Search results for: network upgrade
2211 Structural Invertibility and Optimal Sensor Node Placement for Error and Input Reconstruction in Dynamic Systems
Authors: Maik Kschischo, Dominik Kahl, Philipp Wendland, Andreas Weber
Abstract:
Understanding and modelling of real-world complex dynamic systems in biology, engineering and other fields is often made difficult by incomplete knowledge about the interactions between systems states and by unknown disturbances to the system. In fact, most real-world dynamic networks are open systems receiving unknown inputs from their environment. To understand a system and to estimate the state dynamics, these inputs need to be reconstructed from output measurements. Reconstructing the input of a dynamic system from its measured outputs is an ill-posed problem if only a limited number of states is directly measurable. A first requirement for solving this problem is the invertibility of the input-output map. In our work, we exploit the fact that invertibility of a dynamic system is a structural property, which depends only on the network topology. Therefore, it is possible to check for invertibility using a structural invertibility algorithm which counts the number of node disjoint paths linking inputs and outputs. The algorithm is efficient enough, even for large networks up to a million nodes. To understand structural features influencing the invertibility of a complex dynamic network, we analyze synthetic and real networks using the structural invertibility algorithm. We find that invertibility largely depends on the degree distribution and that dense random networks are easier to invert than sparse inhomogeneous networks. We show that real networks are often very difficult to invert unless the sensor nodes are carefully chosen. To overcome this problem, we present a sensor node placement algorithm to achieve invertibility with a minimum set of measured states. This greedy algorithm is very fast and also guaranteed to find an optimal sensor node-set if it exists. Our results provide a practical approach to experimental design for open, dynamic systems. Since invertibility is a necessary condition for unknown input observers and data assimilation filters to work, it can be used as a preprocessing step to check, whether these input reconstruction algorithms can be successful. If not, we can suggest additional measurements providing sufficient information for input reconstruction. Invertibility is also important for systems design and model building. Dynamic models are always incomplete, and synthetic systems act in an environment, where they receive inputs or even attack signals from their exterior. Being able to monitor these inputs is an important design requirement, which can be achieved by our algorithms for invertibility analysis and sensor node placement.Keywords: data-driven dynamic systems, inversion of dynamic systems, observability, experimental design, sensor node placement
Procedia PDF Downloads 1502210 The Application of Artificial Neural Network for Bridge Structures Design Optimization
Authors: Angga S. Fajar, A. Aminullah, J. Kiyono, R. A. Safitri
Abstract:
This paper discusses about the application of ANN for optimizing of bridge structure design. ANN has been applied in various field of science concerning prediction and optimization. The structural optimization has several benefit including accelerate structural design process, saving the structural material, and minimize self-weight and mass of structure. In this paper, there are three types of bridge structure that being optimized including PSC I-girder superstructure, composite steel-concrete girder superstructure, and RC bridge pier. The different optimization strategy on each bridge structure implement back propagation method of ANN is conducted in this research. The optimal weight and easier design process of bridge structure with satisfied error are achieved.Keywords: bridge structures, ANN, optimization, back propagation
Procedia PDF Downloads 3732209 Reliable and Energy-Aware Data Forwarding under Sink-Hole Attack in Wireless Sensor Networks
Authors: Ebrahim Alrashed
Abstract:
Wireless sensor networks are vulnerable to attacks from adversaries attempting to disrupt their operations. Sink-hole attacks are a type of attack where an adversary node drops data forwarded through it and hence affecting the reliability and accuracy of the network. Since sensor nodes have limited battery power, it is essential that any solution to the sinkhole attack problem be very energy-aware. In this paper, we present a reliable and energy efficient scheme to forward data from source nodes to the base station while under sink-hole attack. The scheme also detects sink-hole attack nodes and avoid paths that includes them.Keywords: energy-aware routing, reliability, sink-hole attack, WSN
Procedia PDF Downloads 3962208 A Survey in Techniques for Imbalanced Intrusion Detection System Datasets
Authors: Najmeh Abedzadeh, Matthew Jacobs
Abstract:
An intrusion detection system (IDS) is a software application that monitors malicious activities and generates alerts if any are detected. However, most network activities in IDS datasets are normal, and the relatively few numbers of attacks make the available data imbalanced. Consequently, cyber-attacks can hide inside a large number of normal activities, and machine learning algorithms have difficulty learning and classifying the data correctly. In this paper, a comprehensive literature review is conducted on different types of algorithms for both implementing the IDS and methods in correcting the imbalanced IDS dataset. The most famous algorithms are machine learning (ML), deep learning (DL), synthetic minority over-sampling technique (SMOTE), and reinforcement learning (RL). Most of the research use the CSE-CIC-IDS2017, CSE-CIC-IDS2018, and NSL-KDD datasets for evaluating their algorithms.Keywords: IDS, imbalanced datasets, sampling algorithms, big data
Procedia PDF Downloads 3282207 Promoting 21st Century Skills through Telecollaborative Learning
Authors: Saliha Ozcan
Abstract:
Technology has become an integral part of our lives, aiding individuals in accessing higher order competencies, such as global awareness, creativity, collaborative problem solving, and self-directed learning. Students need to acquire these competencies, often referred to as 21st century skills, in order to adapt to a fast changing world. Today, an ever-increasing number of schools are exploring how engagement through telecollaboration can support language learning and promote 21st century skill development in classrooms. However, little is known regarding how telecollaboration may influence the way students acquire 21st century skills. In this paper, we aim to shed light to the potential implications of telecollaborative practices in acquisition of 21st century skills. In our context, telecollaboration, which might be carried out in a variety of settings both synchronously or asynchronously, is considered as the process of communicating and working together with other people or groups from different locations through online digital tools or offline activities to co-produce a desired work output. The study presented here will describe and analyse the implementation of a telecollaborative project between two high school classes, one in Spain and the other in Sweden. The students in these classes were asked to carry out some joint activities, including creating an online platform, aimed at raising awareness of the situation of the Syrian refugees. We conduct a qualitative study in order to explore how language, culture, communication, and technology merge into the co-construction of knowledge, as well as supporting the attainment of the 21st century skills needed for network-mediated communication. To this end, we collected a significant amount of audio-visual data, including video recordings of classroom interaction and external Skype meetings. By analysing this data, we verify whether the initial pedagogical design and intended objectives of the telecollaborative project coincide with what emerges from the actual implementation of the tasks. Our findings indicate that, as well as planned activities, unplanned classroom interactions may lead to acquisition of certain 21st century skills, such as collaborative problem solving and self-directed learning. This work is part of a wider project (KONECT, EDU2013-43932-P; Spanish Ministry of Economy and Finance), which aims to explore innovative, cross-competency based teaching that can address the current gaps between today’s educational practices and the needs of informed citizens in tomorrow’s interconnected, globalised world.Keywords: 21st century skills, telecollaboration, language learning, network mediated communication
Procedia PDF Downloads 1252206 A Review on Big Data Movement with Different Approaches
Authors: Nay Myo Sandar
Abstract:
With the growth of technologies and applications, a large amount of data has been producing at increasing rate from various resources such as social media networks, sensor devices, and other information serving devices. This large collection of massive, complex and exponential growth of dataset is called big data. The traditional database systems cannot store and process such data due to large and complexity. Consequently, cloud computing is a potential solution for data storage and processing since it can provide a pool of resources for servers and storage. However, moving large amount of data to and from is a challenging issue since it can encounter a high latency due to large data size. With respect to big data movement problem, this paper reviews the literature of previous works, discusses about research issues, finds out approaches for dealing with big data movement problem.Keywords: Big Data, Cloud Computing, Big Data Movement, Network Techniques
Procedia PDF Downloads 862205 Ternary Content Addressable Memory Cell with a Leakage Reduction Technique
Authors: Gagnesh Kumar, Nitin Gupta
Abstract:
Ternary Content Addressable Memory cells are mainly popular in network routers for packet forwarding and packet classification, but they are also useful in a variety of other applications that require high-speed table look-up. The main TCAM-design challenge is to decrease the power consumption associated with the large amount of parallel active circuitry, without compromising with speed or memory density. Furthermore, when the channel length decreases, leakage power becomes more significant, and it can even dominate dynamic power at lower technologies. In this paper, we propose a TCAM-design technique, called Virtual Power Supply technique that reduces the leakage by a substantial amount.Keywords: match line (ML), search line (SL), ternary content addressable memory (TCAM), Leakage power (LP)
Procedia PDF Downloads 2992204 Improving Power Quality in Wind Power Generation System
Authors: A. Omeiri, A. Djellad, P. O. Logerais, O. Riou, J. F. Durastanti
Abstract:
With the growing of electrical energy demand, wind power capacity has experienced tremendous growth in the past decade, thanks to wind power’s environmental benefits. Direct driven permanent magnet synchronous generator (PMSG) with a full size back-to-back converter set is one of the promising technologies employed with wind power generation. Wind grid integration brings the problems of voltage fluctuation and harmonic pollution. In the present study, the filter is placed between the wind system and the network to reduce the total harmonic distortion (THD) and enhance power quality during disturbances. The models of wind turbine, PMSG, power electronic converters and the filter are implemented in MATLAB/SIMULINK environment.Keywords: wind energy conversion system, PMSG, PWM, THD, power quality, passive filter
Procedia PDF Downloads 6482203 Microwave Absorption Properties of Low Density Polyethelene-Cobalt Ferrite Nanocomposite
Authors: Reza Fazaeli, Reza Eslami-Farsani, Hamid Targhagh
Abstract:
Low density polyethylene (LDPE) nanocomposites with 3, 5 and 7 wt. % cobalt ferrite (CoFe2O4) nanopowder fabricated with extrusion mixing and followed up by hot press to reach compact samples. The transmission/reflection measurements were carried out with a network analyzer in the frequency range of 8-12 GHz. By increasing the percent of CoFe2O4 nanopowder, reflection loss (S11) increases, while transferring loss (S21) decreases. Reflectivity (R) calculations made using S11 and S21. Increase in percent of CoFe2O4 nanopowder up to 7 wt. % in composite leaded to higher reflectivity amount, and revealed that increasing the percent of CoFe2O4 nanopowder up to 7 wt. % leads to further microwave absorption in 8-12 GHz range.Keywords: nanocomposite, cobalt ferrite, low density polyethylene, microwave absorption
Procedia PDF Downloads 2822202 Film, Globalization, Resistance: Emirati Film Production as a Medium of Localization
Authors: Chrysavgi Papagianni
Abstract:
The tension between global and local has been a usual topic in discussions regarding globalization. Instead of reproducing the usual ‘gloom and doom’ arguments surrounding many of these discussions, the present paper will focus on Emirati film production and more particularly on the work of the acclaimed director Nojoom Alghanem, in order to highlight how local culture can, in fact, become a force of resistance, or else a medium of localization. As a matter of fact, Alghanem’s films, especially Sounds of the Sea, Hamama and Nearby Sky are apt examples of a localizing force in action as they tap into the audience’s dormant memories of the pre-oil past, in a country that has been swept by unprecedented development and globalization in the last 60 years. What becomes evident is that the remediation of memories in Alghanem’s films makes them more ‘mobile’ and thus allows them to circulate better in today’s network society.Keywords: culture, film, globalization, identity
Procedia PDF Downloads 2912201 Programmed Speech to Text Summarization Using Graph-Based Algorithm
Authors: Hamsini Pulugurtha, P. V. S. L. Jagadamba
Abstract:
Programmed Speech to Text and Text Summarization Using Graph-based Algorithms can be utilized in gatherings to get the short depiction of the gathering for future reference. This gives signature check utilizing Siamese neural organization to confirm the personality of the client and convert the client gave sound record which is in English into English text utilizing the discourse acknowledgment bundle given in python. At times just the outline of the gathering is required, the answer for this text rundown. Thus, the record is then summed up utilizing the regular language preparing approaches, for example, solo extractive text outline calculationsKeywords: Siamese neural network, English speech, English text, natural language processing, unsupervised extractive text summarization
Procedia PDF Downloads 2182200 Ultrasonic Studies of Polyurea Elastomer Composites with Inorganic Nanoparticles
Authors: V. Samulionis, J. Banys, A. Sánchez-Ferrer
Abstract:
Inorganic nanoparticles are used for fabrication of various composites based on polymer materials because they exhibit a good homogeneity and solubility of the composite material. Multifunctional materials based on composites of a polymer containing inorganic nanotubes are expected to have a great impact on industrial applications in the future. An emerging family of such composites are polyurea elastomers with inorganic MoS2 nanotubes or MoSI nanowires. Polyurea elastomers are a new kind of materials with higher performance than polyurethanes. The improvement of mechanical, chemical and thermal properties is due to the presence of hydrogen bonds between the urea motives which can be erased at high temperature softening the elastomeric network. Such materials are the combination of amorphous polymers above glass transition and crosslinkers which keep the chains into a single macromolecule. Polyurea exhibits a phase separated structure with rigid urea domains (hard domains) embedded in a matrix of flexible polymer chains (soft domains). The elastic properties of polyurea can be tuned over a broad range by varying the molecular weight of the components, the relative amount of hard and soft domains, and concentration of nanoparticles. Ultrasonic methods as non-destructive techniques can be used for elastomer composites characterization. In this manner, we have studied the temperature dependencies of the longitudinal ultrasonic velocity and ultrasonic attenuation of these new polyurea elastomers and composites with inorganic nanoparticles. It was shown that in these polyurea elastomers large ultrasonic attenuation peak and corresponding velocity dispersion exists at 10 MHz frequency below room temperature and this behaviour is related to glass transition Tg of the soft segments in the polymer matrix. The relaxation parameters and Tg depend on the segmental molecular weight of the polymer chains between crosslinking points, the nature of the crosslinkers in the network and content of MoS2 nanotubes or MoSI nanowires. The increase of ultrasonic velocity in composites modified by nanoparticles has been observed, showing the reinforcement of the elastomer. In semicrystalline polyurea elastomer matrices, above glass transition, the first order phase transition from quasi-crystalline to the amorphous state has been observed. In this case, the sharp ultrasonic velocity and attenuation anomalies were observed near the transition temperature TC. Ultrasonic attenuation maximum related to glass transition was reduced in quasicrystalline polyureas indicating less influence of soft domains below TC. The first order phase transition in semicrystalline polyurea elastomer samples has large temperature hysteresis (> 10 K). The impact of inorganic MoS2 nanotubes resulted in the decrease of the first order phase transition temperature in semicrystalline composites.Keywords: inorganic nanotubes, polyurea elastomer composites, ultrasonic velocity, ultrasonic attenuation
Procedia PDF Downloads 3002199 Mitigating the Unwillingness of e-Forums Members to Engage in Information Exchange
Authors: Dora Triki, Irena Vida, Claude Obadia
Abstract:
Social networks such as e-Forums or dating sites often face the reluctance of key members to participate. Relying on the conation theory, this study investigates this phenomenon and proposes solutions to mitigate the issue. We show that highly experienced e-Forum members refuse to share business information in a peer to peer information exchange forums. However, forums managers can mitigate this behavior by developing a sentiment of belongingness to the network. Furthermore, by selecting only elite forum participants with ample experience, they can reduce the reluctance of key information providers to engage in information exchange. Our hypotheses are tested with PLS structural equations modeling using survey data from members of a French e-Forum dedicated to the exchange of business information about exporting.Keywords: conation, e-Forum, information exchange, members participation
Procedia PDF Downloads 1582198 The Territorial Expression of Religious Identity: A Case Study of Catholic Communities
Authors: Margarida Franca
Abstract:
The influence of the ‘cultural turn’ movement and the consequent deconstruction of scientific thought allowed geography and other social sciences to open or deepen their studies based on the analysis of multiple identities, on singularities, on what is particular or what marks the difference between individuals. In the context of postmodernity, the geography of religion has gained a favorable scientific, thematic and methodological focus for the qualitative and subjective interpretation of various religious identities, sacred places, territories of belonging, religious communities, among others. In the context of ‘late modernity’ or ‘net modernity’, sacred places and the definition of a network of sacred territories allow believers to attain the ‘ontological security’. The integration on a religious group or a local community, particularly a religious community, allows human beings to achieve a sense of belonging, familiarity or solidarity and to overcome, in part, some of the risks or fears that society has discovered. The importance of sacred places comes not only from their inherent characteristics (eg transcendent, mystical and mythical, respect, intimacy and abnegation), but also from the possibility of adding and integrating members of the same community, creating bonds of belonging, reference and individual and collective memory. In addition, the formation of different networks of sacred places, with multiple scales and dimensions, allows the human being to identify and structure his times and spaces of daily life. Thus, each individual, due to his unique identity and life and religious paths, creates his own network of sacred places. The territorial expression of religious identity allows to draw a variable and unique geography of sacred places. Through the case study of the practicing Catholic population in the diocese of Coimbra (Portugal), the aim is to study the territorial expression of the religious identity of the different local communities of this city. Through a survey of six parishes in the city, we sought to identify which factors, qualitative or not, define the different territorial expressions on a local, national and international scale, with emphasis on the socioeconomic profile of the population, the religious path of the believers, the religious group they belong to and the external interferences, religious or not. The analysis of these factors allows us to categorize the communities of the city of Coimbra and, for each typology or category, to identify the specific elements that unite the believers to the sacred places, the networks and religious territories that structure the religious practice and experience and also the non-representational landscape that unifies and creates memory. We conclude that an apparently homogeneous group, the Catholic community, incorporates multitemporalities and multiterritorialities that are necessary to understand the history and geography of a whole country and of the Catholic communities in particular.Keywords: geography of religion, sacred places, territoriality, Catholic Church
Procedia PDF Downloads 3232197 Optimising the Reservoir Operation Using Water Resources Yield and Planning Model at Inanda Dam, uMngeni Basin
Authors: O. Nkwonta, B. Dzwairo, F. Otieno, J. Adeyemo
Abstract:
The effective management of water resources is of great importance to ensure the supply of water resources to support changing water requirements over a selected planning horizon and in a sustainable and cost-effective way. Essentially, the purpose of the water resources planning process is to balance the available water resources in a system with the water requirements and losses to which the system is subjected. In such situations, water resources yield and planning model can be used to solve those difficulties. It has an advantage over other models by managing model runs, developing a representative system network, modelling incremental sub-catchments, creating a variety of standard system features, special modelling features, and run result output options.Keywords: complex, water resources, planning, cost effective, management
Procedia PDF Downloads 4502196 Multi-Objective Optimal Threshold Selection for Similarity Functions in Siamese Networks for Semantic Textual Similarity Tasks
Authors: Kriuk Boris, Kriuk Fedor
Abstract:
This paper presents a comparative study of fundamental similarity functions for Siamese networks in semantic textual similarity (STS) tasks. We evaluate various similarity functions using the STS Benchmark dataset, analyzing their performance and stability. Additionally, we introduce a multi-objective approach for optimal threshold selection. Our findings provide insights into the effectiveness of different similarity functions and offer a straightforward method for threshold selection optimization, contributing to the advancement of Siamese network architectures in STS applications.Keywords: siamese networks, semantic textual similarity, similarity functions, STS benchmark dataset, threshold selection
Procedia PDF Downloads 372195 Classification of Cochannel Signals Using Cyclostationary Signal Processing and Deep Learning
Authors: Bryan Crompton, Daniel Giger, Tanay Mehta, Apurva Mody
Abstract:
The task of classifying radio frequency (RF) signals has seen recent success in employing deep neural network models. In this work, we present a combined signal processing and machine learning approach to signal classification for cochannel anomalous signals. The power spectral density and cyclostationary signal processing features of a captured signal are computed and fed into a neural net to produce a classification decision. Our combined signal preprocessing and machine learning approach allows for simpler neural networks with fast training times and small computational resource requirements for inference with longer preprocessing time.Keywords: signal processing, machine learning, cyclostationary signal processing, signal classification
Procedia PDF Downloads 1072194 A Privacy Protection Scheme Supporting Fuzzy Search for NDN Routing Cache Data Name
Authors: Feng Tao, Ma Jing, Guo Xian, Wang Jing
Abstract:
Named Data Networking (NDN) replaces IP address of traditional network with data name, and adopts dynamic cache mechanism. In the existing mechanism, however, only one-to-one search can be achieved because every data has a unique name corresponding to it. There is a certain mapping relationship between data content and data name, so if the data name is intercepted by an adversary, the privacy of the data content and user’s interest can hardly be guaranteed. In order to solve this problem, this paper proposes a one-to-many fuzzy search scheme based on order-preserving encryption to reduce the query overhead by optimizing the caching strategy. In this scheme, we use hash value to ensure the user’s query safe from each node in the process of search, so does the privacy of the requiring data content.Keywords: NDN, order-preserving encryption, fuzzy search, privacy
Procedia PDF Downloads 4842193 Forecasting Solid Waste Generation in Turkey
Authors: Yeliz Ekinci, Melis Koyuncu
Abstract:
Successful planning of solid waste management systems requires successful prediction of the amount of solid waste generated in an area. Waste management planning can protect the environment and human health, hence it is tremendously important for countries. The lack of information in waste generation can cause many environmental and health problems. Turkey is a country that plans to join European Union, hence, solid waste management is one of the most significant criteria that should be handled in order to be a part of this community. Solid waste management system requires a good forecast of solid waste generation. Thus, this study aims to forecast solid waste generation in Turkey. Artificial Neural Network and Linear Regression models will be used for this aim. Many models will be run and the best one will be selected based on some predetermined performance measures.Keywords: forecast, solid waste generation, solid waste management, Turkey
Procedia PDF Downloads 5072192 A Process Model for Online Trip Reservation System
Authors: Sh. Wafa, M. Alanoud, S. Liyakathunisa
Abstract:
Online booking for a trip or hotel has become an indispensable traveling tool today, people tend to be more interested in selecting air flight travel as their first choice when going for a long trip. People's shopping behavior has greatly changed by the advent of social network. Traditional ticket booking methods are considered as outdated with the advancement in tools and technology. Web based booking framework is an 'absolute necessity to have' for any visit or movement business that is investing heaps of energy noting telephone calls, sending messages or considering employing more staff. In this paper, we propose a process model for online trip reservation for our designed web application. Our proposed system will be highly beneficial and helps in reduction in time and cost for customers.Keywords: trip, hotel, reservation, process model, time, cost, web app
Procedia PDF Downloads 2142191 Routing in IP/LEO Satellite Communication Systems: Past, Present and Future
Authors: Mohammed Hussein, Abualseoud Hanani
Abstract:
In Low Earth Orbit (LEO) satellite constellation system, routing data from the source all the way to the destination constitutes a daunting challenge because LEO satellite constellation resources are spare and the high speed movement of LEO satellites results in a highly dynamic network topology. This situation limits the applicability of traditional routing approaches that rely on exchanging topology information upon change or setup of a connection. Consequently, in recent years, many routing algorithms and implementation strategies for satellite constellation networks with Inter Satellite Links (ISLs) have been proposed. In this article, we summarize and classify some of the most representative solutions according to their objectives, and discuss their advantages and disadvantages. Finally, with a look into the future, we present some of the new challenges and opportunities for LEO satellite constellations in general and routing protocols in particular.Keywords: LEO satellite constellations, dynamic topology, IP routing, inter-satellite-links
Procedia PDF Downloads 3812190 Telemedicine for Telerehabilitation in Areas Affected by Social Conflicts in Colombia
Authors: Lilia Edit Aparicio Pico, Paulo Cesar Coronado Sánchez, Roberto Ferro Escobar
Abstract:
This paper presents the implementation of telemedicine services for physiotherapy, occupational therapy, and speech therapy rehabilitation, utilizing telebroadcasting of audiovisual content to enhance comprehensive patient recovery in rural areas of San Vicente del Caguán municipality, characterized by high levels of social conflict in Colombia. The region faces challenges such as dysfunctional problems, physical rehabilitation needs, and a high prevalence of hearing diseases, leading to neglect and substandard health services. Limited access to healthcare due to communication barriers and transportation difficulties exacerbates these issues. To address these challenges, a research initiative was undertaken to leverage information and communication technologies (ICTs) to improve healthcare quality and accessibility for this vulnerable population. The primary objective was to develop a tele-rehabilitation system to provide asynchronous online therapies and teleconsultation services for patient follow-up during the recovery process. The project comprises two components: Communication systems and human development. A technological component involving the establishment of a wireless network connecting rural centers and the development of a mobile application for video-based therapy delivery. Communications systems will be provided by a radio link that utilizes internet provided by the Colombian government, located in the municipality of San Vicente del Caguán to connect two rural centers (Pozos and Tres Esquinas) and a mobile application for managing videos for asynchronous broadcasting in sidewalks and patients' homes. This component constitutes an operational model integrating information and telecommunications technologies. The second component involves pedagogical and human development. The primary focus is on the patient, where performance indicators and the efficiency of therapy support were evaluated for the assessment and monitoring of telerehabilitation results in physical, occupational, and speech therapy. They wanted to implement a wireless network to ensure audiovisual content transmission for tele-rehabilitation, design audiovisual content for tele-rehabilitation based on services provided by the ESE Hospital San Rafael in physiotherapy, occupational therapy, and speech therapy, develop a software application for fixed and mobile devices enabling access to tele-rehabilitation audiovisual content for healthcare personnel and patients and finally to evaluate the technological solution's contribution to the ESE Hospital San Rafael community. The research comprised four phases: wireless network implementation, audiovisual content design, software application development, and evaluation of the technological solution's impact. Key findings include the successful implementation of virtual teletherapy, both synchronously and asynchronously, and the assessment of technological performance indicators, patient evolution, timeliness, acceptance, and service quality of tele-rehabilitation therapies. The study demonstrated improved service coverage, increased care supply, enhanced access to timely therapies for patients, and positive acceptance of teletherapy modalities. Additionally, the project generated new knowledge for potential replication in other regions and proposed strategies for short- and medium-term improvement of service quality and care indicatorsKeywords: e-health, medical informatics, telemedicine, telerehabilitation, virtual therapy
Procedia PDF Downloads 552189 Remote Video Supervision via DVB-H Channels
Authors: Hanen Ghabi, Youssef Oudhini, Hassen Mnif
Abstract:
By reference to recent publications dealing with the same problem, and as a follow-up to this research work already published, we propose in this article a new original idea of tele supervision exploiting the opportunities offered by the DVB-H system. The objective is to exploit the RF channels of the DVB-H network in order to insert digital remote monitoring images dedicated to a remote solar power plant. Indeed, the DVB-H (Digital Video Broadcast-Handheld) broadcasting system was designed and deployed for digital broadcasting on the same platform as the parent system, DVB-T. We claim to be able to exploit this approach in order to satisfy the operator of remote photovoltaic sites (and others) in order to remotely control the components of isolated installations by means of video surveillance.Keywords: video surveillance, digital video broadcast-handheld, photovoltaic sites, AVC
Procedia PDF Downloads 1842188 Automated Detection of Related Software Changes by Probabilistic Neural Networks Model
Authors: Yuan Huang, Xiangping Chen, Xiaonan Luo
Abstract:
Current software are continuously updating. The change between two versions usually involves multiple program entities (e.g., packages, classes, methods, attributes) with multiple purposes (e.g., changed requirements, bug fixing). It is hard for developers to understand which changes are made for the same purpose. Whether two changes are related is not decided by the relationship between this two entities in the program. In this paper, we summarized 4 coupling rules(16 instances) and 4 state-combination types at the class, method and attribute levels for software change. Related Change Vector (RCV) are defined based on coupling rules and state-combination types, and applied to classify related software changes by using Probabilistic Neural Network during a software updating.Keywords: PNN, related change, state-combination, logical coupling, software entity
Procedia PDF Downloads 4372187 A Mixed Integer Linear Programming Model for Container Collection
Authors: J. Van Engeland, C. Lavigne, S. De Jaeger
Abstract:
In the light of the transition towards a more circular economy, recovery of products, parts or materials will gain in importance. Additionally, the EU proximity principle related to waste management and emissions generated by transporting large amounts of end-of-life products, shift attention to local recovery networks. The Flemish inter-communal cooperation for municipal solid waste management Meetjesland (IVM) is currently investigating the set-up of such a network. More specifically, the network encompasses the recycling of polyvinyl chloride (PVC), which is collected in separate containers. When these containers are full, a truck should transport them to the processor which can recycle the PVC into new products. This paper proposes a model to optimize the container collection. The containers are located at different Civic Amenity sites (CA sites) in a certain region. Since people can drop off their waste at these CA sites, the containers will gradually fill up during a planning horizon. If a certain container is full, it has to be collected and replaced by an empty container. The collected waste is then transported to a single processor. To perform this collection and transportation of containers, the responsible firm has a set of vehicles stationed at a single depot and different personnel crews. A vehicle can load exactly one container. If a trailer is attached to the vehicle, it can load an additional container. Each day of the planning horizon, the different crews and vehicles leave the depot to collect containers at the different sites. After loading one or two containers, the crew has to drive to the processor for unloading the waste and to pick up empty containers. Afterwards, the crew can again visit sites or it can return to the depot to end its collection work for that day. All along the collection process, the crew has to respect the opening hours of the sites. In order to allow for some flexibility, a crew is allowed to wait a certain amount of time at the gate of a site until it opens. The problem described can be modelled as a variant to the PVRP-TW (Periodic Vehicle Routing Problem with Time Windows). However, a vehicle can at maximum load two containers, hence only two subsequent site visits are possible. For that reason, we will refer to the model as a model for building tactical waste collection schemes. The goal is to a find a schedule describing which crew should visit which CA site on which day to minimize the number of trucks and the routing costs. The model was coded in IBM CPLEX Optimization studio and applied to a number of test instances. Good results were obtained, and specific suggestions concerning route and truck costs could be made. For a large range of input parameters, collection schemes using two trucks are obtained.Keywords: container collection, crew scheduling, mixed integer linear programming, waste management
Procedia PDF Downloads 1342186 Machine Learning Techniques for Estimating Ground Motion Parameters
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine
Procedia PDF Downloads 1222185 Information Literacy: Concept and Importance
Authors: Gaurav Kumar
Abstract:
An information literate person is one who uses information effectively in all its forms. When presented with questions or problems, an information literate person would know what information to look for, how to search efficiently and be able to access relevant sources. In addition, an information literate person would have the ability to evaluate and select appropriate information sources and to use the information effectively and ethically to answer questions or solve problems. Information literacy has become an important element in higher education. The information literacy movement has internationally recognized standards and learning outcomes. The step-by-step process of achieving information literacy is particularly crucial in an era where knowledge could be disseminated through a variety of media. What is the relationship between information literacy as we define it in higher education and information literacy among non-academic populations? What forces will change how we think about the definition of information literacy in the future and how we will apply the definition in all environments?Keywords: information literacy, human beings, visual media and computer network etc, information literacy
Procedia PDF Downloads 3392184 From Linear to Nonlinear Deterrence: Deterrence for Rising Power
Authors: Farhad Ghasemi
Abstract:
Along with transforming the international system into a complex and chaotic system, the fundamental question arises: how can deterrence be reconstructed conceptually and theoretically in this system model? The deterrence system is much more complex today than it was seven decades ago. This article suggests that the perception of deterrence as a linear system is a fundamental mistake because it does not consider the new dynamics of the international system, including network power dynamics. The author aims to improve this point by focusing on complexity and chaos theories, especially their nonlinearity and cascading failure principles. This article proposes that the perception of deterrence as a linear system is a fundamental mistake, as the new dynamics of the surrounding international system do not take into account. The author recognizes deterrence as a nonlinear system and introduces it as a concept in strategic studies.Keywords: complexity, international system, deterrence, linear deterrence, nonlinear deterrence
Procedia PDF Downloads 1422183 Review on Rainfall Prediction Using Machine Learning Technique
Authors: Prachi Desai, Ankita Gandhi, Mitali Acharya
Abstract:
Rainfall forecast is mainly used for predictions of rainfall in a specified area and determining their future rainfall conditions. Rainfall is always a global issue as it affects all major aspects of one's life. Agricultural, fisheries, forestry, tourism industry and other industries are widely affected by these conditions. The studies have resulted in insufficient availability of water resources and an increase in water demand in the near future. We already have a new forecast system that uses the deep Convolutional Neural Network (CNN) to forecast monthly rainfall and climate changes. We have also compared CNN against Artificial Neural Networks (ANN). Machine Learning techniques that are used in rainfall predictions include ARIMA Model, ANN, LR, SVM etc. The dataset on which we are experimenting is gathered online over the year 1901 to 20118. Test results have suggested more realistic improvements than conventional rainfall forecasts.Keywords: ANN, CNN, supervised learning, machine learning, deep learning
Procedia PDF Downloads 2012182 The Use of Rule-Based Cellular Automata to Track and Forecast the Dispersal of Classical Biocontrol Agents at Scale, with an Application to the Fopius arisanus Fruit Fly Parasitoid
Authors: Agboka Komi Mensah, John Odindi, Elfatih M. Abdel-Rahman, Onisimo Mutanga, Henri Ez Tonnang
Abstract:
Ecosystems are networks of organisms and populations that form a community of various species interacting within their habitats. Such habitats are defined by abiotic and biotic conditions that establish the initial limits to a population's growth, development, and reproduction. The habitat’s conditions explain the context in which species interact to access resources such as food, water, space, shelter, and mates, allowing for feeding, dispersal, and reproduction. Dispersal is an essential life-history strategy that affects gene flow, resource competition, population dynamics, and species distributions. Despite the importance of dispersal in population dynamics and survival, understanding the mechanism underpinning the dispersal of organisms remains challenging. For instance, when an organism moves into an ecosystem for survival and resource competition, its progression is highly influenced by extrinsic factors such as its physiological state, climatic variables and ability to evade predation. Therefore, greater spatial detail is necessary to understand organism dispersal dynamics. Understanding organisms dispersal can be addressed using empirical and mechanistic modelling approaches, with the adopted approach depending on the study's purpose Cellular automata (CA) is an example of these approaches that have been successfully used in biological studies to analyze the dispersal of living organisms. Cellular automata can be briefly described as occupied cells by an individual that evolves based on proper decisions based on a set of neighbours' rules. However, in the ambit of modelling individual organisms dispersal at the landscape scale, we lack user friendly tools that do not require expertise in mathematical models and computing ability; such as a visual analytics framework for tracking and forecasting the dispersal behaviour of organisms. The term "visual analytics" (VA) describes a semiautomated approach to electronic data processing that is guided by users who can interact with data via an interface. Essentially, VA converts large amounts of quantitative or qualitative data into graphical formats that can be customized based on the operator's needs. Additionally, this approach can be used to enhance the ability of users from various backgrounds to understand data, communicate results, and disseminate information across a wide range of disciplines. To support effective analysis of the dispersal of organisms at the landscape scale, we therefore designed Pydisp which is a free visual data analytics tool for spatiotemporal dispersal modeling built in Python. Its user interface allows users to perform a quick and interactive spatiotemporal analysis of species dispersal using bioecological and climatic data. Pydisp enables reuse and upgrade through the use of simple principles such as Fuzzy cellular automata algorithms. The potential of dispersal modeling is demonstrated in a case study by predicting the dispersal of Fopius arisanus (Sonan), endoparasitoids to control Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) in Kenya. The results obtained from our example clearly illustrate the parasitoid's dispersal process at the landscape level and confirm that dynamic processes in an agroecosystem are better understood when designed using mechanistic modelling approaches. Furthermore, as demonstrated in the example, the built software is highly effective in portraying the dispersal of organisms despite the unavailability of detailed data on the species dispersal mechanisms.Keywords: cellular automata, fuzzy logic, landscape, spatiotemporal
Procedia PDF Downloads 77