraction by n-hexane using indirect sonication. The coffee waste mixed Arabica and Robusta, which was used in this work. The temperature effect, sonication time, and solvent-to-solid ratio on the oil yield were statistically investigated as dependent variables by Central Composite Rotatable Design (CCRD) 23. The results were analyzed using STATISTICA 7 StatSoft software. The CCRD showed the significance of all the variables tested (P < 0.05) on the process output. The validation of the model by analysis of variance (ANOVA) showed good adjustment for the results obtained for a 95% confidence interval, and also, the predicted values graph vs. experimental values confirmed the satisfactory correlation between the model results. Besides, the identification of the optimum experimental conditions was based on the study of the surface response graphs (2-D and 3-D) and the critical statistical values. Based on the CCDR results, 29 ºC, 56.6 min, and solvent-to-solid ratio 16 were the better experimental conditions defined statistically for coffee waste oil extraction using n-hexane as solvent. In these conditions, the oil yield was >9% in all cases. The results confirmed the efficiency of using an ultrasound bath in extracting oil as a more economical, green, and efficient way when compared to the Soxhlet method.Keywords: coffee waste, optimization, oil yield, statistical planning
Procedia PDF Downloads 1203163 Modified Fe₃O₄ Nanoparticles for Electrochemical Sensing of Heavy Metal Ions Pb²⁺, Hg²⁺, and Cd²⁺ in Water
Authors: Megha, Diksha, Seema Rani, Balwinder Kaur, Harminder Kaur
Abstract:
Fe₃O₄@SiO₂@SB functionalized magnetic nanoparticles were synthesized and used to detect heavy metal ions such as Pb²⁺, Hg²⁺, and Cd²⁺ in water. The formation of Fe₃O₄@SiO₂@SB nanocatalyst was confirmed by XRD, SEM, TEM, and IR. The simultaneous determination of analyte cations was carried out using square wave anodic stripping voltammetry (SWASV). Investigation and optimisation were done to study how experimental variables affected the performance of the modified magnetic electrode. Pb²⁺, Hg²⁺, and Cd²⁺ were successfully detected using the designed sensor in the presence of various possibly interfering ions. The recovery rate was found to be 97.5% for Pb²⁺, 96.2% for Hg²⁺, 103.5% for Cd²⁺. The electrochemical sensor was also employed to determine the presence of heavy metal ions in drinking water samples, which are well below the World Health Organization (WHO) guidelines.Keywords: magnetic nanoparticles, heavy metal ions, electrochemical sensor, environmental water samples
Procedia PDF Downloads 803162 A Traceability Index for Food
Authors: Hari Pulapaka
Abstract:
This paper defines and develops the notion of a traceability index for food and may be used by any consumer (restaurant, distributor, average consumer etc.). The concept is then extended to a region's food system as a way to measure how well a regional food system utilizes its own bounty or at least, is connected to its food sources. With increasing emphases on the sustainability of aspects of regional and ultimately, the global food system, it is reasonable to accept that if we know how close (in relative terms) an end-user of a set of ingredients (as they traverse through the maze of supply chains) is from the sources, we may be better equipped to evaluate the quality of the set as measured by any number of qualitative and quantitative criteria. We propose a mathematical model which may be adapted to a number of contexts and sizes. Two hypothetical cases of different scope are presented which highlight how the model works as an evaluator of steps between an end-user and the source(s) of the ingredients they consume. The variables in the model are flexible enough to be adapted to other applications beyond food systems.Keywords: food, traceability, supply chain, mathematical model
Procedia PDF Downloads 2743161 Investigation into the Socio-ecological Impact of Migration of Fulani Herders in Anambra State of Nigeria Through a Climate Justice Lens
Authors: Anselm Ego Onyimonyi, Maduako Johnpaul O.
Abstract:
The study was designed to investigate into the socio-ecological impact of migration of Fulani herders in Anambra state of Nigeria, through a climate justice lens. Nigeria is one of the world’s most densely populated countries with a population of over 284 million people, half of which are considered to be in abject poverty. There is no doubt that livestock production provides sustainable contributions to food security and poverty reduction to Nigeria economy, but not without some environmental implications like any other economic activities. Nigeria is recognized as being vulnerable to climate change. Climate change and global warming if left unchecked will cause adverse effects on livelihoods in Nigeria, such as livestock production, crop production, fisheries, forestry and post-harvest activities, because the rainfall regimes and patterns will be altered, floods which devastate farmlands would occur, increase in temperature and humidity which increases pest and disease would occur and other natural disasters like desertification, drought, floods, ocean and storm surges, which not only damage Nigerians’ livelihood but also cause harm to life and property, would occur. This and other climatic issue as it affects Fulani herdsmen was what this study investigated. In carrying out this research, a survey research design was adopted. A simple sampling technique was used. One local government area (LGA) was selected purposively from each of the four agricultural zone in the state based on its predominance of Fulani herders. For appropriate sampling, 25 respondents from each of the four Agricultural zones in the state were randomly selected making up the 100 respondent being sampled. Primary data were generated by using a set of structured 5-likert scale questionnaire. Data generated were analyzed using SPSS and the result presented using descriptive statistics. From the data analyzed, the study indentified; Unpredicted rainfall (mean = 3.56), Forest fire (mean = 4.63), Drying Water Source (mean = 3.99), Dwindling Grazing (mean 4.43), Desertification (mean = 4.44), Fertile land scarcity (mean = 3.42) as major factor predisposing Fulani herders to migrate southward while rejecting Natural inclination to migrate (mean = 2.38) and migration to cause trouble as a factor. On the reason why Fulani herders are trying to establish a permanent camp in Anambra state; Moderate temperature (mean= 3.60), Avoiding overgrazing (4.42), Search for fodder and water (mean = 4.81) and (mean = 4.70) respectively, Need for market (4.28), Favorable environment (mean = 3.99) and Access to fertile land (3.96) were identified. It was concluded that changing climatic variables necessitated the migration of herders from Northern Nigeria to areas in the South were the variables are most favorable to the herders and their animals.Keywords: socio-ecological, migration, fulani, climate, justice, lens
Procedia PDF Downloads 483160 Response of Buildings with Soil-Structure Interaction with Varying Soil Types
Authors: Shreya Thusoo, Karan Modi, Rajesh Kumar, Hitesh Madahar
Abstract:
Over the years, it has been extensively established that the practice of assuming a structure being fixed at base, leads to gross errors in evaluation of its overall response due to dynamic loadings and overestimations in design. The extent of these errors depends on a number of variables; soil type being one of the major factor. This paper studies the effect of Soil Structure Interaction (SSI) on multi-storey buildings with varying under-laying soil types after proper validation of the effect of SSI. Analysis for soft, stiff and very stiff base soils has been carried out, using a powerful Finite Element Method (FEM) software package ANSYS v14.5. Results lead to some very important conclusions regarding time period, deflection and acceleration responses.Keywords: dynamic response, multi-storey building, soil-structure interaction, varying soil types
Procedia PDF Downloads 4893159 Acidic Dye Removal From Aqueous Solution Using Heat Treated and Polymer Modified Waste Containing Boron Impurity
Authors: Asim Olgun, Ali Kara, Vural Butun, Pelin Sevinc, Merve Gungor, Orhan Ornek
Abstract:
In this study, we investigated the possibility of using waste containing boron impurity (BW) as an adsorbent for the removal of Orange 16 from aqueous solution. Surface properties of the BW, heat treated BW, and diblock copolymer coated BW were examined by using Zeta Meter and scanning electron microscopy (SEM). The polymer modified sample having the highest positive zeta potential was used as an adsorbent. Batch adsorption studies were carried out. The operating variables studied were the initial dye concentration, contact time, solution pH, and adsorbent dosage. It was found that the dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 3. The adsorption followed pseudo-second-order kinetics and the isotherm fit well to the Langmuir model.Keywords: zeta potential, adsorption, Orange 16, isotherms
Procedia PDF Downloads 1983158 From Customer Innovations to Manufactured Products: A Project Outlook
Authors: M. Holle, M. Roth, M. R. Gürtler, U. Lindemann
Abstract:
This paper gives insights into the research project "InnoCyFer" (in the form of an outlook) which is funded by the German Federal Ministry of Economics and Technology. Enabling the integrated customer individual product design as well as flexible manufacturing of these products are the main objectives of the project. To achieve this, a web-based open innovation-platform containing an integrated Toolkit will be developed. This toolkit enables the active integration of the customer’s creativity and potentials of innovation in the product development process. Furthermore, the project will show the chances and possibilities of customer individualized products by building and examining the continuous process from innovation through the customers to the flexible manufacturing of individual products.Keywords: customer individual product design, innovation networks, open innovation, open innovation platform, toolkit
Procedia PDF Downloads 3153157 Willingness and Attitude towards Organ Donation of Nurses in Taiwan
Authors: ShuYing Chung, Minchuan Huang, Iping Chen
Abstract:
Taking the medical staff in an emergency ward of a medical center in Central Taiwan as the research object, the questionnaire data were collected by anonymous and voluntary reporting methods with structured questionnaire to explore the actual situation, willingness and attitude of organ donation. Only 80 valid questionnaires were collected. Among the 8 questions, the average correct rate was 5.9 + 1.2, and the correct rate was 73.13%. The willingness of organ donation that 7.5% of the people are not willing; 92.5% of the people are willing, of which 62.5% have considered but have not yet decided; 21.3% are willing but have not signed the consent of organ donation; They have signed the consent of organ donation 8.7%. The average total score (standard deviation) of attitude towards organ donation was 36.2. There is no significant difference between the demographic variables and the awareness and willingness of organ donation, but there is a significant correlation between the marital status and the attitude of organ donation.Keywords: clinical psychology, organ donation, doctors affecting psychological disorders, commitment
Procedia PDF Downloads 1393156 Financial Information Transparency on Investor Behavior in the Private Company in Dusit Area
Authors: Yosapon Kidsuntad
Abstract:
The purpose of this dissertation was to explore the relationship between financial transparency and investor behavior. In carrying out this inquiry, the researcher used a questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. The results revealed that there are significant differences investor perceptions of the different dimensions of financial information transparency. These differences correspond to demographical variables with the exception of the educational level variable. It was also found that there are relationships between investor perceptions of the dimensions of financial information transparency and investor behavior in the private company in Dusit Area. Finally, the researcher also found that there are differences in investor behavior corresponding to different categories of investor experience.Keywords: financial information transparency, investor behavior, private company, Dusit Area
Procedia PDF Downloads 3323155 Application of Genetic Programming for Evolution of Glass-Forming Ability Parameter
Authors: Manwendra Kumar Tripathi, Subhas Ganguly
Abstract:
A few glass forming ability expressions in terms of characteristic temperatures have been proposed in the literature. Attempts have been made to correlate the expression with the critical diameter of the bulk metallic glass composition. However, with the advent of new alloys, many exceptions have been noted and reported. In the present approach, a genetic programming based code which generates an expression in terms of input variables, i.e., three characteristic temperatures viz. glass transition temperature (Tg), onset crystallization temperature (Tx) and offset temperature of melting (Tl) with maximum correlation with a critical diameter (Dmax). The expression evolved shows improved correlation with the critical diameter. In addition, the expression can be explained on the basis of time-temperature transformation curve.Keywords: glass forming ability, genetic programming, bulk metallic glass, critical diameter
Procedia PDF Downloads 335