Search results for: learning assessment
9624 Risk and Vulnerability Assessment of Agriculture on Climate Change: Bangnampriao District, Thailand
Authors: Charuvan Kasemsap
Abstract:
This research was studied in Bangnampriao District, Chachernsao Province, Thailand. The primary data relating to flooding, drought, and saline intrusion problem on agriculture were collected by surveying, focus group, and in-depth interview with agricultural officers, technical officers of irrigation department, and local government leader of Bangnampriao District. The likelihood and consequence of risk were determined the risk index by risk assessment matrix. In addition, the risk index and the total coping capacity scores were investigated the vulnerability index by vulnerability matrix. It was found that the high-risk drought and saline intrusion was dramatically along Bang Pakong River owing to the end destination of Chao Phraya Irrigation system of Central Thailand. This leads yearly the damage of rice paddy, mango tree, orchard, and fish pond. Therefore, some agriculture avoids rice growing during January to May, and also pumps fresh water from a canal into individual storage pond. However, Bangnampriao District will be strongly affected by the impacts of climate change. Monthly precipitations are expected to decrease in number; dry seasons are expected to be more in number and longer in duration. Thus, the risk and vulnerability of agriculture are also increasing. Adaptation strategies need to be put in place in order to enhance the resilience of the agriculture.Keywords: agriculture, bangnampriao, climate change, risk assessment
Procedia PDF Downloads 4329623 The Effectiveness of ICT-Assisted PBL on College-Level Nano Knowledge and Learning Skills
Authors: Ya-Ting Carolyn Yang, Ping-Han Cheng, Shi-Hui Gilbert Chang, Terry Yuan-Fang Chen, Chih-Chieh Li
Abstract:
Nanotechnology is widely applied in various areas so professionals in the related fields have to know more than nano knowledge. In the study, we focus on adopting ICT-assisted PBL in college general education to foster professionals who possess multiple abilities. The research adopted a pretest and posttest quasi-experimental design. The control group received traditional instruction, and the experimental group received ICT-assisted PBL instruction. Descriptive statistics will be used to describe the means, standard deviations, and adjusted means for the tests between the two groups. Next, analysis of covariance (ANCOVA) will be used to compare the final results of the two research groups after 6 weeks of instruction. Statistics gathered in the end of the research can be used to make contrasts. Therefore, we will see how different teaching strategies can improve students’ understanding about nanotechnology and learning skills.Keywords: nanotechnology, science education, project-based learning, information and communication technology
Procedia PDF Downloads 3759622 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework
Authors: Junyu Chen, Peng Xu
Abstract:
In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus
Procedia PDF Downloads 309621 Ready Student One! Exploring How to Build a Successful Game-Based Higher Education Course in Virtual Reality
Authors: Robert Jesiolowski, Monique Jesiolowski
Abstract:
Today more than ever before, we have access to new technologies which provide unforeseen opportunities for educators to pursue in online education. It starts with an idea, but that needs to be coupled with the right team of experts willing to take big risks and put in the hard work to build something different. An instructional design team was empowered to reimagine an Introduction to Sociology university course as a Game-Based Learning (GBL) experience utilizing cutting edge Virtual Reality (VR) technology. The result was a collaborative process that resulted in a type of learning based in Game theory, Method of Loci, and VR Immersion Simulations to promote deeper retention of core concepts. The team deconstructed the way that university courses operated, in order to rebuild the educational process in a whole learner-centric manner. In addition to a review of the build process, this paper will explore the results of in-course surveys completed by student participants.Keywords: higher education, innovation, virtual reality, game-based learning, loci method
Procedia PDF Downloads 979620 Lived Experiences of Physical Education Teachers in the New Normal: A Consensual Qualitative Research
Authors: Karl Eddie T. Malabanan
Abstract:
Due to the quick transmission and public health risk of coronavirus disease, schools and universities have shifted to distant learning. Teachers everywhere were forced to shift gears instantly in order to react to the needs of students and families using synchronous and asynchronous virtual teaching. This study aims to explore the lived experiences of physical education teachers who are currently experiencing remote learning in teaching during the time of the COVID-19 pandemic. Specifically, the challenges that the physical education teachers encounter during remote learning and teaching. The participants include 12 physical education teachers who have taught in higher education institutions for at least five years. The researcher utilized qualitative research; specifically, the researcher used Consensual Qualitative Research (CQR). The results of this study showed that there are five categories for the Lived Experiences of Physical Education Teachers with thirty-one subcategories. This study revealed that physical education teachers experienced very challenging situations during the time of the pandemic. It also found that students had challenges in the abrupt transition from traditional to virtual learning classes, but it also showed that students are tenacious and willing to face any adversity. The researcher also finds that teachers are mentally drained during this time. Furthermore, one of the main focuses for the teachers should be on improving their well-being. And lastly, to cope with the challenges, teachers employ socializing to relieve tension and anxiety.Keywords: lived experiences, consensual qualitative research, pandemic, education
Procedia PDF Downloads 949619 The Construction of Research-Oriented/Practice-Oriented Engineering Testing and Measurement Technology Course under the Condition of New Technology
Authors: He Lingsong, Wang Junfeng, Tan Qiong, Xu Jiang
Abstract:
The paper describes efforts on reconstruction methods of engineering testing and measurement technology course by applying new techniques and applications. Firstly, flipped classroom was introduced. In-class time was used for in-depth discussions and interactions while theory concept teaching was done by self-study course outside of class. Secondly, two hands-on practices of technique applications, including the program design of MATLAB Signal Analysis and the measurement application of Arduino sensor, have been covered in class. Class was transformed from an instructor-centered teaching process into an active student-centered learning process, consisting of the pre-class massive open online course (MOOC), in-class discussion and after-class practice. The third is to change sole written homework to the research-oriented application practice assignments, so as to enhance the breadth and depth of the course.Keywords: testing and measurement, flipped classroom, MOOC, research-oriented learning, practice-oriented learning
Procedia PDF Downloads 1499618 Application of Deep Learning in Colorization of LiDAR-Derived Intensity Images
Authors: Edgardo V. Gubatanga Jr., Mark Joshua Salvacion
Abstract:
Most aerial LiDAR systems have accompanying aerial cameras in order to capture not only the terrain of the surveyed area but also its true-color appearance. However, the presence of atmospheric clouds, poor lighting conditions, and aerial camera problems during an aerial survey may cause absence of aerial photographs. These leave areas having terrain information but lacking aerial photographs. Intensity images can be derived from LiDAR data but they are only grayscale images. A deep learning model is developed to create a complex function in a form of a deep neural network relating the pixel values of LiDAR-derived intensity images and true-color images. This complex function can then be used to predict the true-color images of a certain area using intensity images from LiDAR data. The predicted true-color images do not necessarily need to be accurate compared to the real world. They are only intended to look realistic so that they can be used as base maps.Keywords: aerial LiDAR, colorization, deep learning, intensity images
Procedia PDF Downloads 1689617 Regression Model Evaluation on Depth Camera Data for Gaze Estimation
Authors: James Purnama, Riri Fitri Sari
Abstract:
We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python
Procedia PDF Downloads 5399616 Albanian Students’ Errors in Spoken and Written English and the Role of Error Correction in Assessment and Self-Assessment
Authors: Arburim Iseni, Afrim Aliti, Nagri Rexhepi
Abstract:
This paper focuses mainly on an important aspect of student-linguistic errors. It aims to explore the nature of Albanian intermediate level or B1 students’ language errors and mistakes and attempts to trace the possible sources or causes by classifying the error samples into both inter lingual and intra lingual errors. The hypothesis that intra lingua errors may be determined or induced somehow by the native language influence seems to be confirmed by the significant number of errors found in Albanian EFL students in the Study Program of the English Language and Literature at the State University of Tetova. Findings of this study have revealed that L1 interference first and then ignorance of the English Language grammar rules constitute the main sources or causes of errors, even though carelessness cannot be ruled out. Although we have conducted our study with 300 students of intermediate or B1 level, we believe that this hypothesis would need to be confirmed by further research, maybe with a larger number of students with different levels in order to draw more steady and accurate conclusions. The analysis of the questionnaires was done according to quantitative and qualitative research methods. This study was also conducted by taking written samples on different topics from our students and then distributing them with comments to the students and University teachers as well. These questionnaires were designed to gather information among 300 students and 48 EFL teachers, all of whom teach in the Study Program of English Language and Literature at the State University of Tetova. From the analyzed written samples of the students and face-to-face interviews, we could get useful insights into some important aspects of students’ error-making and error-correction. These different research methodologies were used in order to comprise a holistic research and the findings of the questionnaires helped us to come up with some more steady solutions in order to minimize the potential gap between students and teachers.Keywords: L1 & L2, Linguistics, Applied linguistics, SLA, Albanian EFL students and teachers, Errors and Mistakes, Students’ Assessment and Self-Assessment
Procedia PDF Downloads 4919615 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing
Authors: Huan Ting Liao
Abstract:
In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning
Procedia PDF Downloads 279614 Hard and Soft Skills in Marketing Education: Using Serious Games to Engage Higher Order Processing
Authors: Ann Devitt, Mairead Brady, Markus Lamest, Stephen Gomez
Abstract:
This study set out to explore the use of an online collaborative serious game for student learning in a postgraduate introductory marketing module. The simulation game aimed to bridge the theory-practice divide in marketing by allowing students to apply theory in a safe, simulated marketplace. This study addresses the following research questions: Does an online marketing simulation game engage students higher order cognitive skills? Does collaborative activity required develop students’ “soft” skills, such as communication and negotiation? What specific affordances of the online simulation promote learning? This qualitative case study took place in 2014 with 40 postgraduate students on a Business Masters Programme. The two-week intensive module combined lectures with collaborative activity on a marketing simulation game, MMX from Pearsons. The game requires student teams to compete against other teams in a marketplace and design a marketing plan to maximize key performance indicators. The data for this study comprise essays written by students after the module reflecting on their learning on the module. A thematic analysis was conducted of the essays using the following a priori theme sets: 6 levels of the cognitive domain of Blooms taxonomy; 5 principles of Cooperative Learning; affordances of simulation environments including experiential learning; motivation and engagement; goal orientation. Preliminary findings would strongly suggest that the game facilitated students identifying the value of theory in practice, in particular for future employment; enhanced their understanding of group dynamics and their role within that; and impacted very strongly, both positively and negatively on motivation. In particular the game mechanics of MMX, which hinges on the correct identification of a target consumer group, was identified as a key determinant of extrinsic and intrinsic motivation for learners. The findings also suggest that the situation of the simulation game within a broader module which required post-game reflection was valuable in identifying key learning of marketing concepts in both the positive and the negative experiences of the game.Keywords: simulation, marketing, serious game, cooperative learning, bloom's taxonomy
Procedia PDF Downloads 5539613 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms
Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager
Abstract:
This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties
Procedia PDF Downloads 559612 The Aspect of Animal Welfare in Garut Ram’s Event (Seni Ketangkasan Domba Garut) in Indonesia
Authors: Aliyatul Widyan, Denie Heriyadi, An An Nurmeidiansyah
Abstract:
Garut Sheep is a commodity of sheep originally from West Java Indonesia, specifically it has combination rumpung ears less than 4 cm or ngadaun hiris (4-8cm) with ngabuntut bagong, or ngabuntut beurit. West Java culture diversity one of those is the Garut Ram’s Art and Fighting Contest. Garut Ram’s Art and Fighting Contest is an activity of competitive fighting between sheep which comes from Garut. The method used is a survey method in which watching and directly interviewing the farmers who competed in the event. This activity had some aspects of animal welfare in the context of the assessment of the fighting sheep, which are health 10%, performance and body conformation called adeg-adeg 25%, courage 10%, technical field 30% called with teknik pamidangan, technical crash 25%, the health assessment is the assessment conducted during registration by showing a letter issued by related agency declaring that the sheep is eligible to compete in the event, and then when the fighting time the health also will be assessed. Adeg-adeg assessed an aspect of conformity assessment of body posture Garut ram from the physical performance is assessed on the body posture, horn, and the face. Technical of pamidangan assessed by the harmony of music and the movement of sheep to carry out the attack. Courage is assessed based on a mental condition and stamina when the fighting time, in addition to the assessments the activity has some other the component of culture and arts, such as, the audience called bobotoh, the clothes worn called pangsi, tarumpah or sandals, belts, and totopong, hats called laken, instructor of the match, and nayaga or group of people who play traditional Sundanese music to accompany this activity. Art aspect of animal welfare of this activity included the percentage of stroke technique is only around 25%, it makes the beauty of this art is not only measured by the Technical crash but also health, courage, and technique in the field has the highest mark in the assessment with 75 %, the event is certainly very different from sports such as boxing, taekwondo, karate or other martial sports which 100% only based on stroke or crash technique. Local culture value of Garut Ram’s Art and Fighting Contest results in the art of the local animal welfare.Keywords: Garut sheep, Indonesia, the art of Garut Ram’s Art and Fighting Contest , animal welfare
Procedia PDF Downloads 3089611 Experiments on Weakly-Supervised Learning on Imperfect Data
Authors: Yan Cheng, Yijun Shao, James Rudolph, Charlene R. Weir, Beth Sahlmann, Qing Zeng-Treitler
Abstract:
Supervised predictive models require labeled data for training purposes. Complete and accurate labeled data, i.e., a ‘gold standard’, is not always available, and imperfectly labeled data may need to serve as an alternative. An important question is if the accuracy of the labeled data creates a performance ceiling for the trained model. In this study, we trained several models to recognize the presence of delirium in clinical documents using data with annotations that are not completely accurate (i.e., weakly-supervised learning). In the external evaluation, the support vector machine model with a linear kernel performed best, achieving an area under the curve of 89.3% and accuracy of 88%, surpassing the 80% accuracy of the training sample. We then generated a set of simulated data and carried out a series of experiments which demonstrated that models trained on imperfect data can (but do not always) outperform the accuracy of the training data, e.g., the area under the curve for some models is higher than 80% when trained on the data with an error rate of 40%. Our experiments also showed that the error resistance of linear modeling is associated with larger sample size, error type, and linearity of the data (all p-values < 0.001). In conclusion, this study sheds light on the usefulness of imperfect data in clinical research via weakly-supervised learning.Keywords: weakly-supervised learning, support vector machine, prediction, delirium, simulation
Procedia PDF Downloads 2019610 From the Bright Lights of the City to the Shadows of the Bush: Expanding Knowledge through a Case-Based Teaching Approach
Authors: Henriette van Rensburg, Betty Adcock
Abstract:
Concern about the lack of knowledge of quality teaching and teacher retention in rural and remote areas of Australia, has caused academics to improve pre-service teachers’ understanding of this problem. The participants in this study were forty students enrolled in an undergraduate educational course (EDO3341 Teaching in rural and remote communities) at the University of Southern Queensland in Toowoomba in 2012. This study involved an innovative case-based teaching approach in order to broaden their generally under-informed understanding of teaching in a rural and remote area. Three themes have been identified through analysing students’ critical reflections: learning expertise, case-based learning support and authentic learning. The outcomes identified the changes in pre-service teachers’ understanding after they have deepened their knowledge of the realities of teaching in rural and remote areas.Keywords: rural and remote education, case based teaching, innovative education approach, higher education
Procedia PDF Downloads 4939609 Design of an Ensemble Learning Behavior Anomaly Detection Framework
Authors: Abdoulaye Diop, Nahid Emad, Thierry Winter, Mohamed Hilia
Abstract:
Data assets protection is a crucial issue in the cybersecurity field. Companies use logical access control tools to vault their information assets and protect them against external threats, but they lack solutions to counter insider threats. Nowadays, insider threats are the most significant concern of security analysts. They are mainly individuals with legitimate access to companies information systems, which use their rights with malicious intents. In several fields, behavior anomaly detection is the method used by cyber specialists to counter the threats of user malicious activities effectively. In this paper, we present the step toward the construction of a user and entity behavior analysis framework by proposing a behavior anomaly detection model. This model combines machine learning classification techniques and graph-based methods, relying on linear algebra and parallel computing techniques. We show the utility of an ensemble learning approach in this context. We present some detection methods tests results on an representative access control dataset. The use of some explored classifiers gives results up to 99% of accuracy.Keywords: cybersecurity, data protection, access control, insider threat, user behavior analysis, ensemble learning, high performance computing
Procedia PDF Downloads 1299608 Introduction of a Medicinal Plants Garden to Revitalize a Botany Curriculum for Non-Science Majors
Authors: Rosa M. Gambier, Jennifer L. Carlson
Abstract:
In order to revitalize the science curriculum for botany courses for non-science majors, we have introduced the use of the medicinal plants into a first-year botany course. We have connected the use of scientific method, scientific inquiry and active learning in the classroom with the study of Western Traditional Medical Botany. The students have researched models of Botanical medicine and have designed a sustainable medicinal plants garden using native medicinal plants from the northeast. Through the semester, the students have researched their chosen species, planted seeds in the college greenhouse, collected germination ratios, growth ratios and have successfully produced a beginners medicinal plant garden. Phase II of the project will be to tie in SCCCs community outreach goals by involving the public in the expanded development of the garden as a way of sharing learning about medicinal plants and traditional medicine outside the classroom.Keywords: medicinal plant garden, botany curriculum, active learning, community outreach
Procedia PDF Downloads 3079607 Defining a Framework for Holistic Life Cycle Assessment of Building Components by Considering Parameters Such as Circularity, Material Health, Biodiversity, Pollution Control, Cost, Social Impacts, and Uncertainty
Authors: Naomi Grigoryan, Alexandros Loutsioli Daskalakis, Anna Elisse Uy, Yihe Huang, Aude Laurent (Webanck)
Abstract:
In response to the building and construction sectors accounting for a third of all energy demand and emissions, the European Union has placed new laws and regulations in the construction sector that emphasize material circularity, energy efficiency, biodiversity, and social impact. Existing design tools assess sustainability in early-stage design for products or buildings; however, there is no standardized methodology for measuring the circularity performance of building components. Existing assessment methods for building components focus primarily on carbon footprint but lack the comprehensive analysis required to design for circularity. The research conducted in this paper covers the parameters needed to assess sustainability in the design process of architectural products such as doors, windows, and facades. It maps a framework for a tool that assists designers with real-time sustainability metrics. Considering the life cycle of building components such as façades, windows, and doors involves the life cycle stages applied to product design and many of the methods used in the life cycle analysis of buildings. The current industry standards of sustainability assessment for metal building components follow cradle-to-grave life cycle assessment (LCA), track Global Warming Potential (GWP), and document the parameters used for an Environmental Product Declaration (EPD). Developed by the Ellen Macarthur Foundation, the Material Circularity Indicator (MCI) is a methodology utilizing the data from LCA and EPDs to rate circularity, with a "value between 0 and 1 where higher values indicate a higher circularity+". Expanding on the MCI with additional indicators such as the Water Circularity Index (WCI), the Energy Circularity Index (ECI), the Social Circularity Index (SCI), Life Cycle Economic Value (EV), and calculating biodiversity risk and uncertainty, the assessment methodology of an architectural product's impact can be targeted more specifically based on product requirements, performance, and lifespan. Broadening the scope of LCA calculation for products to incorporate aspects of building design allows product designers to account for the disassembly of architectural components. For example, the Material Circularity Indicator for architectural products such as windows and facades is typically low due to the impact of glass, as 70% of glass ends up in landfills due to damage in the disassembly process. The low MCI can be combatted by expanding beyond cradle-to-grave assessment and focusing the design process on disassembly, recycling, and repurposing with the help of real-time assessment tools. Design for Disassembly and Urban Mining has been integrated within the construction field on small scales as project-based exercises, not addressing the entire supply chain of architectural products. By adopting more comprehensive sustainability metrics and incorporating uncertainty calculations, the sustainability assessment of building components can be more accurately assessed with decarbonization and disassembly in mind, addressing the large-scale commercial markets within construction, some of the most significant contributors to climate change.Keywords: architectural products, early-stage design, life cycle assessment, material circularity indicator
Procedia PDF Downloads 909606 A Sustainability Benchmarking Framework Based on the Life Cycle Sustainability Assessment: The Case of the Italian Ceramic District
Authors: A. M. Ferrari, L. Volpi, M. Pini, C. Siligardi, F. E. Garcia Muina, D. Settembre Blundo
Abstract:
A long tradition in the ceramic manufacturing since the 18th century, primarily due to the availability of raw materials and an efficient transport system, let to the birth and development of the Italian ceramic tiles district that nowadays represents a reference point for this sector even at global level. This economic growth has been coupled to attention towards environmental sustainability issues throughout various initiatives undertaken over the years at the level of the production sector, such as certification activities and sustainability policies. In this way, starting from an evaluation of the sustainability in all its aspects, the present work aims to develop a benchmarking helping both producers and consumers. In the present study, throughout the Life Cycle Sustainability Assessment (LCSA) framework, the sustainability has been assessed in all its dimensions: environmental with the Life Cycle Assessment (LCA), economic with the Life Cycle Costing (LCC) and social with the Social Life Cycle Assessment (S-LCA). The annual district production of stoneware tiles during the 2016 reference year has been taken as reference flow for all the three assessments, and the system boundaries cover the entire life cycle of the tiles, except for the LCC for which only the production costs have been considered at the moment. In addition, a preliminary method for the evaluation of local and indoor emissions has been introduced in order to assess the impact due to atmospheric emissions on both people living in the area surrounding the factories and workers. The Life Cycle Assessment results, obtained from IMPACT 2002+ modified assessment method, highlight that the manufacturing process is responsible for the main impact, especially because of atmospheric emissions at a local scale, followed by the distribution to end users, the installation and the ordinary maintenance of the tiles. With regard to the economic evaluation, both the internal and external costs have been considered. For the LCC, primary data from the analysis of the financial statements of Italian ceramic companies show that the higher cost items refer to expenses for goods and services and costs of human resources. The analysis of externalities with the EPS 2015dx method attributes the main damages to the distribution and installation of the tiles. The social dimension has been investigated with a preliminary approach by using the Social Hotspots Database, and the results indicate that the most affected damage categories are health and safety and labor rights and decent work. This study shows the potential of the LCSA framework applied to an industrial sector; in particular, it can be a useful tool for building a comprehensive benchmark for the sustainability of the ceramic industry, and it can help companies to actively integrate sustainability principles into their business models.Keywords: benchmarking, Italian ceramic industry, life cycle sustainability assessment, porcelain stoneware tiles
Procedia PDF Downloads 1299605 Designing a Learning Table and Game Cards for Preschoolers for Disaster Risk Reduction (DRR) on Earthquake
Authors: Mehrnoosh Mirzaei
Abstract:
Children are among the most vulnerable at the occurrence of natural disasters such as earthquakes. Most of the management and measures which are considered for both before and during an earthquake are neither suitable nor efficient for this age group and cannot be applied. On the other hand, due to their age, it is hard to educate and train children to learn and understand the concept of earthquake risk mitigation as matters like earthquake prevention and safe places during an earthquake are not easily perceived. To our knowledge, children’s awareness of such concepts via their own world with the help of games is the best training method in this case. In this article, the researcher has tried to consider the child an active element before and during the earthquake. With training, provided by adults before the incidence of an earthquake, the child has the ability to learn disaster risk reduction (DRR). The focus of this research is on learning risk reduction behavior and regarding children as an individual element. The information of this article has been gathered from library resources, observations and the drawings of 10 children aged 5 whose subject was their conceptual definition of an earthquake who were asked to illustrate their conceptual definition of an earthquake; the results of 20 questionnaires filled in by preschoolers along with information gathered by interviewing them. The design of the suitable educational game, appropriate for the needs of this age group, has been made based on the theory of design with help of the user and the priority of children’s learning needs. The final result is a package of a game which is comprised of a learning table and matching cards showing sign marks for safe and unsafe places which introduce the safe behaviors and safe locations before and during the earthquake. These educational games can be used both in group contexts in kindergartens and on an individual basis at home, and they help in earthquake risk reduction.Keywords: disaster education, earthquake sign marks, learning table, matching card, risk reduction behavior
Procedia PDF Downloads 2599604 Impact of Schools' Open and Semi-Open Spaces on Student's Studying Behavior
Authors: Chaithanya Pothuganti
Abstract:
Open and semi-open spaces in educational buildings like corridors, mid landings, seating spaces, lobby, courtyards are traditionally have been the places of social communion and interaction which helps in promoting the knowledge, performance, activeness, and motivation in students. Factors like availability of land, commercialization, of educational facilities, especially in e-techno and smart schools, led to closed classrooms to accommodate students thereby lack quality open and semi-open spaces. This insufficient attention towards open space design which is a means of informal learning misses an opportunity to encourage the student’s skill development, behavior and learning skills. The core objective of this paper is to find the level of impact on student learning behavior and to identify the suitable proportions and configuration of spaces that shape the schools. In order to achieve this, different types of open spaces in schools and their impact on student’s performance in various existing models are analysed using case studies to draw some design principles. The study is limited to indoor open spaces like corridors, break out spaces and courtyards. The expected outcome of the paper is to suggest better design considerations for the development of semi-open and open spaces which functions as an element for informal learnings. Its focus is to provide further thinking on designing and development of open spaces in educational buildings.Keywords: configuration of spaces and proportions, informal learning, open spaces, schools, student’s behavior
Procedia PDF Downloads 3109603 Suicide Wrongful Death: Standard of Care Problems Involving the Inaccurate Discernment of Lethal Risk When Focusing on the Elicitation of Suicide Ideation
Authors: Bill D. Geis
Abstract:
Suicide wrongful death forensic cases are the fastest rising tort in mental health law. It is estimated that suicide-related cases have accounted for 15% of U.S. malpractice claims since 2006. Most suicide-related personal injury claims fall into the legal category of “wrongful death.” Though mental health experts may be called on to address a range of forensic questions in wrongful death cases, the central consultation that most experts provide is about the negligence element—specifically, the issue of whether the clinician met the clinical standard of care in assessing, treating, and managing the deceased person’s mental health care. Standards of care, varying from U.S. state to state, are broad and address what a reasonable clinician might do in a similar circumstance. This fact leaves the issue of the suicide standard of care, in each case, up to forensic experts to put forth a reasoned estimate of what the standard of care should have been in the specific case under litigation. Because the general state guidelines for standard of care are broad, forensic experts are readily retained to provide scientific and clinical opinions about whether or not a clinician met the standard of care in their suicide assessment, treatment, and management of the case. In the past and in much of current practice, the assessment of suicide has centered on the elicitation of verbalized suicide ideation. Research in recent years, however, has indicated that the majority of persons who end their lives do not say they are suicidal at their last medical or psychiatric contact. Near-term risk assessment—that goes beyond verbalized suicide ideation—is needed. Our previous research employed structural equation modeling to predict lethal suicide risk--eight negative thought patterns (feeling like a burden on others, hopelessness, self-hatred, etc.) mediated by nine transdiagnostic clinical factors (mental torment, insomnia, substance abuse, PTSD intrusions, etc.) were combined to predict acute lethal suicide risk. This structural equation model, the Lethal Suicide Risk Pattern (LSRP), Acute model, had excellent goodness-of-fit [χ2(df) = 94.25(47)***, CFI = .98, RMSEA = .05, .90CI = .03-.06, p(RMSEA = .05) = .63. AIC = 340.25, ***p < .001.]. A further SEQ analysis was completed for this paper, adding a measure of Acute Suicide Ideation to the previous SEQ. Acceptable prediction model fit was no longer achieved [χ2(df) = 3.571, CFI > .953, RMSEA = .075, .90% CI = .065-.085, AIC = 529.550].This finding suggests that, in this additional study, immediate verbalized suicide ideation information was unhelpful in the assessment of lethal risk. The LSRP and other dynamic, near-term risk models (such as the Acute Suicide Affective Disorder Model and the Suicide Crisis Syndrome Model)—going beyond elicited suicide ideation—need to be incorporated into current clinical suicide assessment training. Without this training, the standard of care for suicide assessment is out of sync with current research—an emerging dilemma for the forensic evaluation of suicide wrongful death cases.Keywords: forensic evaluation, standard of care, suicide, suicide assessment, wrongful death
Procedia PDF Downloads 709602 Enhancing Pedagogical Practices in Online Arabic Language Instruction: Challenges, Opportunities, and Strategies
Authors: Salah Algabli
Abstract:
As online learning takes center stage; Arabic language instructors face the imperative to adapt their practices for the digital realm. This study investigates the experiences of online Arabic instructors to unveil the pedagogical opportunities and challenges this format presents. Utilizing a transcendental phenomenological approach with 15 diverse participants, the research shines a light on the unique realities of online language teaching at the university level, specifically in the United States. The study proposes theoretical and practical solutions to maximize the benefits of online language learning while mitigating its challenges. Recommendations cater to instructors, researchers, and program coordinators, paving the way for enhancing the quality of online Arabic language education. The findings highlight the need for pedagogical approaches tailored to the online environment, ultimately shaping a future where both instructors and learners thrive in this digital landscape.Keywords: online Arabic language learning, pedagogical opportunities and challenges, online Arabic teachers, online language instruction, digital pedagogy
Procedia PDF Downloads 649601 Using the Clinical Decision Support Platform, Dem DX, to Assess the ‘Urgent Community Care Team’s Notes Regarding Clinical Assessment, Management, and Healthcare Outcomes
Abstract:
Background: Heywood, Middleton & Rochdale Urgent Community Care Team (UCCT)1 is a great example of using a multidisciplinary team to cope with demand. The service reduces unnecessary admissions to hospitals and ensures that patients can leave the hospital quicker by making care more readily available within the community and patient’s homes. The team comprises nurses, community practitioners, and allied health professions, including physiotherapy, occupational therapy, pharmacy, and GPs. The main challenge for a team with a range of experiences and skill sets is to maintain consistency of care, which technology can help address. Allied healthcare professionals (HCPs) are often used in expanded roles with duties mainly involving patient consultations and decision making to ease pressure on doctors. The Clinical Reasoning Platform (CRP) Dem Dx is used to support new as well as experienced professionals in the decision making process. By guiding HCPs through diagnosing patients from an expansive directory of differential diagnoses, patients can receive quality care in the community. Actions on the platform are determined using NICE guidelines along with local guidance influencing the assessment and management of a patient. Objective: To compare the clinical assessment, decisions, and actions taken by the UCCT multidisciplinary team in the community and Dem Dx, using retrospective clinical cases. Methodology: Dem Dx was used to analyse 192 anonymised cases provided by the HMR UCCT. The team’s performance was compared with Dem Dx regarding the quality of the documentation of the clinical assessment and the next steps on the patient’s journey, including the initial management, actions, and any onward referrals made. The cases were audited by two medical doctors. Results: The study found that the actions outlined by the Dem Dx platform were appropriate in almost 87% of cases. When in a direct comparison between DemDX and the actions taken by the clinical team, it was found that the platform was suitable 83% (p<0.001) of the time and could lead to a potential improvement of 66% in the assessment and management of cases. Dem Dx also served to highlight the importance of comprehensive and high quality clinical documentation. The quality of documentation of cases by UCCT can be improved to provide a detailed account of the assessment and management process. By providing step-by-step guidance and documentation at every stage, Dem Dx may ensure that legal accountability has been fulfilled. Conclusion: With the ever expanding workforce in the NHS, technology has become a key component in driving healthcare outcomes. To improve healthcare provision and clinical reasoning, a decision support platform can be integrated into HCPs’ clinical practice. Potential assistance with clinical assessments, the most appropriate next step and actions in a patient’s care, and improvements in the documentation was highlighted by this retrospective study. A further study has been planned to ascertain the effectiveness of improving outcomes using the clinical reasoning platform within the clinical setting by clinicians.Keywords: allied health professional, assessment, clinical reasoning, clinical records, clinical decision-making, ocumentation
Procedia PDF Downloads 1659600 Thermo-Ecological Assessment of a Hybrid Solar Greenhouse Dryer for Grape Drying
Authors: Ilham Ihoume, Rachid Tadili, Nora Arbaoui
Abstract:
The use of solar energy in agricultural applications has gained significant attention in recent years as a sustainable and environmentally friendly alternative to conventional energy sources. In particular, solar drying of crops has been identified as an effective method to preserve agricultural produce while minimizing energy consumption and reducing carbon emissions. In this context, the present study aims to evaluate the thermo-economic and ecological performance of a solar-electric hybrid greenhouse dryer designed for grape drying. The proposed system integrates solar collectors, an electric heater, and a greenhouse structure to create a controlled and energy-efficient environment for grape drying. The thermo-economic assessment involves the analysis of the thermal performance, energy consumption, and cost-effectiveness of the solar-electric hybrid greenhouse dryer. On the other hand, the ecological assessment focuses on the environmental impact of the system in terms of carbon emissions and sustainability. The findings of this study are expected to contribute to the development of sustainable agricultural practices and the promotion of renewable energy technologies in the context of food production. Moreover, the results may serve as a basis for the design and optimization of similar solar drying systems for other crops and regions.Keywords: solar energy, sustainability, agriculture, energy analysis
Procedia PDF Downloads 659599 A Virtual Reality Cybersecurity Training Knowledge-Based Ontology
Authors: Shaila Rana, Wasim Alhamdani
Abstract:
Effective cybersecurity learning relies on an engaging, interactive, and entertaining activity that fosters positive learning outcomes. VR cybersecurity training may promote these aforementioned variables. However, a methodological approach and framework have not yet been created to allow trainers and educators to employ VR cybersecurity training methods to promote positive learning outcomes to the author’s best knowledge. Thus, this paper aims to create an approach that cybersecurity trainers can follow to create a VR cybersecurity training module. This methodology utilizes concepts from other cybersecurity training frameworks, such as NICE and CyTrONE. Other cybersecurity training frameworks do not incorporate the use of VR. VR training proposes unique challenges that cannot be addressed in current cybersecurity training frameworks. Subsequently, this ontology utilizes concepts unique to developing VR training to create a relevant methodology for creating VR cybersecurity training modules. The outcome of this research is to create a methodology that is relevant and useful for designing VR cybersecurity training modules.Keywords: virtual reality cybersecurity training, VR cybersecurity training, traditional cybersecurity training, ontology
Procedia PDF Downloads 2919598 Machine Learning for Targeting of Conditional Cash Transfers: Improving the Effectiveness of Proxy Means Tests to Identify Future School Dropouts and the Poor
Authors: Cristian Crespo
Abstract:
Conditional cash transfers (CCTs) have been targeted towards the poor. Thus, their targeting assessments check whether these schemes have been allocated to low-income households or individuals. However, CCTs have more than one goal and target group. An additional goal of CCTs is to increase school enrolment. Hence, students at risk of dropping out of school also are a target group. This paper analyses whether one of the most common targeting mechanisms of CCTs, a proxy means test (PMT), is suitable to identify the poor and future school dropouts. The PMT is compared with alternative approaches that use the outputs of a predictive model of school dropout. This model was built using machine learning algorithms and rich administrative datasets from Chile. The paper shows that using machine learning outputs in conjunction with the PMT increases targeting effectiveness by identifying more students who are either poor or future dropouts. This joint targeting approach increases effectiveness in different scenarios except when the social valuation of the two target groups largely differs. In these cases, the most likely optimal approach is to solely adopt the targeting mechanism designed to find the highly valued group.Keywords: conditional cash transfers, machine learning, poverty, proxy means tests, school dropout prediction, targeting
Procedia PDF Downloads 2069597 Reliability Assessment of Various Empirical Formulas for Prediction of Scour Hole Depth (Plunge Pool) Using a Comprehensive Physical Model
Authors: Majid Galoie, Khodadad Safavi, Abdolreza Karami Nejad, Reza Roshan
Abstract:
In this study, a comprehensive scouring model has been developed in order to evaluate the accuracy of various empirical relationships which were suggested for prediction of scour hole depth in plunge pools by Martins, Mason, Chian and Veronese. For this reason, scour hole depths caused by free falling jets from a flip bucket to a plunge pool were investigated. In this study various discharges, angles, scouring times, etc. have been considered. The final results demonstrated that the all mentioned empirical formulas, except Mason formula, were reasonably agreement with the experimental data.Keywords: scour hole depth, plunge pool, physical model, reliability assessment
Procedia PDF Downloads 5389596 Comparison between Deterministic and Probabilistic Stability Analysis, Featuring Consequent Risk Assessment
Authors: Isabela Moreira Queiroz
Abstract:
Slope stability analyses are largely carried out by deterministic methods and evaluated through a single security factor. Although it is known that the geotechnical parameters can present great dispersal, such analyses are considered fixed and known. The probabilistic methods, in turn, incorporate the variability of input key parameters (random variables), resulting in a range of values of safety factors, thus enabling the determination of the probability of failure, which is an essential parameter in the calculation of the risk (probability multiplied by the consequence of the event). Among the probabilistic methods, there are three frequently used methods in geotechnical society: FOSM (First-Order, Second-Moment), Rosenblueth (Point Estimates) and Monte Carlo. This paper presents a comparison between the results from deterministic and probabilistic analyses (FOSM method, Monte Carlo and Rosenblueth) applied to a hypothetical slope. The end was held to evaluate the behavior of the slope and consequent risk analysis, which is used to calculate the risk and analyze their mitigation and control solutions. It can be observed that the results obtained by the three probabilistic methods were quite close. It should be noticed that the calculation of the risk makes it possible to list the priority to the implementation of mitigation measures. Therefore, it is recommended to do a good assessment of the geological-geotechnical model incorporating the uncertainty in viability, design, construction, operation and closure by means of risk management.Keywords: probabilistic methods, risk assessment, risk management, slope stability
Procedia PDF Downloads 3939595 A Comparative Study on the Use of Learning Resources in Learning Biochemistry by MBBS Students at Ras Al Khaimah Medical and Health Sciences University, UAE
Authors: B. K. Manjunatha Goud, Aruna Chanu Oinam
Abstract:
The undergraduate medical curriculum is oriented towards training the students to undertake the responsibilities of a physician. During the training period, adequate emphasis is placed on inculcating logical and scientific habits of thought; clarity of expression and independence of judgment; and ability to collect and analyze information and to correlate them. At Ras Al Khaimah Medical and Health Sciences University (RAKMHSU), Biochemistry a basic medical science subject is taught in the 1st year of 5 years medical course with vertical interdisciplinary interaction with all subjects, which needs to be taught and learned adequately by the students to be related to clinical case or clinical problem in medicine and future diagnostics so that they can practice confidently and skillfully in the community. Based on these facts study was done to know the extent of usage of library resources by the students and the impact of study materials on their preparation for examination. It was a comparative cross sectional study included 100 and 80 1st and 2nd-year students who had successfully completed Biochemistry course. The purpose of the study was explained to all students [participants]. Information was collected on a pre-designed, pre-tested and self-administered questionnaire. The questionnaire was validated by the senior faculties and pre tested on students who were not involved in the study. The study results showed that 80.30% and 93.15% of 1st and 2nd year students have the clear idea of course outline given in course handout or study guide. We also found a statistically significant number of students agreed that they were benefited from the practical session and writing notes in the class hour. A high percentage of students [50% and 62.02%] disagreed that that reading only the handouts is enough for their examination as compared to other students. The study also showed that only 35% and 41% of students visited the library on daily basis for the learning process, around 65% of students were using lecture notes and text books as a tool for learning and to understand the subject and 45% and 53% of students used the library resources (recommended text books) compared to online sources before the examinations. The results presented here show that students perceived that e-learning resources like power point presentations along with text book reading using SQ4R technique had made a positive impact on various aspects of their learning in Biochemistry. The use of library by students has overall positive impact on learning process especially in medical field enhances the outcome, and medical students are better equipped to treat the patient. But it’s also true that use of library use has been in decline which will impact the knowledge aspects and outcome. In conclusion, a student has to be taught how to use the library as learning tool apart from lecture handouts.Keywords: medical education, learning resources, study guide, biochemistry
Procedia PDF Downloads 179