Search results for: high density plasma deposition
20518 An Investigation into the Influence of Compression on 3D Woven Preform Thickness and Architecture
Authors: Calvin Ralph, Edward Archer, Alistair McIlhagger
Abstract:
3D woven textile composites continue to emerge as an advanced material for structural applications and composite manufacture due to their bespoke nature, through thickness reinforcement and near net shape capabilities. When 3D woven preforms are produced, they are in their optimal physical state. As 3D weaving is a dry preforming technology it relies on compression of the preform to achieve the desired composite thickness, fibre volume fraction (Vf) and consolidation. This compression of the preform during manufacture results in changes to its thickness and architecture which can often lead to under-performance or changes of the 3D woven composite. Unlike traditional 2D fabrics, the bespoke nature and variability of 3D woven architectures makes it difficult to know exactly how each 3D preform will behave during processing. Therefore, the focus of this study is to investigate the effect of compression on differing 3D woven architectures in terms of structure, crimp or fibre waviness and thickness as well as analysing the accuracy of available software to predict how 3D woven preforms behave under compression. To achieve this, 3D preforms are modelled and compression simulated in Wisetex with varying architectures of binder style, pick density, thickness and tow size. These architectures have then been woven with samples dry compression tested to determine the compressibility of the preforms under various pressures. Additional preform samples were manufactured using Resin Transfer Moulding (RTM) with varying compressive force. Composite samples were cross sectioned, polished and analysed using microscopy to investigate changes in architecture and crimp. Data from dry fabric compression and composite samples were then compared alongside the Wisetex models to determine accuracy of the prediction and identify architecture parameters that can affect the preform compressibility and stability. Results indicate that binder style/pick density, tow size and thickness have a significant effect on compressibility of 3D woven preforms with lower pick density allowing for greater compression and distortion of the architecture. It was further highlighted that binder style combined with pressure had a significant effect on changes to preform architecture where orthogonal binders experienced highest level of deformation, but highest overall stability, with compression while layer to layer indicated a reduction in fibre crimp of the binder. In general, simulations showed a relative comparison to experimental results; however, deviation is evident due to assumptions present within the modelled results.Keywords: 3D woven composites, compression, preforms, textile composites
Procedia PDF Downloads 14020517 Hafnium and Samarium Hydroxyapatite Composites and Their Characterization
Authors: Meltem Nur Erdöl, Feyzanur Bayrak, Elif Emanetçi, Faik Nüzhet Oktar, Cevriye Kalkandelen, Oğuzhan Gündüz
Abstract:
Nowadays, the bioceramic graft applications are very important due to the fact that especially European population is getting much older. Consequently, healing approaches for some health problems become more important in the near future. For instance, osteoporosis is one of the reasons for serious hip fractures. Beside these, the traffic accidents playing role increasing of various hip fractures and other bone fractures. Naturally all these are leading the importance developing new bioceramic graft materials. Hydroxyapatite (HA) is one of the leading bioceramics on the market. Beside the high biocompatibility HA bioceramics unfortunately are weak materials for loaded areas. For improvement mechanical properties of HA material, some oxides and metallic powders can be added. In this study, some rare earth oxides like hafnium (IV) oxide (HfO₂) and samarium (III) oxide (Sm₂O₃) are added to HA for improvement of their material characteristics. Thus, compression, microhardness and theoretical density tests are performed. X-ray diffraction patterns are also investigated corresponding x-ray diffraction equipment. At the end, studies of scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDX) are completed. All values were compared with past BHA and various composites.Keywords: biocomposite, hafnium oxide, hydroxyapatite, nanotechnology, samarium oxide
Procedia PDF Downloads 17620516 Nickel Catalyst Promoted with Lanthanum- Alumina for Dry Reforming of Methane
Authors: Radia Imane Fertout
Abstract:
In recent years, the reaction of dry reforming of methane (DRM) has attracted much attention due to its environmental and industrial importance. Various catalysts, including Ni-based catalysts, have been investigated for the DRM. Doping Ni/Al₂O₃ by lanthanum and alkaline earth element may strongly influence solid-state reaction and increases the stability of catalysts due to the lower density and high basicity of these oxides. The effect of SrO on the activity and stability of Ni/Al₂O₃-La₂O₃ in dry reforming of methane was investigated. These catalysts have been prepared with the impregnation method, calcined in air at 450 and 650°C, then characterized by BET surface area, X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques and tested in DRM. The results showed that the addition of strontium to Ni/Al2O₃-La₂O₃ decreased the specific surface area. XRD results revealed the presence of different phases of Al₂O₃, La(OH)₃, La₂O₂CO₃, and SrCO₃. The catalytic evaluation results showed that adding SrO increased the catalytic activity and stability, that explained by the strong basicity of strontium. SEM analysis after the reaction indicates the formation of carbon over the spent catalyst and that the addition of strontium stabilized the surface of the catalyst.Keywords: dry reforming of methane, Ni/Al₂O₃-La₂O₃ catalyst, strontium, nickel
Procedia PDF Downloads 9720515 Operation System for Aluminium-Air Cell: A Strategy to Harvest the Energy from Secondary Aluminium
Authors: Binbin Chen, Dennis Y. C. Leung
Abstract:
Aluminium (Al) -air cell holds a high volumetric capacity density of 8.05 Ah cm-3, benefit from the trivalence of Al ions. Additional benefits of Al-air cell are low price and environmental friendliness. Furthermore, the Al energy conversion process is characterized of 100% recyclability in theory. Along with a large base of raw material reserve, Al attracts considerable attentions as a promising material to be integrated within the global energy system. However, despite the early successful applications in military services, several problems exist that prevent the Al-air cells from widely civilian use. The most serious issue is the parasitic corrosion of Al when contacts with electrolyte. To overcome this problem, super-pure Al alloyed with various traces of metal elements are used to increase the corrosion resistance. Nevertheless, high-purity Al alloys are costly and require high energy consumption during production process. An alternative approach is to add inexpensive inhibitors directly into the electrolyte. However, such additives would increase the internal ohmic resistance and hamper the cell performance. So far these methods have not provided satisfactory solutions for the problem within Al-air cells. For the operation of alkaline Al-air cell, there are still other minor problems. One of them is the formation of aluminium hydroxide in the electrolyte. This process decreases ionic conductivity of electrolyte. Another one is the carbonation process within the gas diffusion layer of cathode, blocking the porosity of gas diffusion. Both these would hinder the performance of cells. The present work optimizes the above problems by building an Al-air cell operation system, consisting of four components. A top electrolyte tank containing fresh electrolyte is located at a high level, so that it can drive the electrolyte flow by gravity force. A mechanical rechargeable Al-air cell is fabricated with low-cost materials including low grade Al, carbon paper, and PMMA plates. An electrolyte waste tank with elaborate channel is designed to separate the hydrogen generated from the corrosion, which would be collected by gas collection device. In the first section of the research work, we investigated the performance of the mechanical rechargeable Al-air cell with a constant flow rate of electrolyte, to ensure the repeatability experiments. Then the whole system was assembled together and the feasibility of operating was demonstrated. During experiment, pure hydrogen is collected by collection device, which holds potential for various applications. By collecting this by-product, high utilization efficiency of aluminum is achieved. Considering both electricity and hydrogen generated, an overall utilization efficiency of around 90 % or even higher under different working voltages are achieved. Fluidic electrolyte could remove aluminum hydroxide precipitate and solve the electrolyte deterioration problem. This operation system provides a low-cost strategy for harvesting energy from the abundant secondary Al. The system could also be applied into other metal-air cells and is suitable for emergency power supply, power plant and other applications. The low cost feature implies great potential for commercialization. Further optimization, such as scaling up and optimization of fabrication, will help to refine the technology into practical market offerings.Keywords: aluminium-air cell, high efficiency, hydrogen, mechanical recharge
Procedia PDF Downloads 28520514 Cardiometabolic Risk Factors Responses to Supplemental High Intensity Exercise in Middle School Children
Authors: R. M. Chandler, A. J. Stringer
Abstract:
In adults, short bursts of high-intensity exercise (intensities between 80-95% of maximum heart rates) increase cardiovascular and metabolic function without the time investment of traditional aerobic training. Similar improvements in various health indices are also becoming increasingly evident in children in countries other than the United States. In the United States, physical education programs have become shorter in length and fewer in frequency. With this in the background, it is imperative that health and physical educators delivered well-organized and focused fitness programs that can be tolerated across many different somatotypes. Perhaps the least effective lag-time in a US physical education (PE) class is the first 10 minutes, a time during which children warm up. Replacing a traditional PE warmup with a 10 min high-intensity excise protocol is a time-efficient method to impact health, leaving as much time for other PE material such as skill development, motor behavior development as possible. This supplemented 10 min high-intensity exercise increases cardiovascular function as well as induces favorable body composition changes in as little as six weeks with further enhancement throughout a semester of activity. The supplemental high-intensity exercise did not detract from the PE lesson outcomes.Keywords: cardiovascular fitness, high intensity interval training, high intensity exercise, pediatric
Procedia PDF Downloads 13920513 An Approach of High Scalable Production Capacity by Adaption of the Concept 'Everything as a Service'
Authors: Johannes Atug, Stefan Braunreuther, Gunther Reinhart
Abstract:
Volatile markets, as well as increasing global competition in manufacturing, lead to a high demand of flexible and agile production systems. These advanced production systems in turn conduct to high capital expenditure along with high investment risks. Developments in production regarding digitalization and cyber-physical systems result to a merger of informational- and operational technology. The approach of this paper is to benefit from this merger and present a framework of a production network with scalable production capacity and low capital expenditure by adaptation of the IT concept 'everything as a service' into the production environment.Keywords: digital manufacturing system, everything as a service, reconfigurable production, value network
Procedia PDF Downloads 34720512 The Effect of Composite Hybridization on the Back Face Deformation of Armor Plates
Authors: Attef Kouadria, Yehya Bouteghrine, Amar Manaa, Tarek Mouats, Djalel Eddine Tria, Hamid Abdelhafid Ghouti
Abstract:
Personal protection systems have been used in several forms for centuries. The need for light-weight composite structures has been in great demand due to their weight and high mechanical properties ratios in comparison to heavy and cumbersome steel plates. In this regard, lighter ceramic plates with a backing plate made of high strength polymeric fibers, mostly aramids, are widely used for protection against ballistic threats. This study aims to improve the ballistic performance of ceramic/composite plates subjected to ballistic impact by reducing the back face deformation (BFD) measured after each test. A new hybridization technique was developed in this investigation to increase the energy absorption capabilities of the backing plates. The hybridization consists of combining different types of aramid fabrics with different linear densities of aramid fibers (Dtex) and areal densities with an epoxy resin to form the backing plate. Therefore, several composite structures architectures were prepared and tested. For better understanding the effect of the hybridization, a serial of tensile, compression, and shear tests were conducted to determine the mechanical properties of the homogeneous composite materials prepared from different fabrics. It was found that the hybridization allows the backing plate to combine between the mechanical properties of the used fabrics. Aramid fabrics with higher Dtex were found to increase the mechanical strength of the backing plate, while those with lower Dtex found to enhance the lateral wave dispersion ratio due to their lower areal density. Therefore, the back face deformation was significantly reduced in comparison to a homogeneous composite plate.Keywords: aramid fabric, ballistic impact, back face deformation, body armor, composite, mechanical testing
Procedia PDF Downloads 15420511 High Performance Concrete Using “BAUT” (Metal Aggregates) the Gateway to New Concrete Technology for Mega Structures
Authors: Arjun, Gautam, Sanjeev Naval
Abstract:
Concrete technology has been changing rapidly and constantly since its discovery. Concrete is the most widely used man-made construction material, versatility of making concrete is the 2nd largest consumed material on earth. In this paper an effort has been made to use metal aggregates in concrete has been discussed, the metal aggregates has been named as “BAUT” which had outstandingly qualities to resist shear, tension and compression forces. In this paper, COARSE BAUT AGGREGATES (C.B.A.) 10mm & 20mm and FINE BAUT AGGREGATES (F.B.A.) 3mm were divided and used for making high performance concrete (H.P.C). This “BAUT” had cutting edge technology through draft and design by the use of Auto CAD, ANSYS software can be used effectively In this research paper we study high performance concrete (H.P.C) with “BAUT” and consider the grade of M65 and finally we achieved the result of 90-95 Mpa (high compressive strength) for mega structures and irregular structures where center of gravity (CG) is not balanced. High Performance BAUT Concrete is the extraordinary qualities like long-term performance, no sorptivity by BAUT AGGREGATES, better rheological, mechanical and durability proportion that conventional concrete. This high strength BAUT concrete using “BAUT” is applied in the construction of mega structure like skyscrapers, dam, marine/offshore structures, nuclear power plants, bridges, blats and impact resistance structures. High Performance BAUT Concrete which is a controlled concrete possesses invariable high strength, reasonable workability and negligibly permeability as compare to conventional concrete by the mix of Super Plasticizers (SMF), silica fume and fly ash.Keywords: BAUT, High Strength Concrete, High Performance Concrete, Fine BAUT Aggregate, Coarse BAUT Aggregate, metal aggregates, cutting edge technology
Procedia PDF Downloads 50520510 Experimental Investigation on Cold-Formed Steel Foamed Concrete Composite Wall under Compression
Authors: Zhifeng Xu, Zhongfan Chen
Abstract:
A series of tests on cold-formed steel foamed concrete (CSFC) composite walls subjected to axial load were proposed. The primary purpose of the experiments was to study the mechanical behavior and identify the failure modes of CSFC composite walls. Two main factors were considered in this study: 1) specimen with pouring foamed concrete or without and 2) different foamed concrete density ranks (corresponding to different foamed concrete strength). The interior space between two pieces of straw board of the specimen W-2 and W-3 were poured foamed concrete, and the specimen W-1 does not have foamed concrete core. The foamed concrete density rank of the specimen W-2 was A05 grade, and that of the specimen W-3 was A07 grade. Results showed that the failure mode of CSFC composite wall without foamed concrete was distortional buckling of cold-formed steel (CFS) column, and that poured foamed concrete includes the local crushing of foamed concrete and local buckling of CFS column, but the former prior to the later. Compared with CSFC composite wall without foamed concrete, the ultimate bearing capacity of spec imens poured A05 grade and A07 grade foamed concrete increased 1.6 times and 2.2 times respectively, and specimen poured foamed concrete had a low vertical deformation. According to these results, the simplified calculation formula for the CSFC wall subjected to axial load was proposed, and the calculated results from this formula are in very good agreement with the test results.Keywords: cold-formed steel, composite wall, foamed concrete, axial behavior test
Procedia PDF Downloads 33920509 Symbolic Computation for the Multi-Soliton Solutions of a Class of Fifth-Order Evolution Equations
Authors: Rafat Alshorman, Fadi Awawdeh
Abstract:
By employing a simplified bilinear method, a class of generalized fifth-order KdV (gfKdV) equations which arise in nonlinear lattice, plasma physics and ocean dynamics are investigated. With the aid of symbolic computation, both solitary wave solutions and multiple-soliton solutions are obtained. These new exact solutions will extend previous results and help us explain the properties of nonlinear solitary waves in many physical models in shallow water. Parametric analysis is carried out in order to illustrate that the soliton amplitude, width and velocity are affected by the coefficient parameters in the equation.Keywords: multiple soliton solutions, fifth-order evolution equations, Cole-Hopf transformation, Hirota bilinear method
Procedia PDF Downloads 32620508 Coarse-Grained Computational Fluid Dynamics-Discrete Element Method Modelling of the Multiphase Flow in Hydrocyclones
Authors: Li Ji, Kaiwei Chu, Shibo Kuang, Aibing Yu
Abstract:
Hydrocyclones are widely used to classify particles by size in industries such as mineral processing and chemical processing. The particles to be handled usually have a broad range of size distributions and sometimes density distributions, which has to be properly considered, causing challenges in the modelling of hydrocyclone. The combined approach of Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) offers convenience to model particle size/density distribution. However, its direct application to hydrocyclones is computationally prohibitive because there are billions of particles involved. In this work, a CFD-DEM model with the concept of the coarse-grained (CG) model is developed to model the solid-fluid flow in a hydrocyclone. The DEM is used to model the motion of discrete particles by applying Newton’s laws of motion. Here, a particle assembly containing a certain number of particles with same properties is treated as one CG particle. The CFD is used to model the liquid flow by numerically solving the local-averaged Navier-Stokes equations facilitated with the Volume of Fluid (VOF) model to capture air-core. The results are analyzed in terms of fluid and solid flow structures, and particle-fluid, particle-particle and particle-wall interaction forces. Furthermore, the calculated separation performance is compared with the measurements. The results obtained from the present study indicate that this approach can offer an alternative way to examine the flow and performance of hydrocyclonesKeywords: computational fluid dynamics, discrete element method, hydrocyclone, multiphase flow
Procedia PDF Downloads 41220507 Analysis of Bio-Oil Produced by Pyrolysis of Coconut Shell
Authors: D. S. Fardhyanti, A. Damayanti
Abstract:
The utilization of biomass as a source of new and renewable energy is being carried out. One of the technologies to convert biomass as an energy source is pyrolysis which is converting biomass into more valuable products, such as bio-oil. Bio-oil is a liquid which is produced by steam condensation process from the pyrolysis of coconut shells. The composition of a coconut shell e.g. hemicellulose, cellulose and lignin will be oxidized to phenolic compounds as the main component of the bio-oil. The phenolic compounds in bio-oil are corrosive; they cause various difficulties in the combustion system because of a high viscosity, low calorific value, corrosiveness, and instability. Phenolic compounds are very valuable components which phenol has used as the main component for the manufacture of antiseptic, disinfectant (known as Lysol) and deodorizer. The experiments typically occurred at the atmospheric pressure in a pyrolysis reactor at temperatures ranging from 300 oC to 350 oC with a heating rate of 10 oC/min and a holding time of 1 hour at the pyrolysis temperature. The Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze the bio-oil components. The obtained bio-oil has the viscosity of 1.46 cP, the density of 1.50 g/cm3, the calorific value of 16.9 MJ/kg, and the molecular weight of 1996.64. By GC-MS, the analysis of bio-oil showed that it contained phenol (40.01%), ethyl ester (37.60%), 2-methoxy-phenol (7.02%), furfural (5.45%), formic acid (4.02%), 1-hydroxy-2-butanone (3.89%), and 3-methyl-1,2-cyclopentanedione (2.01%).Keywords: bio-oil, pyrolysis, coconut shell, phenol, gas chromatography-mass spectroscopy
Procedia PDF Downloads 25020506 The Cooperation among Insulin, Cortisol and Thyroid Hormones in Morbid Obese Children and Metabolic Syndrome
Authors: Orkide Donma, Mustafa M. Donma
Abstract:
Obesity, a disease associated with a low-grade inflammation, is a risk factor for the development of metabolic syndrome (MetS). So far, MetS risk factors such as parameters related to glucose and lipid metabolisms as well as blood pressure were considered for the evaluation of this disease. There are still some ambiguities related to the characteristic features of MetS observed particularly in pediatric population. Hormonal imbalance is also important, and quite a lot information exists about the behaviour of some hormones in adults. However, the hormonal profiles in pediatric metabolism have not been cleared yet. The aim of this study is to investigate the profiles of cortisol, insulin, and thyroid hormones in children with MetS. The study population was composed of morbid obese (MO) children without (Group 1) and with (Group 2) MetS components. WHO BMI-for age and sex percentiles were used for the classification of obesity. The values above 99 percentile were defined as morbid obesity. Components of MetS (central obesity, glucose intolerance, high blood pressure, high triacylglycerol levels, low levels of high density lipoprotein cholesterol) were determined. Anthropometric measurements were performed. Ratios as well as obesity indices were calculated. Insulin, cortisol, thyroid stimulating hormone (TSH), free T3 and free T4 analyses were performed by electrochemiluminescence immunoassay. Data were evaluated by statistical package for social sciences program. p<0.05 was accepted as the degree for statistical significance. The mean ages±SD values of Group 1 and Group 2 were 9.9±3.1 years and 10.8±3.2 years, respectively. Body mass index (BMI) values were calculated as 27.4±5.9 kg/m2 and 30.6±8.1 kg/m2, successively. There were no statistically significant differences between the ages and BMI values of the groups. Insulin levels were statistically significantly increased in MetS in comparison with the levels measured in MO children. There was not any difference between MO children and those with MetS in terms of cortisol, T3, T4 and TSH. However, T4 levels were positively correlated with cortisol and negatively correlated with insulin. None of these correlations were observed in MO children. Cortisol levels in both MO as well as MetS group were significantly correlated. Cortisol, insulin, and thyroid hormones are essential for life. Cortisol, called the control system for hormones, orchestrates the performance of other key hormones. It seems to establish a connection between hormone imbalance and inflammation. During an inflammatory state, more cortisol is produced to fight inflammation. High cortisol levels prevent the conversion of the inactive form of the thyroid hormone T4 into active form T3. Insulin is reduced due to low thyroid hormone. T3, which is essential for blood sugar control- requires cortisol levels within the normal range. Positive association of T4 with cortisol and negative association of it with insulin are the indicators of such a delicate balance among these hormones also in children with MetS.Keywords: children, cortisol, insulin, metabolic syndrome, thyroid hormones
Procedia PDF Downloads 15320505 Double Negative Differential Resistance Features in GaN-Based Bipolar Resonance Tunneling Diodes
Authors: Renjie Liu, Junshuai Xue, Jiajia Yao, Guanlin Wu, Zumao L, Xueyan Yang, Fang Liu, Zhuang Guo
Abstract:
Here, we report the study of the performance of AlN/GaN bipolar resonance tunneling diodes (BRTDs) using numerical simulations. The I-V characteristics of BRTDs show double negative differential resistance regions, which exhibit similar peak current density and peak-to-valley current ratio (PVCR). Investigations show that the PVCR can approach 4.6 for the first and 5.75 for the second negative resistance region. The appearance of the two negative differential resistance regions is realized by changing the collector material of conventional GaN RTD to P-doped GaN. As the bias increases, holes in the P-region and electrons in the N-region undergo resonant tunneling, respectively, resulting in two negative resistance regions. The appearance of two negative resistance regions benefits from the high AlN barrier and the precise regulation of the potential well thickness. This result shows the promise of GaN BRTDs in the development of multi-valued logic circuits.Keywords: GaN bipolar resonant tunneling diode, double negative differential resistance regions, peak to valley current ratio, multi-valued logic
Procedia PDF Downloads 16620504 Investigation of Different Electrolyte Salts Effect on ZnO/MWCNT Anode Capacity in LIBs
Authors: Şeyma Dombaycıoğlu, Hilal Köse, Ali Osman Aydın, Hatem Akbulut
Abstract:
Rechargeable lithium ion batteries (LIBs) have been considered as one of the most attractive energy storage choices for laptop computers, electric vehicles and cellular phones owing to their high energy and power density. Compared with conventional carbonaceous materials, transition metal oxides (TMOs) have attracted great interests and stand out among versatile novel anode materials due to their high theoretical specific capacity, wide availability and good safety performance. ZnO, as an anode material for LIBs, has a high theoretical capacity of 978 mAh g-1, much higher than that of the conventional graphite anode (∼370 mAhg-1). However, several major problems such as poor cycleability, resulting from the severe volume expansion and contraction during the alloying-dealloying cycles with Li+ ions and the associated charge transfer process, the pulverization and the agglomeration of individual particles, which drastically reduces the total entrance/exit sites available for Li+ ions still hinder the practical use of ZnO powders as an anode material for LIBs. Therefore, a great deal of effort has been devoted to overcome these problems, and many methods have been developed. In most of these methods, it is claimed that carbon nanotubes (CNTs) will radically improve the performance of batteries, because their unique structure may especially enhance the kinetic properties of the electrodes and result in an extremely high specific charge compared with the theoretical limits of graphitic carbon. Due to outstanding properties of CNTs, MWCNT buckypaper substrate is considered a buffer material to prevent mechanical disintegration of anode material during the battery applications. As the bridge connecting the positive and negative electrodes, the electrolyte plays a critical role affecting the overall electrochemical performance of the cell including rate, capacity, durability and safety. Commercial electrolytes for Li-ion batteries normally consist of certain lithium salts and mixed organic linear and cyclic carbonate solvents. Most commonly, LiPF6 is attributed to its remarkable features including high solubility, good ionic conductivity, high dissociation constant and satisfactory electrochemical stability for commercial fabrication. Besides LiPF6, LiBF4 is well known as a conducting salt for LIBs. LiBF4 shows a better temperature stability in organic carbonate based solutions and less moisture sensitivity compared to LiPF6. In this work, free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials were prepared by a sol gel technique giving a high capacity anode material for lithium ion batteries. Electrolyte solutions (including 1 m Li+ ion) were prepared with different Li salts in glove box. For this purpose, LiPF6 and LiBF4 salts and also mixed of these salts were solved in EC:DMC solvents (1:1, w/w). CR2016 cells were assembled by using these prepared electrolyte solutions, the ZnO/MWCNT buckypaper nanocomposites as working electrodes, metallic lithium as cathode and polypropylene (PP) as separator. For investigating the effect of different Li salts on the electrochemical performance of ZnO/MWCNT nanocomposite anode material electrochemical tests were performed at room temperature.Keywords: anode, electrolyte, Li-ion battery, ZnO/MWCNT
Procedia PDF Downloads 23420503 Level of Reactive Oxygen Species and Inflammatory Cytokines in Rheumatoid Arthritis Patients: Correlation with Disease Severity
Authors: Somaiya Mateen, Shagufta Moin, Mohammad Owais, Abdul Khan, Atif Zafar
Abstract:
In rheumatoid arthritis (RA), impaired oxidative metabolism and imbalance between pro-and anti-inflammatory cytokines are responsible for causing inflammation and the degradation of cartilage and bone. The present study was done to evaluate the level and hence the role of reactive oxygen species (ROS) and inflammatory cytokines in the pathogenesis of RA. The present study was performed in the blood of 80 RA patients and 55 age and sex-matched healthy controls. The level of ROS (in 5% hematocrit) and the plasma level of pro-inflammatory cytokines [TNF-α, interleukin-6 (IL-6), IL-22] and anti-inflammatory cytokines (IL-4 and IL-5) were monitored in healthy subjects and RA patients. For evaluating the role of rheumatoid factor (RF) in the pathogenesis of RA, patients were sub-divided on the basis of presence or absence of RF. Reactive species and inflammatory cytokines were correlated with disease activity measure-Disease Activity Score for 28 joints (DAS28). The level of ROS, TNF-α, IL-6 and IL-22 were found to be significantly higher in RA patients as compared to the healthy controls, with the increase being more significant in patients positive for rheumatoid factor and those having high disease severity. On the other hand, a significant decrease in the level of IL-4 and IL-10 were observed in RA patients compared with healthy controls, with the decrease being more prominent in severe cases of RA. Higher ROS (indicative of impaired anti-oxidant defence system) and pro-inflammatory cytokines level in RA patients may lead to the damage of biomolecules which in turn contributes to tissue damage and hence to the development of more severe RA. The imbalance between pro-and anti-inflammatory cytokines may lead to the development of multi-system immune complications. ROS and inflammatory cytokines may also serve as a potential biomarker for assessing the disease severity.Keywords: rheumatoid arthritis, reactive oxygen species, pro-inflammatory cytokines, anti-inflammatory cytokines
Procedia PDF Downloads 32020502 Analyze Long-Term Shoreline Change at Yi-Lan Coast, Taiwan Using Multiple Sources
Authors: Geng-Gui Wang, Chia-Hao Chang, Jee-Cheng Wu
Abstract:
A shoreline is a line where a body of water and the shore meet. It provides economic and social security to coastal habitations. However, shorelines face multiple threats due to both natural processes and man-made effects because of disasters, rapid urbanization, industrialization, and sand deposition and erosion, etc. In this study, we analyzed multi-temporal satellite images of the Yilan coast, Taiwan from 1978 to 2016, using the United States Geological Survey (USGS) Digital Shoreline Analysis System (DSAS), weather information (as rainfall records and typhoon routes), and man-made construction project data to explore the causes of shoreline changes. The results showed that the shoreline at Yilan coast is greatly influenced by typhoons and anthropogenic interventions.Keywords: shoreline change, multi-temporal satellite, digital shoreline analysis system, DSAS, Yi-Lan coast
Procedia PDF Downloads 16620501 The Prodomain-Bound Form of Bone Morphogenetic Protein 10 is Biologically Active on Endothelial Cells
Authors: Austin Jiang, Richard M. Salmon, Nicholas W. Morrell, Wei Li
Abstract:
BMP10 is highly expressed in the developing heart and plays essential roles in cardiogenesis. BMP10 deletion in mice results in embryonic lethality due to impaired cardiac development. In adults, BMP10 expression is restricted to the right atrium, though ventricular hypertrophy is accompanied by increased BMP10 expression in a rat hypertension model. However, reports of BMP10 activity in the circulation are inconclusive. In particular it is not known whether in vivo secreted BMP10 is active or whether additional factors are required to achieve its bioactivity. It has been shown that high-affinity binding of the BMP10 prodomain to the mature ligand inhibits BMP10 signaling activity in C2C12 cells, and it was proposed that prodomain-bound BMP10 (pBMP10) complex is latent. In this study, we demonstrated that the BMP10 prodomain did not inhibit BMP10 signaling activity in multiple endothelial cells, and that recombinant human pBMP10 complex, expressed in mammalian cells and purified under native conditions, was fully active. In addition, both BMP10 in human plasma and BMP10 secreted from the mouse right atrium were fully active. Finally, we confirmed that active BMP10 secreted from mouse right atrium was in the prodomain-bound form. Our data suggest that circulating BMP10 in adults is fully active and that the reported vascular quiescence function of BMP10 in vivo is due to the direct activity of pBMP10 and does not require an additional activation step. Moreover, being an active ligand, recombinant pBMP10 may have therapeutic potential as an endothelial-selective BMP ligand, in conditions characterized by loss of BMP9/10 signaling.Keywords: bone morphogenetic protein 10 (BMP10), endothelial cell, signal transduction, transforming growth factor beta (TGF-B)
Procedia PDF Downloads 27720500 Preparation of Corn Flour Based Extruded Product and Evaluate Its Physical Characteristics
Authors: C. S. Saini
Abstract:
The composite flour blend consisting of corn, pearl millet, black gram and wheat bran in the ratio of 80:5:10:5 was taken to prepare the extruded product and their effect on physical properties of extrudate was studied. The extrusion process was conducted in laboratory by using twin screw extruder. The physical characteristics evaluated include lateral expansion, bulk density, water absorption index, water solubility index, rehydration ratio and moisture retention. The Central Composite Rotatable Design (CCRD) was used to decide the level of processing variables i.e. feed moisture content (%), screw speed (rpm), and barrel temperature (oC) for the experiment. The data obtained after extrusion process were analyzed by using response surface methodology. A second order polynomial model for the dependent variables was established to fit the experimental data. The numerical optimization studies resulted in 127°C of barrel temperature, 246 rpm of screw speed, and 14.5% of feed moisture as optimum variables to produce acceptable extruded product. The responses predicted by the software for the optimum process condition resulted in lateral expansion 126 %, bulk density 0.28 g/cm3, water absorption index 4.10 g/g, water solubility index 39.90 %, rehydration ratio 544 % and moisture retention 11.90 % with 75 % desirability.Keywords: black gram, corn flour, extrusion, physical characteristics
Procedia PDF Downloads 48120499 Study of Electroless Co-P Deposits on Steel
Authors: K. Chouchane, R. Mehdaoui, A. Atmani, A. Merati
Abstract:
A Co-P layer was coated onto steel substrate using electroless plating method in alkaline media. Three temperatures were tested 70, 80 and 90 °C. Sodium hypophosphite was used as a reducer. The influence of addition of boric acid in the bath on deposits properties was studied. Different techniques such as scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and hardness measures were employed to characterize the morphology, composition and the structural properties of the resulting films. The corrosion properties of the prepared coatings were tested in 3% NaCl media, by means of current-potential curves, potential transients. The results showed that the thickness increase with increasing of bath temperature. The addition of boric acid don’t affect the thickness but has an influence on hardness. In fact, the hardness increases from 500 to 700Hv for the temperature of 90°C. The corrosion resistance is improved for all prepared layers.Keywords: cobalt deposits, corrosion, electroless deposition, hardness
Procedia PDF Downloads 20820498 Residential High-Rises and Meaningful Places: Missing Actions in the Isle of Dogs Regeneration
Authors: Elena Kalcheva, Ahmad Taki, Yuri Hadi
Abstract:
Urban regeneration often includes residential high-rises as a way of optimum use of land. However, high-rises are in many cases connected to placelessness, this is not due to some intrinsic characteristic of the typology, but more to a failure to provide meaningful places in connection to them. The reason to study the Isle of the Dogs regeneration is the successful process that led to vibrant area with strong identity and social sustainability. Therefore, the purpose of this research is to identify the gaps into the sound strategy for the development of the area and in its implementation which will make the place more sustainable. The paper addresses four research questions: are the residential high-rises supporting a proper physical form; is there deployed properly scaled mix of land uses and functions in connection with residential high-rises; are there possible quality activities in quality places near the residential high-rises; and is there a strong sense of place created with the residential high-rise buildings and their surroundings. The methodology relies on observational survey of the researched area together with structured questions, to evaluate the external qualities of the residential high-rises and their surroundings. Visual information can help identify the mistakes and the omissions of the provided project examples. It can provide insight on how can be improved imageability, legibility and human scale. In this connection, the paper argues that although the quality of the architecture of the high-rises is superb, there is a failure to create meaningful, high quality public realm in connection with them. As such, it does not function as well as the designers intended to do: the functional quality of the public realm is quite low. The implications of the study suggest that actions need to take place in order to improve and foster further regeneration of the area.Keywords: high-rises, isle of the dogs, public realm, regeneration
Procedia PDF Downloads 28920497 Effects of Obesity and Family History of Diabetes on the Association of Cholesterol Ester Transfer Protein Gene with High-Density Lipoprotein Cholesterol Levels in Korean Population
Authors: Jae Woong Sull
Abstract:
Lipid levels are related to the risk of cardiovascular diseases. Cholesterol ester transfer protein (CETP) gene is one of the candidate genes of cardiovascular diseases. A total of 2,304 persons were chosen from a Hospital (N=4,294) in South Korea. Female subjects with the CG/GG genotype had a 2.03 -fold (p=0.0001) higher risk of having abnormal HDL cholesterol levels (<40 mg/dL) than subjects with the CC genotype. Male subjects with the CG/GG genotype had a 1.34 -fold (p=0.0019) higher risk than subjects with the CC genotype. When analyzed by body mass index, the association with CETP was much stronger in male subjects with BMI>=25.69 (OR=1.55, 95% CI: 1.15-2.07, P=0.0037) than in male lean subjects. When analyzed by family history of diabetes, the association with CETP was much stronger in male subjects with positive family history of low physical activity (OR=4.82, 95% CI: 1.86-12.5, P=0.0012) than in male subjects with negative family history of diabetes. This study clearly demonstrates that genetic variants in CETP influence HDL cholesterol levels in Korean adults.Keywords: CETP, diabetes, obesity, polymorphisms
Procedia PDF Downloads 14720496 Histological Evaluation of the Neuroprotective Roles of Trans Cinnamaldehyde against High Fat Diet and Streptozotozin Induced Neurodegeneration in Wistar Rats
Authors: Samson Ehindero, Oluwole Akinola
Abstract:
Substantial evidence has shown an association between type 2 diabetes (T2D) and cognitive decline, Trans Cinnamaldehyde (TCA) has been shown to have many potent pharmacological properties. In this present study, we are currently investigating the effects of TCA on type II diabetes-induced neurodegeneration. Neurodegeneration was induced in forty (40) adult wistar rats using high fat diet (HFD) for 4 months followed by low dose of streptozotocin (STZ) (40 mg/kg, i.p.) administration. TCA was administered orally for 30 days at the doses of 40mg/kg and 60mg/kg body weight. Animals were randomized and divided into following groups; A- control group, B- diabetic group, C- TCA (high dose), D- diabetic + TCA (high dose), E- diabetic + TCA (high dose) with high fat diet, F- TCA Low dose, G- diabetic + TCA (low dose) and H- diabetic + TCA (low dose) with high fat diet. Animals were subjected to behavioral tests followed by histological studies of the hippocampus. Demented rats showed impaired behavior in Y- Maze test compared to treated and control groups. Trans Cinnamaldehyde restores the histo architecture of the hippocampus of demented rats. This present study demonstrates that treatment with trans- cinnamaldehyde improves behavioral deficits, restores cellular histo architecture in rat models of neurodegeneration.Keywords: neurodegeneration, trans cinnamaldehyde, high fat diet, streptozotocin
Procedia PDF Downloads 19120495 Assessment of Marine Diversity on Rocky Shores of Triporti, Vlore, Albania
Authors: Ina Nasto, Denada Sota, Kerol Sacaj, Brunilda Veshaj, Hajdar Kicaj
Abstract:
Rocky shores are often used as models to describe the dynamics of biodiversity around the world, making them one of the most studied marine habitats and their communities. The variability in the number of species and the abundance of hard-bottom benthic animal communities on the coast of Triporti, north of the Bay of Vlora, Albania is described in relation to environmental variables using multivariate analysis. The purpose of this study is to monitor the species composition, quantitative characteristics, and seasonal variations of the benthic macroinvertebrate populations of the shallow rocky shores of the Triportit-Vlora area, as well as the assessment of the ecological condition of these populations. The rocky coast of Triport, with a length of 7 km, was divided into three sampling stations, with three transects each of 50m. The monitoring of benthic macroinvertebrates in these areas was carried out in two seasons, spring and summer (June and August 2021). In each station and sampling season, estimates of the total and average density for each species, the presence constant, and the assessment of biodiversity were calculated using the Shannon–Wiener and the Simpson index. The species composition, the quantitative characteristics of the populations, and the indicators mentioned above were analyzed in a comparative way, both between the seasons within one station and between the three stations with each other. Statistical processing of the data was carried out to analyze the changes between the seasons and between the sampling stations for the species composition, population density, as well as correlation between them. A total of 105 benthic macroinvertebrate taxa were found, dominated by Molluscs, Annelids, and Arthropods. The small density of species and the low degree of stability of the macrozoobenthic community are indicators of the poor ecological condition and environmental impact in the studied areas. Algal cover, the diversity of coastal microhabitats, and the degree of coastal exposure to waves play an important role in the characteristics of macrozoobenthos populations in the studied areas. Also, the rocky shores are of special interest because, in the infralittoral of these areas, there are dense kelp forests with Gongolaria barbata, Ericaria crinita as well as fragmented areas with Posidonia oceanica that reach the coast, priority habitats of special conservation importance in the Mediterranean.Keywords: Macrozoobenthic communities, Shannon–Wiener, Triporti, Vlore, rocky shore
Procedia PDF Downloads 10220494 New Series Input Parallel Output LLC DC/DC Converter with the Input Voltage Balancing Capacitor for the Electric System of Electric Vehicles
Authors: Kang Hyun Yi
Abstract:
This paper presents a new parallel output LLC DC/DC converter for electric vehicle. The electric vehicle has two batteries. One is a high voltage battery for the powertrain of the vehicle and the other is a low voltage battery for the vehicle electric system. The low voltage is charged from the high voltage battery and the high voltage input and the high current output DC/DC converter is needed. Therefore, the new LLC converter with the input voltage compensation is proposed for the high voltage input and the low voltage output DC/DC converter. The proposed circuit has two LLC converters with the series input voltage from the battery for the powertrain and the parallel output low battery voltage for the vehicle electric system because the battery voltage for the powertrain and the electric power for the vehicle become high. Also, the input series voltage compensation capacitor is used for balancing the input current in the two LLC converters. The proposed converter has an equal electric stress of the semiconductor parts and the reactive components, high efficiency and good heat dissipation.Keywords: electric vehicle, LLC DC/DC converter, input voltage balancing, parallel output
Procedia PDF Downloads 105620493 Impact of Electric Field on the Optical Properties of Hydrophilic Quantum Dots
Authors: Valentina V. Goftman, Vladislav A. Pankratov, Alexey V. Markin, Tangi Aubert, Zeger Hens, Sarah De Saeger, Irina Yu. Goryacheva
Abstract:
The most important requirements for biochemical applicability of quantum dots (QDs) are: 1) the surface cap should render intact or improved optical properties; 2) mono-dispersion and good stability in aqueous phase in a wide range of pH and ionic strength values; 3) presence of functional groups, available for bioconjugation; 4) minimal impact from the environment on the QDs’ properties and, vice versa, minimal influence of the QDs’ components on the environment; and 5) stability against chemical/biochemical/physical influence. The latter is especially important for in vitro and in vivo applications. For example, some physical intracellular delivery strategies (e.g., electroporation) imply a rapid high-voltage electric field impulse in order to temporarily generate hydrophilic pores in the cell plasma membrane, necessary for the passive transportation of QDs into the cell. In this regard, it is interesting to investigate how different capping layers, which can provide high stability and sufficient fluorescent properties of QDs in a water solution, behave under these abnormal conditions. In this contribution, hydrophobic core-shell CdSe/CdS/CdZnS/ZnS QDs (λem=600 nm), produced by means of the Successive Ion Layer Adsorption and Reaction (SILAR) technique, were transferred to a water solution using two of the most commonly used methods: (i) encapsulation in an amphiphilic brush polymer based on poly(maleic anhydride-alt-1-octadecene) (PMAO) modified with polyethylene glycol (PEG) chains and (ii) silica covering. Polymer encapsulation preserves the initial ligands on the QDs’ surface owing to the hydrophobic attraction between the hydrophobic groups of the amphiphilic molecules and the surface hydrophobic groups of the QDs. This covering process allows maintaining the initial fluorescent properties, but it leads to a considerable increase of the QDs’ size. However, covering with a silica shell, by means of the reverse microemulsion method, allows maintaining both size and fluorescent properties of the initial QDs. The obtained water solutions of polymer covered and silica-coated QDs in three different concentrations were exposed to a low-voltage electric field for a short time and the fluorescent properties were investigated. It is shown that the PMAO-PEG polymer acquires some additional charges in the presence of the electric field, which causes repulsion between the polymer and the QDs’ surface. This process destroys the homogeneity of the whole amphiphilic shell and it dramatically decreases the fluorescent properties (dropping to 10% from its initial value) because of the direct contact of the QDs with the strongly oxidative environment (water). In contrast, a silica shell possesses dielectric properties which allow retaining 90% of its initial fluorescence intensity, even after a longer electric impact. Thus, silica shells are clearly a preferable covering for bio-application of QDs, because – besides the high uniform morphology, controlled size and biocompatibility – it allows protecting QDs from oxidation, even under the influence of an electric field.Keywords: electric field, polymer coating, quantum dots, silica covering, stability
Procedia PDF Downloads 46120492 Development of Ferrous-Aluminum Alloys from Recyclable Material by High Energy Milling
Authors: Arnold S. Freitas Neto, Rodrigo E. Coelho, Erick S. Mendonça
Abstract:
This study aimed to obtain an alloy of Iron and Aluminum in the proportion of 50% of atomicity for each constituent. Alloys were obtained by processing recycled aluminum and chips of 1200 series carbon steel in a high-energy mill. For the experiment, raw materials were processed thorough high energy milling before mixing the substances. Subsequently, the mixture of 1200 series carbon steel and Aluminum powder was carried out a milling process. Thereafter, hot compression was performed in a closed die in order to obtain the samples. The pieces underwent heat treatments, sintering and aging. Lastly, the composition and the mechanical properties of their hardness were analyzed. In this paper, results are compared with previous studies, which used iron powder of high purity instead of Carbon steel in the composition.Keywords: Fe-Al alloys, high energy milling, metallography characterization, powder metallurgy
Procedia PDF Downloads 31420491 Structural and Optoelectronic Properties of Monovalent Cation Doping PbS Thin Films
Authors: Melissa Chavez Portillo, Hector Juarez Santiesteban, Mauricio Pacio Castillo, Oscar Portillo Moreno
Abstract:
Nanocrystalline Li-doped PbS thin films have been deposited by chemical bath deposition technique. The goal of this work is to study the modification of the optoelectronic and structural properties of Lithium incorporation. The increase of Li doping in PbS thin films leads to an increase of band gap in the range of 1.4-2.3, consequently, quantum size effect becomes pronounced in the Li-doped PbS films, which lead to a significant enhancement in the optical band gap. Doping shows influence in the film growth and results in a reduction of crystallite size from 30 to 14 nm. The refractive index was calculated and a relationship with dielectric constant was investigated. The dc conductivities of Li-doped and undoped samples were measured in the temperature range 290-340K, the conductivity increase with increase of Lithium content in the PbS films.Keywords: doping, quantum confinement, optical band gap, PbS
Procedia PDF Downloads 38920490 Ultrasonic Investigation as Tool for Study of Molecular Interaction of 2-Hydroxy Substituted Pyrimidine Derivative at Different Concentrations
Authors: Shradha S. Binani, P. S. Bodke, R. V. Joat
Abstract:
Recent decades have witnessed an exponential growth in the field of acoustical parameters and ultrasound on solid, liquid and gases. Ultrasonic propagation parameters yield valuable information regarding the behavior of liquid systems because intra and intermolecular association, dipolar interaction, complex formation and related structural changes affecting the compressibility of the system which in turn produces variations in the ultrasonic velocity. The acoustic and thermo dynamical parameters obtained in ultrasonic study show that ion-solvation is accompanied by the destruction or enhancement of the solvent structure. In the present paper the ultrasonic velocity (v), density (ρ), viscosity(η) have been measured for the pharmacological important compound 2-hydroxy substituted phenyl pyrimidine derivative (2-hydroxy-4-(4’-methoxy phenyl)-6-(2’-hydroxy-4’-methyl-5’-chlorophenyl)pyrimidine) in ethanol as a solvent by using different concentration at constant room temperature. These experimental data have been used to estimate physical parameter like adiabatic compressibility, intermolecular free length, relaxation time, free volume, specific acoustic impedance, relative association, Wada’s constant, Rao’s constant etc. The above parameters provide information in understanding the structural and molecular interaction between solute-solvent in the drug solution with respect to change in concentration.Keywords: acoustical parameters, ultrasonic velocity, density, viscosity, 2-hydroxy substituted phenyl pyrimidine derivative
Procedia PDF Downloads 47320489 Assessment of Soil Contamination on the Content of Macro and Microelements and the Quality of Grass Pea Seeds (Lathyrus sativus L.)
Authors: Violina R. Angelova
Abstract:
Comparative research has been conducted to allow us to determine the content of macro and microelements in the vegetative and reproductive organs of grass pea and the quality of grass pea seeds, as well as to identify the possibility of grass pea growth on soils contaminated by heavy metals. The experiment was conducted on an agricultural field subjected to contamination from the Non-Ferrous-Metal Works (MFMW) near Plovdiv, Bulgaria. The experimental plots were situated at different distances of 0.5 km and 8 km, respectively, from the source of pollution. On reaching commercial ripeness the grass pea plants were gathered. The composition of the macro and microelements in plant materials (roots, stems, leaves, seeds), and the dry matter content, sugars, proteins, fats and ash contained in the grass pea seeds were determined. Translocation factors (TF) and bioaccumulation factor (BCF) were also determined. The quantitative measurements were carried out through inductively-coupled plasma (ICP). The grass pea plant can successfully be grown on soils contaminated by heavy metals. Soil pollution with heavy metals does not affect the quality of the grass pea seeds. The seeds of the grass pea contain significant amounts of nutrients (K, P, Cu, Fe Mn, Zn) and protein (23.18-29.54%). The distribution of heavy metals in the organs of the grass pea has a selective character, which reduces in the following order: leaves > roots > stems > seeds. BCF and TF values were greater than one suggesting efficient accumulation in the above ground parts of grass pea plant. Grass pea is a plant that is tolerant to heavy metals and can be referred to the accumulator plants. The results provide valuable information about the chemical and nutritional composition of the seeds of the grass pea grown on contaminated soils in Bulgaria. The high content of macro and microelements and the low concentrations of toxic elements in the grass pea grown in contaminated soil make it possible to use the seeds of the grass pea as animal feed.Keywords: Lathyrus sativus L, macroelements, microelements, quality
Procedia PDF Downloads 148