Search results for: monitoring networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5726

Search results for: monitoring networks

3086 Parasitic and Fungal Identification Bamboo Lobster Panulirus versicolour and Ornate Lobster P. ornatus Cultures

Authors: Indriyani Nur, Yusnaini

Abstract:

Lobster cultures have failed because of mortalities associated with parasitic and fungal infections. Monitoring of spawned eggs and larva of bamboo lobsters, Panulirus versicolour, and ornate lobsters, P. ornatus, in a hatchery, was conducted in order to characterize fungal and parasitic diseases of eggs and larva. One species of protozoan parasite (Vorticella sp.) was identified from larvae while two species of fungi (Lagenidium sp. and Haliphthoros sp.) were found on eggs. Furthermore, adult lobsters cultured in floating net cage had burning-like diseases on their pleopod, uropod, and telson. Histopathological samples were collected for parasite and tissue changes. There were two parasites found to infect lobsters on external body and gill which are Octolasmis sp. and Oodinium sp. Histopathology showed tissue changes which are necrosis on hepatopancreas, necrosis in the gills and around the uropods and telson.

Keywords: fungal, histopathology, lobster, parasite, infection

Procedia PDF Downloads 294
3085 Using Inertial Measurement Unit to Evaluate the Balance Ability of Hikers

Authors: Po-Chen Chen, Tsung-Han Yang, Zhi-Wei Zheng, Shih-Tsang Tang

Abstract:

Falls are the most common accidents during mountain hiking, especially in high-altitude environments with unstable terrain or adverse weather. Balance ability is a crucial factor in hiking, effectively ensuring hiking safety and reducing the risk of injuries. If balance ability can be assessed simply and effectively, hikers can identify their weaknesses and conduct targeted training to improve their balance ability, thereby reducing injury risks. With the widespread use of smartphones and their built-in inertial sensors, this project aims to develop a simple Inertial Measurement Unit (IMU) balance measurement technique based on smartphones. This will provide hikers with an easy-to-use, low-cost tool for assessing balance ability, monitoring training effects in real-time, and continuously tracking balance ability through uploading cloud data uploads, facilitating personal athletic performance.

Keywords: balance, IMU, smartphone, wearable devices

Procedia PDF Downloads 38
3084 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 47
3083 Navigating Uncertainties in Project Control: A Predictive Tracking Framework

Authors: Byung Cheol Kim

Abstract:

This study explores a method for the signal-noise separation challenge in project control, focusing on the limitations of traditional deterministic approaches that use single-point performance metrics to predict project outcomes. We detail how traditional methods often overlook future uncertainties, resulting in tracking biases when reliance is placed solely on immediate data without adjustments for predictive accuracy. Our investigation led to the development of the Predictive Tracking Project Control (PTPC) framework, which incorporates network simulation and Bayesian control models to adapt more effectively to project dynamics. The PTPC introduces controlled disturbances to better identify and separate tracking biases from useful predictive signals. We will demonstrate the efficacy of the PTPC with examples, highlighting its potential to enhance real-time project monitoring and decision-making, marking a significant shift towards more accurate project management practices.

Keywords: predictive tracking, project control, signal-noise separation, Bayesian inference

Procedia PDF Downloads 19
3082 Assessing the Ways of Improving the Power Saving Modes in the Ore-Grinding Technological Process

Authors: Baghdasaryan Marinka

Abstract:

Monitoring the distribution of electric power consumption in the technological process of ore grinding is conducted. As a result, the impacts of the mill filling rate, the productivity of the ore supply, the volumetric density of the grinding balls, the specific density of the ground ore, and the relative speed of the mill rotation on the specific consumption of electric power have been studied. The power and technological factors affecting the reactive power generated by the synchronous motors, operating within the technological scheme are studied. A block diagram for evaluating the power consumption modes of the technological process is presented, which includes the analysis of the technological scheme, the determination of the place and volumetric density of the ore-grinding mill, the evaluation of the technological and power factors affecting the energy saving process, as well as the assessment of the electric power standards.

Keywords: electric power standard, factor, ore grinding, power consumption, reactive power, technological

Procedia PDF Downloads 555
3081 Performance Evaluation of Contemporary Classifiers for Automatic Detection of Epileptic EEG

Authors: K. E. Ch. Vidyasagar, M. Moghavvemi, T. S. S. T. Prabhat

Abstract:

Epilepsy is a global problem, and with seizures eluding even the smartest of diagnoses a requirement for automatic detection of the same using electroencephalogram (EEG) would have a huge impact in diagnosis of the disorder. Among a multitude of methods for automatic epilepsy detection, one should find the best method out, based on accuracy, for classification. This paper reasons out, and rationalizes, the best methods for classification. Accuracy is based on the classifier, and thus this paper discusses classifiers like quadratic discriminant analysis (QDA), classification and regression tree (CART), support vector machine (SVM), naive Bayes classifier (NBC), linear discriminant analysis (LDA), K-nearest neighbor (KNN) and artificial neural networks (ANN). Results show that ANN is the most accurate of all the above stated classifiers with 97.7% accuracy, 97.25% specificity and 98.28% sensitivity in its merit. This is followed closely by SVM with 1% variation in result. These results would certainly help researchers choose the best classifier for detection of epilepsy.

Keywords: classification, seizure, KNN, SVM, LDA, ANN, epilepsy

Procedia PDF Downloads 520
3080 Parameter Estimation of Induction Motors by PSO Algorithm

Authors: A. Mohammadi, S. Asghari, M. Aien, M. Rashidinejad

Abstract:

After emergent of alternative current networks and their popularity, asynchronous motors became more widespread than other kinds of industrial motors. In order to control and run these motors efficiently, an accurate estimation of motor parameters is needed. There are different methods to obtain these parameters such as rotor locked test, no load test, DC test, analytical methods, and so on. The most common drawback of these methods is their inaccuracy in estimation of some motor parameters. In order to remove this concern, a novel method for parameter estimation of induction motors using particle swarm optimization (PSO) algorithm is proposed. In the proposed method, transient state of motor is used for parameter estimation. Comparison of the simulation results purtuined to the PSO algorithm with other available methods justifies the effectiveness of the proposed method.

Keywords: induction motor, motor parameter estimation, PSO algorithm, analytical method

Procedia PDF Downloads 633
3079 Comparative Analysis between Wired and Wireless Technologies in Communications: A Review

Authors: Jafaru Ibrahim, Tonga Agadi Danladi, Haruna Sani

Abstract:

Many telecommunications industry are looking for new ways to maximize their investment in communication networks while ensuring reliable and secure information transmission. There is a variety of communications medium solutions, the two must popularly in used are wireless technology and wired options, such as copper and fiber-optic cable. Wired network has proven its potential in the olden days but nowadays wireless communication has emerged as a robust and most intellect and preferred communication technique. Each of these types of communication medium has their advantages and disadvantages according to its technological characteristics. Wired and wireless networking has different hardware requirements, ranges, mobility, reliability and benefits. The aim of the paper is to compare both the Wired and Wireless medium on the basis of various parameters such as usability, cost, efficiency, flexibility, coverage, reliability, mobility, speed, security etc.

Keywords: cost, mobility, reliability, speed, security, wired, wireless

Procedia PDF Downloads 470
3078 Real Time Multi Person Action Recognition Using Pose Estimates

Authors: Aishrith Rao

Abstract:

Human activity recognition is an important aspect of video analytics, and many approaches have been recommended to enable action recognition. In this approach, the model is used to identify the action of the multiple people in the frame and classify them accordingly. A few approaches use RNNs and 3D CNNs, which are computationally expensive and cannot be trained with the small datasets which are currently available. Multi-person action recognition has been performed in order to understand the positions and action of people present in the video frame. The size of the video frame can be adjusted as a hyper-parameter depending on the hardware resources available. OpenPose has been used to calculate pose estimate using CNN to produce heap-maps, one of which provides skeleton features, which are basically joint features. The features are then extracted, and a classification algorithm can be applied to classify the action.

Keywords: human activity recognition, computer vision, pose estimates, convolutional neural networks

Procedia PDF Downloads 141
3077 The Development of Electronic Health Record Adoption in Indonesian Hospitals: 2008-2015

Authors: Adistya Maulidya, Mujuna Abbas, Nur Assyifa, Putri Dewi Gutiyani

Abstract:

Countries are moving forward to develop databases from electronic health records for monitoring and research. Since the issuance of Information and Electonic Transaction Constitution No. 11 of 2008 as well as Minister Regulation No. 269 of 2008, there has been a gradual progress of Indonesian hospitals adopting Electonic Health Record (EHR) in its systems. This paper is the result of a literature study about the progress that has been made in Indonesia to develop national health information infrastructure through EHR within the hospitals. The purpose of this study was to describe trends in adoption of EHR systems among hospitals in Indonesia from 2008 to 2015 as well as to assess the preparedness of Indonesian national health information infrastructure facing ASEAN Economic Community.

Keywords: adoption, Indonesian hospitals, electronic health record, ASEAN economic community

Procedia PDF Downloads 297
3076 A Location Routing Model for the Logistic System in the Mining Collection Centers of the Northern Region of Boyacá-Colombia

Authors: Erika Ruíz, Luis Amaya, Diego Carreño

Abstract:

The main objective of this study is to design a mathematical model for the logistics of mining collection centers in the northern region of the department of Boyacá (Colombia), determining the structure that facilitates the flow of products along the supply chain. In order to achieve this, it is necessary to define a suitable design of the distribution network, taking into account the products, customer’s characteristics and the availability of information. Likewise, some other aspects must be defined, such as number and capacity of collection centers to establish, routes that must be taken to deliver products to the customers, among others. This research will use one of the operation research problems, which is used in the design of distribution networks known as Location Routing Problem (LRP).

Keywords: location routing problem, logistic, mining collection, model

Procedia PDF Downloads 217
3075 Port Miami in the Caribbean and Mesoamerica: Data, Spatial Networks and Trends

Authors: Richard Grant, Landolf Rhode-Barbarigos, Shouraseni Sen Roy, Lucas Brittan, Change Li, Aiden Rowe

Abstract:

Ports are critical for the US economy, connecting farmers, manufacturers, retailers, consumers and an array of transport and storage operators. Port facilities vary widely in terms of their productivity, footprint, specializations, and governance. In this context, Port Miami is considered as one of the busiest ports providing both cargo and cruise services in connecting the wider region of the Caribbean and Mesoamerica to the global networks. It is considered as the “Cruise Capital of the World and Global Gateway of the Americas” and “leading container port in Florida.” Furthermore, it has also been ranked as one of the top container ports in the world and the second most efficient port in North America. In this regard, Port Miami has made significant investments in the strategic and capital infrastructure of about US$1 billion, including increasing the channel depth and other onshore infrastructural enhancements. Therefore, this study involves a detailed analysis of Port Miami’s network, using publicly available multiple years of data about marine vessel traffic, cargo, and connectivity and performance indices from 2015-2021. Through the analysis of cargo and cruise vessels to and from Port Miami and its relative performance at the global scale from 2015 to 2021, this study examines the port’s long-term resilience and future growth potential. The main results of the analyses indicate that the top category for both inbound and outbound cargo is manufactured products and textiles. In addition, there are a lot of fresh fruits, vegetables, and produce for inbound and processed food for outbound cargo. Furthermore, the top ten port connections for Port Miami are all located in the Caribbean region, the Gulf of Mexico, and the Southeast USA. About half of the inbound cargo comes from Savannah, Saint Thomas, and Puerto Plata, while outbound cargo is from Puerto Corte, Freeport, and Kingston. Additionally, for cruise vessels, a significantly large number of vessels originate from Nassau, followed by Freeport. The number of passenger's vessels pre-COVID was almost 1,000 per year, which dropped substantially in 2020 and 2021 to around 300 vessels. Finally, the resilience and competitiveness of Port Miami were also assessed in terms of its network connectivity by examining the inbound and outbound maritime vessel traffic. It is noteworthy that the most frequent port connections for Port Miami were Freeport and Savannah, followed by Kingston, Nassau, and New Orleans. However, several of these ports, Puerto Corte, Veracruz, Puerto Plata, and Santo Thomas, have low resilience and are highly vulnerable, which needs to be taken into consideration for the long-term resilience of Port Miami in the future.

Keywords: port, Miami, network, cargo, cruise

Procedia PDF Downloads 79
3074 Machine Learning Application in Shovel Maintenance

Authors: Amir Taghizadeh Vahed, Adithya Thaduri

Abstract:

Shovels are the main components in the mining transportation system. The productivity of the mines depends on the availability of shovels due to its high capital and operating costs. The unplanned failure/shutdowns of a shovel results in higher repair costs, increase in downtime, as well as increasing indirect cost (i.e. loss of production and company’s reputation). In order to mitigate these failures, predictive maintenance can be useful approach using failure prediction. The modern mining machinery or shovels collect huge datasets automatically; it consists of reliability and maintenance data. However, the gathered datasets are useless until the information and knowledge of data are extracted. Machine learning as well as data mining, which has a major role in recent studies, has been used for the knowledge discovery process. In this study, data mining and machine learning approaches are implemented to detect not only anomalies but also patterns from a dataset and further detection of failures.

Keywords: maintenance, machine learning, shovel, conditional based monitoring

Procedia PDF Downloads 220
3073 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments

Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda

Abstract:

In this work we present an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods: the parameters of distribution, the moments centered of the different projections and the Barr features. It should be noted that these methods are applied on segments gotten after the division of the binary image of the word in six segments. The classification is achieved by a multi layers perceptron. Detailed experiments are carried and satisfactory recognition results are reported.

Keywords: handwritten word recognition, neural networks, image processing, pattern recognition, features extraction

Procedia PDF Downloads 513
3072 Piezo-Extracted Model Based Chloride/ Carbonation Induced Corrosion Assessment in Reinforced Concrete Structures

Authors: Gupta. Ashok, V. talakokula, S. bhalla

Abstract:

Rebar corrosion is one of the main causes of damage and premature failure of the reinforced concrete (RC) structures worldwide, causing enormous costs for inspection, maintenance, restoration and replacement. Therefore, early detection of corrosion and timely remedial action on the affected portion can facilitate an optimum utilization of the structure, imparting longevity to it. The recent advent of the electro-mechanical impedance (EMI) technique using piezo sensors (PZT) for structural health monitoring (SHM) has provided a new paradigm to the maintenance engineers to diagnose the onset of the damage at the incipient stage itself. This paper presents a model based approach for corrosion assessment based on the equivalent parameters extracted from the impedance spectrum of concrete-rebar system using the EMI technique via the PZT sensors.

Keywords: impedance, electro-mechanical, stiffness, mass, damping, equivalent parameters

Procedia PDF Downloads 543
3071 Corrosion Monitoring of Weathering Steel in a Simulated Coastal-Industrial Environment

Authors: Thee Chowwanonthapunya, Junhua Dong, Wei Ke

Abstract:

The atmospheres in many cities along the coastal lines in the world have been rapidly changed to coastal-industrial atmosphere. Hence, it is vital to investigate the corrosion behavior of steel exposed to this kind of environment. In this present study, Electrochemical Impedance Spectrography (EIS) and film thickness measurements were applied to monitor the corrosion behavior of weathering steel covered with a thin layer of the electrolyte in a wet-dry cyclic condition, simulating a coastal-industrial environment at 25 oC and 60 % RH. The results indicate that in all cycles, the corrosion rate increases during the drying process due to an increase in anion concentration and an acceleration of oxygen diffusion enhanced by the effect of the thinning out of the electrolyte. During the wet-dry cyclic corrosion test, the long-term corrosion behavior of this steel depends on the periods of exposure. Corrosion process is first accelerated and then decelerated. The decelerating corrosion process is contributed to the formation of the protective rust, favored by the wet-dry cycle and the acid regeneration process during the rusting process.

Keywords: atmospheric corrosion, EIS, low alloy, rust

Procedia PDF Downloads 449
3070 Medical Advances in Diagnosing Neurological and Genetic Disorders

Authors: Simon B. N. Thompson

Abstract:

Retinoblastoma is a rare type of childhood genetic cancer that affects children worldwide. The diagnosis is often missed due to lack of education and difficulty in presentation of the tumor. Frequently, the tumor on the retina is noticed by photography when the red-eye flash, commonly seen in normal eyes, is not produced. Instead, a yellow or white colored patch is seen or the child has a noticeable strabismus. Early detection can be life-saving though often results in removal of the affected eye. Remaining functioning in the healthy eye when the child is young has resulted in super-vision and high or above-average intelligence. Technological advancement of cameras has helped in early detection. Brain imaging has also made possible early detection of neurological diseases and, together with the monitoring of cortisol levels and yawning frequency, promises to be the next new early diagnostic tool for the detection of neurological diseases where cortisol insufficiency is particularly salient, such as multiple sclerosis and Cushing’s disease.

Keywords: cortisol, neurological disease, retinoblastoma, Thompson cortisol hypothesis, yawning

Procedia PDF Downloads 386
3069 An Approach to Analyze Testing of Nano On-Chip Networks

Authors: Farnaz Fotovvatikhah, Javad Akbari

Abstract:

Test time of a test architecture is an important factor which depends on the architecture's delay and test patterns. Here a new architecture to store the test results based on network on chip is presented. In addition, simple analytical model is proposed to calculate link test time for built in self-tester (BIST) and external tester (Ext) in multiprocessor systems. The results extracted from the model are verified using FPGA implementation and experimental measurements. Systems consisting 16, 25, and 36 processors are implemented and simulated and test time is calculated. In addition, BIST and Ext are compared in terms of test time at different conditions such as at different number of test patterns and nodes. Using the model the maximum frequency of testing could be calculated and the test structure could be optimized for high speed testing.

Keywords: test, nano on-chip network, JTAG, modelling

Procedia PDF Downloads 488
3068 Privacy for the Internet of Things and its Different Dimensions

Authors: Maryam M Esfahani

Abstract:

The Internet of Things is a concept that has fundamentally changed the way information technology works and communication environments. This concept, which is referred to as the next revolution in the field of information and communication technology, takes advantage of existing technologies such as wireless sensor networks, RFID, cloud computing, M2M, etc., to the final slogan of providing the possibility of connecting any object anywhere and everywhere. This use of technologies, along with the possibility of providing new services, also inherits their threats, and although the Internet of Things is facing many challenges, it can be said that its most important challenge is security and privacy, and perhaps even a more tangible challenge is privacy. In this article, we will first introduce the definition and concepts related to privacy, and then we will examine some threats against the privacy of the Internet of Things in different layers of a typical architecture. Also, while examining the differences and the relationship between security and privacy, we study different dimensions of privacy, and finally, we review some of the methods and technologies for improving the level of privacy.

Keywords: Iot, privacy, different dimension of privacy, W3model, privacy enhancing technologies

Procedia PDF Downloads 98
3067 A Survey on Genetic Algorithm for Intrusion Detection System

Authors: Prikhil Agrawal, N. Priyanka

Abstract:

With the increase of millions of users on Internet day by day, it is very essential to maintain highly reliable and secured data communication between various corporations. Although there are various traditional security imparting techniques such as antivirus software, password protection, data encryption, biometrics and firewall etc. But still network security has become the main issue in various leading companies. So IDSs have become an essential component in terms of security, as it can detect various network attacks and respond quickly to such occurrences. IDSs are used to detect unauthorized access to a computer system. This paper describes various intrusion detection techniques using GA approach. The intrusion detection problem has become a challenging task due to the conception of miscellaneous computer networks under various vulnerabilities. Thus the damage caused to various organizations by malicious intrusions can be mitigated and even be deterred by using this powerful tool.

Keywords: genetic algorithm (GA), intrusion detection system (IDS), dataset, network security

Procedia PDF Downloads 297
3066 Accuracy of Fitbit Charge 4 for Measuring Heart Rate in Parkinson’s Patients During Intense Exercise

Authors: Giulia Colonna, Jocelyn Hoye, Bart de Laat, Gelsina Stanley, Jose Key, Alaaddin Ibrahimy, Sule Tinaz, Evan D. Morris

Abstract:

Parkinson’s disease (PD) is the second most common neurodegenerative disease and affects approximately 1% of the world’s population. Increasing evidence suggests that aerobic physical exercise can be beneficial in mitigating both motor and non-motor symptoms of the disease. In a recent pilot study of the role of exercise on PD, we sought to confirm exercise intensity by monitoring heart rate (HR). For this purpose, we asked participants to wear a chest strap heart rate monitor (Polar Electro Oy, Kempele). The device sometimes proved uncomfortable. Looking forward to larger clinical trials, it would be convenient to employ a more comfortable and user friendly device. The Fitbit Charge 4 (Fitbit Inc) is a potentially comfortable, user-friendly solution since it is a wrist-worn heart rate monitor. Polar H10 has been used in large trials, and for our purposes, we treated it as the gold standard for the beat-to-beat period (R-R interval) assessment. In previous literature, it has been shown that Fitbit Charge 4 has comparable accuracy to Polar H10 in healthy subjects. It has yet to be determined if the Fitbit is as accurate as the Polar H10 in subjects with PD or in clinical populations, generally. Goal: To compare the Fitbit Charge 4 to the Polar H10 for monitoring HR in PD subjects engaging in an intensive exercise program. Methods: A total of 596 exercise sessions from 11 subjects (6 males) were collected simultaneously by both devices. Subjects with early-stage PD (Hoehn & Yahr <=2) were enrolled in a 6 months exercise training program designed for PD patients. Subjects participated in 3 one-hour exercise sessions per week. They wore both Fitbit and Polar H10 during each session. Sessions included rest, warm-up, intensive exercise, and cool-down periods. We calculated the bias in the HR via Fitbit under rest (5min) and intensive exercise (20min) by comparing the mean HR during each of the periods to the respective means measured by the Polar (HRFitbit – HRPolar). We also measured the sensitivity and specificity of Fitbit for detecting HRs that exceed the threshold for intensive exercise, defined as 70% of an individual’s theoretical maximum HR. Different types of correlation between the two devices were investigated. Results: The mean bias was 1.68 bpm at rest and 6.29 bpm during high intensity exercise, with an overestimation by Fitbit in both conditions. The mean bias of Fitbit across both rest and intensive exercise periods was 3.98 bpm. The sensitivity of the device in identifying high intensity exercise sessions was 97.14 %. The correlation between the two devices was non-linear, suggesting a saturation tendency of Fitbit to saturate at high values of HR. Conclusion: The performance of Fitbit Charge 4 is comparable to Polar H10 for assessing exercise intensity in a cohort of PD subjects. The device should be considered a reasonable replacement for the more cumbersome chest strap technology in future similar studies of clinical populations.

Keywords: fitbit, heart rate measurements, parkinson’s disease, wrist-wearable devices

Procedia PDF Downloads 109
3065 Measuring Innovative and Entrepreneurial Networks Performance

Authors: Luís Farinha, João J. Ferreira

Abstract:

Nowadays innovation represents a challenge crucial to remaining globally competitive. This study seeks to develop a conceptual model aimed at measuring the dynamic interactions of the triple/quadruple helix, balancing innovation and entrepreneurship initiatives as pillars of regional competitiveness – the Regional Helix Scoreboard (RHS). To this aim, different strands of literature are identified according to their focus on specific regional competitiveness governance mechanisms. We put forward an overview of the state-of-the-art of research and is duly assessed in order to develop and propose a framework of analysis that enables an integrated approach in the context of collaborative dynamics. We conclude by presenting the RHS for the study of regional competitiveness dynamics, which integrates and associates different backgrounds and identifies a number of key performance indicators for research challenges.

Keywords: entrepreneurship, KPIs, innovation, performance measurement, regional competitiveness, regional helix scoreboard

Procedia PDF Downloads 329
3064 Mechanical Properties and Microstructure of Ultra-High Performance Concrete Containing Fly Ash and Silica Fume

Authors: Jisong Zhang, Yinghua Zhao

Abstract:

The present study investigated the mechanical properties and microstructure of Ultra-High Performance Concrete (UHPC) containing supplementary cementitious materials (SCMs), such as fly ash (FA) and silica fume (SF), and to verify the synergistic effect in the ternary system. On the basis of 30% fly ash replacement, the incorporation of either 10% SF or 20% SF show a better performance compared to the reference sample. The efficiency factor (k-value) was calculated as a synergistic effect to predict the compressive strength of UHPC with these SCMs. The SEM of micrographs and pore volume from BJH method indicate a high correlation with compressive strength. Further, an artificial neural networks model was constructed for prediction of the compressive strength of UHPC containing these SCMs.

Keywords: artificial neural network, fly ash, mechanical properties, ultra-high performance concrete

Procedia PDF Downloads 414
3063 UniFi: Universal Filter Model for Image Enhancement

Authors: Aleksei Samarin, Artyom Nazarenko, Valentin Malykh

Abstract:

Image enhancement is becoming more and more popular, especially on mobile devices. Nowadays, it is a common approach to enhance an image using a convolutional neural network (CNN). Such a network should be of significant size; otherwise, a possibility for the artifacts to occur is overgrowing. The existing large CNNs are computationally expensive, which could be crucial for mobile devices. Another important flaw of such models is they are poorly interpretable. There is another approach to image enhancement, namely, the usage of predefined filters in combination with the prediction of their applicability. We present an approach following this paradigm, which outperforms both existing CNN-based and filter-based approaches in the image enhancement task. It is easily adaptable for mobile devices since it has only 47 thousand parameters. It shows the best SSIM 0.919 on RANDOM250 (MIT Adobe FiveK) among small models and is thrice faster than previous models.

Keywords: universal filter, image enhancement, neural networks, computer vision

Procedia PDF Downloads 101
3062 RFID Based Student Attendance System

Authors: Aniket Tiwari, Ameya London

Abstract:

Web-based student attendance management system is required to assist the faculty and the lecturer for the time-consuming process. For this purpose, GSM/GPRS (Global System for Mobile Communication/General Packet Radio Service) based student’s attendance management system using RFID (Radio Frequency Identification) is a much convenient method to take the attendance. Student is provided with the RFID tags. When student comes near to the reader, it will sense the respective student and update attendance. The whole process is controlled using the microcontroller. The main advantage of this system is that it reduced the complexity comparison to student attendance system using RF technology. This system requires only one microcontroller for the operation, it is real time process. This paper reviews some of these monitoring systems and proposes a GPRS based student attendance system. The system can be easily accessed by the lecturers via the web and most importantly, the reports can be generated in real-time processing, thus, provides valuable information about the students’ commitments in attending the classes.

Keywords: RFID reader, RFID tags, student, attendance

Procedia PDF Downloads 508
3061 Experts' Opinions of Considerations for Competition Landings in Gymnastics

Authors: Helmut Geiblinger

Abstract:

Dismounts performed by elite gymnasts during competition require great courage and virtuoso displays of precisely organized movements and skills. The dismount and landing leave the final impression in a routine and are often the key to a successful evaluation by the judges. Landings require precise body control and the skillful dissipation of substantial body momentum. The aim of this research study was to investigate landing techniques and strategies used by elite male gymnasts through the eyes of gymnastics experts. It drew from the accrued knowledge and experience of 21 male expert participants who were elite coaches, elite gymnasts, international judges or combinations of these. The experts made a number of subtle points, many of which are not in the extant literature. The experts highlighted concerns about safety and the study concluded that on-going monitoring of the rules on competition landings within the Code of Points would be beneficial to the sport.

Keywords: controlled competition landings, landing technique, landing strategies, optimal body segment coordination

Procedia PDF Downloads 212
3060 Determination of Some Biochemical Values for the Liza klunzingeri in Coastal Water of Persian Gulf

Authors: Majid Afkhami, Maryam Ehsanpour

Abstract:

Serum biochemical can be used for monitoring any changes in the physiological condition of fish and quality of waters. The aim of this paper was to determine of plasma sugar, triglycerides, cholesterol, iron, ALP (alkaline phosphatase) and LDH (lactate dehydrogenase) levels of Liza klunzingeri in Persian Gulf. Blood sample was collected from the caudal vessel with syringes coated with sodium heparin. Biochemical values were: sugar 110.37±28.46 mg/di, triglycerides 96.82±23.40 mg/di, cholesterol 177.28 ±40.75 mg/di, iron 104.74± 19.08 mg/di, ALP 117.62±34.49 u/l, LDH 1613.00±345.34 u/l. A significant positive correlation (P<0.01) was found between triglycerides and sugar. Triglycerides had a significant and positive relationship with cholesterol (P<0.01). ALP also had a significant and positive relationship with sugar (P<0.01) and triglycerides (P<0.05). LDH correlated positively with sugar, cholesterol, triglycerides (P<0.01) and ALP (P<0.05). The results revealed reverse correlation between iron with cholesterol, sugar, triglycerides, ALP, and LDH (P<0.01). This study represents a contribution to the referential biochemical values of the L. klunzingeri. In further studies, the established reference ranges might be useful for the health assessment of this species.

Keywords: Liza klunzingeri, blood, ALP, LDH

Procedia PDF Downloads 626
3059 Features Valuation of Intellectual Capital in the Organization

Authors: H. M. Avanesyan

Abstract:

Economists have been discussing the importance of intangible assets for the success of organization for many years. The term intellectual capital was popularized in the 1990s by Thomas Stewart. “Intellectual capital is the knowledge, applied experience, enterprise processes and technology customer relationship and professional skills which are valuable assets to an organization.” Human capital – includes employee brainpower, competence, skills, experience and knowledge. Customer capital – includes relations and networks with partners, suppliers, distributors, and customers. The objective of the article is to assess one of the key components of organizational culture – organizational values. The focus of the survey was on assessing how intellectual capital presented in these values of the organization. In the conclusion section the article refers to underestimation of intellectual capital by the organization management and the various possible negative effects of the latter.

Keywords: human capital, intellectual capital, organizational culture, management, social identity, organization

Procedia PDF Downloads 466
3058 Indoor Temperature, Relative Humidity and CO₂ Level Assessment in a Publically Managed Hospital Building

Authors: Ayesha Asif, Muhammad Zeeshan

Abstract:

The sensitivity of hospital-microenvironments for all types of pollutants, due to the presence of patients with immune deficiencies, makes them complex indoor spaces. Keeping in view, this study investigated indoor air quality (IAQ) of two most sensitive places, i.e., operation theater (OT) and intensive care unit (ICU), of a publically managed hospital. Taking CO₂ concentration as air quality indicator and temperature (T) and relative humidity (RH) as thermal comfort parameters, continuous monitoring of the three variables was carried out. Measurements were recorded at an interval of 1 min for weekdays and weekends, including occupational and non-occupational hours. Outdoor T and RH measurements were also used in the analysis. Results show significant variation (p < 0.05) in CO₂, T and RH values over the day during weekdays while no significant variation (p > 0.05) have been observed during weekends of both the monitored sites. Maximum observed values of CO₂ in OT and ICU were found to be 2430 and 624 ppm, T as 24.7ºC and 28.9ºC and RH as 29.6% and 32.2% respectively.

Keywords: indoor air quality, CO₂ concentration, hospital building, comfort assessment

Procedia PDF Downloads 133
3057 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.

Keywords: deregulated energy market, forecasting, machine learning, system marginal price

Procedia PDF Downloads 215