Search results for: UAV-based hyperspectral data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25307

Search results for: UAV-based hyperspectral data

22667 Fuzzy Expert Approach for Risk Mitigation on Functional Urban Areas Affected by Anthropogenic Ground Movements

Authors: Agnieszka A. Malinowska, R. Hejmanowski

Abstract:

A number of European cities are strongly affected by ground movements caused by anthropogenic activities or post-anthropogenic metamorphosis. Those are mainly water pumping, current mining operation, the collapse of post-mining underground voids or mining-induced earthquakes. These activities lead to large and small-scale ground displacements and a ground ruptures. The ground movements occurring in urban areas could considerably affect stability and safety of structures and infrastructures. The complexity of the ground deformation phenomenon in relation to the structures and infrastructures vulnerability leads to considerable constraints in assessing the threat of those objects. However, the increase of access to the free software and satellite data could pave the way for developing new methods and strategies for environmental risk mitigation and management. Open source geographical information systems (OS GIS), may support data integration, management, and risk analysis. Lately, developed methods based on fuzzy logic and experts methods for buildings and infrastructure damage risk assessment could be integrated into OS GIS. Those methods were verified base on back analysis proving their accuracy. Moreover, those methods could be supported by ground displacement observation. Based on freely available data from European Space Agency and free software, ground deformation could be estimated. The main innovation presented in the paper is the application of open source software (OS GIS) for integration developed models and assessment of the threat of urban areas. Those approaches will be reinforced by analysis of ground movement based on free satellite data. Those data would support the verification of ground movement prediction models. Moreover, satellite data will enable our mapping of ground deformation in urbanized areas. Developed models and methods have been implemented in one of the urban areas hazarded by underground mining activity. Vulnerability maps supported by satellite ground movement observation would mitigate the hazards of land displacements in urban areas close to mines.

Keywords: fuzzy logic, open source geographic information science (OS GIS), risk assessment on urbanized areas, satellite interferometry (InSAR)

Procedia PDF Downloads 161
22666 Internet of Things Based Patient Health Monitoring System

Authors: G. Yoga Sairam Teja, K. Harsha Vardhan, A. Vinay Kumar, K. Nithish Kumar, Ch. Shanthi Priyag

Abstract:

The emergence of the Internet of Things (IoT) has facilitated better device control and monitoring in the modern world. The constant monitoring of a patient would be drastically altered by the usage of IoT in healthcare. As we've seen in the case of the COVID-19 pandemic, it's important to keep oneself untouched while continuously checking on the patient's heart rate and temperature. Additionally, patients with paralysis should be closely watched, especially if they are elderly and in need of special care. Our "IoT BASED PATIENT HEALTH MONITORING SYSTEM" project uses IoT to track patient health conditions in an effort to address these issues. In this project, the main board is an 8051 microcontroller that connects a number of sensors, including a heart rate sensor, a temperature sensor (LM-35), and a saline water measuring circuit. These sensors are connected via an ESP832 (WiFi) module, which enables the sending of recorded data directly to the cloud so that the patient's health status can be regularly monitored. An LCD is used to monitor the data in offline mode, and a buzzer will sound if any variation from the regular readings occurs. The data in the cloud may be viewed as a graph, making it simple for a user to spot any unusual conditions.

Keywords: IoT, ESP8266, 8051 microcontrollers, sensors

Procedia PDF Downloads 91
22665 Readiness of Thai Restaurant in Bangkok in Applying for Certification of Halal Food Services Standard for Tourism

Authors: Pongsiri Kingkan

Abstract:

This research aims to study the Readiness of Thai Restaurant in Bangkok in Applying for Certification of Halal Food Services Standard for Tourism. This research was conduct by using mix methodology; both quantitative and qualitative data were used. 420 questionnaires were used as tools to collected data from the samples, the restaurant employees. The results were divided into two parts, the demographic data and the Readiness of Thai Restaurant in Bangkok in Applying for Certification of Halal Food Services Standard for Tourism. The majority of samples are single female age between 18–30 years old, who earn about 282.40 US dollars a month. The result of Thai restaurant readiness study demonstrated that readiness in foods and restaurant operating processes were scored at the lowest level. Readiness in social responsibility, food contact persons and food materials were rated at the low level. The readiness of utensils and kitchen tools, waste management, environmental management, and the availability of space to implement the establishment of halal food were scored at the average level. Location readiness, foods service safety and the relationship with the local community were rated at high level. But interestingly there is none of them rated at the highest level.

Keywords: availability, Bangkok, halal, Thai restaurant, readiness

Procedia PDF Downloads 318
22664 Designing an Editorialization Environment for Repeatable Self-Correcting Exercises

Authors: M. Kobylanski, D. Buskulic, P.-H. Duron, D. Revuz, F. Ruggieri, E. Sandier, C. Tijus

Abstract:

In order to design a cooperative e-learning platform, we observed teams of Teacher [T], Computer Scientist [CS] and exerciser's programmer-designer [ED] cooperating for the conception of a self-correcting exercise, but without the use of such a device in order to catch the kind of interactions a useful platform might provide. To do so, we first run a task analysis on how T, CS and ED should be cooperating in order to achieve, at best, the task of creating and implementing self-directed, self-paced, repeatable self-correcting exercises (RSE) in the context of open educational resources. The formalization of the whole process was based on the “objectives, activities and evaluations” theory of educational task analysis. Second, using the resulting frame as a “how-to-do it” guide, we run a series of three contrasted Hackathon of RSE-production to collect data about the cooperative process that could be later used to design the collaborative e-learning platform. Third, we used two complementary methods to collect, to code and to analyze the adequate survey data: the directional flow of interaction among T-CS-ED experts holding a functional role, and the Means-End Problem Solving analysis. Fourth, we listed the set of derived recommendations useful for the design of the exerciser as a cooperative e-learning platform. Final recommendations underline the necessity of building (i) an ecosystem that allows to sustain teams of T-CS-ED experts, (ii) a data safety platform although offering accessibility and open discussion about the production of exercises with their resources and (iii) a good architecture allowing the inheritance of parts of the coding of any exercise already in the data base as well as fast implementation of new kinds of exercises along with their associated learning activities.

Keywords: editorialization, open educational resources, pedagogical alignment, produsage, repeatable self-correcting exercises, team roles

Procedia PDF Downloads 125
22663 Unsupervised Learning of Spatiotemporally Coherent Metrics

Authors: Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun

Abstract:

Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.

Keywords: machine learning, pattern clustering, pooling, classification

Procedia PDF Downloads 458
22662 Creative Mapping Landuse and Human Activities: From the Inventories of Factories to the History of the City and Citizens

Authors: R. Tamborrino, F. Rinaudo

Abstract:

Digital technologies offer possibilities to effectively convert historical archives into instruments of knowledge able to provide a guide for the interpretation of historical phenomena. Digital conversion and management of those documents allow the possibility to add other sources in a unique and coherent model that permits the intersection of different data able to open new interpretations and understandings. Urban history uses, among other sources, the inventories that register human activities in a specific space (e.g. cadastres, censuses, etc.). The geographic localisation of that information inside cartographic supports allows for the comprehension and visualisation of specific relationships between different historical realities registering both the urban space and the peoples living there. These links that merge the different nature of data and documentation through a new organisation of the information can suggest a new interpretation of other related events. In all these kinds of analysis, the use of GIS platforms today represents the most appropriate answer. The design of the related databases is the key to realise the ad-hoc instrument to facilitate the analysis and the intersection of data of different origins. Moreover, GIS has become the digital platform where it is possible to add other kinds of data visualisation. This research deals with the industrial development of Turin at the beginning of the 20th century. A census of factories realized just prior to WWI provides the opportunity to test the potentialities of GIS platforms for the analysis of urban landscape modifications during the first industrial development of the town. The inventory includes data about location, activities, and people. GIS is shaped in a creative way linking different sources and digital systems aiming to create a new type of platform conceived as an interface integrating different kinds of data visualisation. The data processing allows linking this information to an urban space, and also visualising the growth of the city at that time. The sources, related to the urban landscape development in that period, are of a different nature. The emerging necessity to build, enlarge, modify and join different buildings to boost the industrial activities, according to their fast development, is recorded by different official permissions delivered by the municipality and now stored in the Historical Archive of the Municipality of Turin. Those documents, which are reports and drawings, contain numerous data on the buildings themselves, including the block where the plot is located, the district, and the people involved such as the owner, the investor, and the engineer or architect designing the industrial building. All these collected data offer the possibility to firstly re-build the process of change of the urban landscape by using GIS and 3D modelling technologies thanks to the access to the drawings (2D plans, sections and elevations) that show the previous and the planned situation. Furthermore, they access information for different queries of the linked dataset that could be useful for different research and targets such as economics, biographical, architectural, or demographical. By superimposing a layer of the present city, the past meets to the present-industrial heritage, and people meet urban history.

Keywords: digital urban history, census, digitalisation, GIS, modelling, digital humanities

Procedia PDF Downloads 191
22661 Relationship between Quality of Life and Perceived Stress among Teachers of Physical Education

Authors: Minu Lakra

Abstract:

The present study was done on 100 (male=50 and female=50) teachers of physical education at tertiary level from Varanasi city. They were chosen according to the stratified sampling method. Data collection tool was Perceived Stress Scale: 14 items (Cohen, Kamarck and mermelstain 1983) and Quality of Life was developed by THE WHOQOL GROUP in 1991. Data was analyzed with the help of correlation. Findings explore that perceived stress and quality of life has been positively correlated in female teachers of higher education from physical education whereas in male teachers the relationship was found insignificant.

Keywords: higher education, male and female teachers , percieved stress, quality of life

Procedia PDF Downloads 357
22660 The Epidemiology of Hospital Maternal Deaths, Haiti 2017-2020

Authors: Berger Saintius, Edna Ariste, Djeamsly Salomon

Abstract:

Background: Maternal mortality is a preventable global health problem that affects developed, developing, and underdeveloped countries alike. Globally, maternal mortality rates have declined since 1990, but 830 women die every day from pregnancy and childbirth-related causes that are often preventable. Haiti, with a number of 529 maternal deaths per 100,000 live births, is one of the countries with the highest maternal mortality rate in the Caribbean. This study consists of analyzing maternal death surveillance data in Haiti from 2017-2020. Method : A descriptive study was conducted; data were extracted from the National Epidemiological Surveillance Network of maternal deaths from 2017 to 2020. Sociodemographic variables were analyzed. Excel and Epi Info 7.2 were used for data analysis. Frequency and proportion measurements were calculated. Results: 756 deaths were recorded for the study period: 42 (6%) in 2017, 168 (22%) in 2018, 265 (35%) in 2019, and 281 (37%) in 2020. The North Department recorded the highest number of deaths, 167 (22%). 83(11%) in Les Cayes. 96% of these deaths are people aged between 15 and 49. Conclusion. Maternal mortality is a major health problem in Haiti. Mobilization, participation, and involvement of communities, increase in obstetric care coverage and promotion of Family Planning are among the strategies to fight this problem.

Keywords: epidemiology, maternal death, hospital, Haiti

Procedia PDF Downloads 92
22659 Multi-Criteria Inventory Classification Process Based on Logical Analysis of Data

Authors: Diana López-Soto, Soumaya Yacout, Francisco Ángel-Bello

Abstract:

Although inventories are considered as stocks of money sitting on shelve, they are needed in order to secure a constant and continuous production. Therefore, companies need to have control over the amount of inventory in order to find the balance between excessive and shortage of inventory. The classification of items according to certain criteria such as the price, the usage rate and the lead time before arrival allows any company to concentrate its investment in inventory according to certain ranking or priority of items. This makes the decision making process for inventory management easier and more justifiable. The purpose of this paper is to present a new approach for the classification of new items based on the already existing criteria. This approach is called the Logical Analysis of Data (LAD). It is used in this paper to assist the process of ABC items classification based on multiple criteria. LAD is a data mining technique based on Boolean theory that is used for pattern recognition. This technique has been tested in medicine, industry, credit risk analysis, and engineering with remarkable results. An application on ABC inventory classification is presented for the first time, and the results are compared with those obtained when using the well-known AHP technique and the ANN technique. The results show that LAD presented very good classification accuracy.

Keywords: ABC multi-criteria inventory classification, inventory management, multi-class LAD model, multi-criteria classification

Procedia PDF Downloads 886
22658 Tests for Zero Inflation in Count Data with Measurement Error in Covariates

Authors: Man-Yu Wong, Siyu Zhou, Zhiqiang Cao

Abstract:

In quality of life, health service utilization is an important determinant of medical resource expenditures on Colorectal cancer (CRC) care, a better understanding of the increased utilization of health services is essential for optimizing the allocation of healthcare resources to services and thus for enhancing the service quality, especially for high expenditure on CRC care like Hong Kong region. In assessing the association between the health-related quality of life (HRQOL) and health service utilization in patients with colorectal neoplasm, count data models can be used, which account for over dispersion or extra zero counts. In our data, the HRQOL evaluation is a self-reported measure obtained from a questionnaire completed by the patients, misreports and variations in the data are inevitable. Besides, there are more zero counts from the observed number of clinical consultations (observed frequency of zero counts = 206) than those from a Poisson distribution with mean equal to 1.33 (expected frequency of zero counts = 156). This suggests that excess of zero counts may exist. Therefore, we study tests for detecting zero-inflation in models with measurement error in covariates. Method: Under classical measurement error model, the approximate likelihood function for zero-inflation Poisson regression model can be obtained, then Approximate Maximum Likelihood Estimation(AMLE) can be derived accordingly, which is consistent and asymptotically normally distributed. By calculating score function and Fisher information based on AMLE, a score test is proposed to detect zero-inflation effect in ZIP model with measurement error. The proposed test follows asymptotically standard normal distribution under H0, and it is consistent with the test proposed for zero-inflation effect when there is no measurement error. Results: Simulation results show that empirical power of our proposed test is the highest among existing tests for zero-inflation in ZIP model with measurement error. In real data analysis, with or without considering measurement error in covariates, existing tests, and our proposed test all imply H0 should be rejected with P-value less than 0.001, i.e., zero-inflation effect is very significant, ZIP model is superior to Poisson model for analyzing this data. However, if measurement error in covariates is not considered, only one covariate is significant; if measurement error in covariates is considered, only another covariate is significant. Moreover, the direction of coefficient estimations for these two covariates is different in ZIP regression model with or without considering measurement error. Conclusion: In our study, compared to Poisson model, ZIP model should be chosen when assessing the association between condition-specific HRQOL and health service utilization in patients with colorectal neoplasm. and models taking measurement error into account will result in statistically more reliable and precise information.

Keywords: count data, measurement error, score test, zero inflation

Procedia PDF Downloads 289
22657 Extent of Derivative Usage, Firm Value and Risk: An Empirical Study on Pakistan Non-Financial Firms

Authors: Atia Alam

Abstract:

Growing liberalisation and intense market competition increase firm’s risk exposure and induce corporations to use derivatives extensively as a risk management instrument, which results in decrease in firm’s risk, and increase in value. Present study contributes towards existing literature by providing an in-depth analysis regarding the effect of extent of derivative usage on firm’s risk and value by using panel data models and seemingly unrelated regression technique. New evidence is established in current literature by dividing the sample data based on firm’s Exchange Rate (ER) and Interest Rate (IR) exposure. Analysis is performed for the effect of extent of derivative usage on firm’s risk and value and its variation with respect to the ER and IR exposure. Sample data consists of 166 Pakistani firms listed on Pakistan stock exchange for the period of 2004-2010. Results show that extensive usage of derivative instruments significantly increases firm value and reduces firm’s risk. Furthermore, comprehensive analysis depicts that Pakistani corporations having higher exchange rate exposure, with respect to foreign sales, and higher interest rate exposure, on the basis of industry adjusted leverage, have higher firm value and lower risk. Findings from seemingly unrelated regression also provide robustness to results obtained through panel data analysis. Study also highlights the role of derivative usage as a risk management instrument in high and low ER and IR risk and helps practitioners in understanding how value increasing effect of extent of derivative usage varies with the intensity of firm’s risk exposure.

Keywords: extent of derivative usage, firm value, risk, Pakistan, non-financial firms

Procedia PDF Downloads 359
22656 Governance vs Diaspora Remittances for Sustainable Development: A Case of Rwanda and Kenya

Authors: Albert Maake, Ifunanya Isama

Abstract:

International remittances to developing countries reached US$ 485 billion in 2018. By 2015, the East African region had surpassed US$3.5 mark. Considering this, there is no argument as to the contribution of Diaspora remittances as an alternative source of funds in the development process of the developing countries. Nevertheless, this paper seeks to argue that good governance in areas such as policy design, implementation and monitoring play a critical role in the sustainable development process of a nation as opposed to Diaspora remittances in general. Therefore this study intends at analyzing the contribution of Governance as opposed to that of Diaspora remittances for nation development. Employing documentary analysis technique, the secondary data with respect to the countries under study on Diaspora remittances will be collected. Selected indicators for Governance-HDI, Debt-to-GDP Ratio and Corruption Index, will be sourced from the World Bank Data for the purpose of consistency and where applicable the Central Statistical Agencies of the Nations under study. By means of descriptive statistics and content analysis the data will be comparatively analyzed to highlight the unique experiences in Rwanda and Kenya. The findings and interpretations from the study will affirm and promote capacity building for best practices in good governance for the countries under study.

Keywords: diaspora remittance, governance, Kenya, Rwanda, sustainable development

Procedia PDF Downloads 136
22655 The Antecedent Variables of Government Financial Accounting System (SAKD) Implementation and Its Consequences: Empirical Study on the Device of Regional Coordinating Agency for Development of Cross County, City Region III Central Java Province, Indo

Authors: Dona Primasari

Abstract:

This study examines the antecedent variables of Government Financial Acccounting System (SAKD) implementation and its consequence. The antecedent variables are: decentralization of decision making, adaptation, and the manager support. The consequences are satisfaction and performance officer. This research represents the empirical test which used convenience sampling technics in data collection. The data were collected from 167 officers of local government in the Regional Coordinating Agency for Development of Cross County/City Region III Central Java Province. Data analysis used Structural Equation Model (SEM) with the AMOS 18.0 program. The result of hypothesis examination indicates that six raised hypothesis are accepted and two hypothesis are rejected.

Keywords: decentralization of decision making, adaptation officer, manager support, implementation of Government Accounting Financial System (SAKD), satisfaction and performance officer

Procedia PDF Downloads 390
22654 The Role of Artificial Intelligence in Criminal Procedure

Authors: Herke Csongor

Abstract:

The artificial intelligence (AI) has been used in the United States of America in the decisionmaking process of the criminal justice system for decades. In the field of law, including criminal law, AI can provide serious assistance in decision-making in many places. The paper reviews four main areas where AI still plays a role in the criminal justice system and where it is expected to play an increasingly important role. The first area is the predictive policing: a number of algorithms are used to prevent the commission of crimes (by predicting potential crime locations or perpetrators). This may include the so-called linking hot-spot analysis, crime linking and the predictive coding. The second area is the Big Data analysis: huge amounts of data sets are already opaque to human activity and therefore unprocessable. Law is one of the largest producers of digital documents (because not only decisions, but nowadays the entire document material is available digitally), and this volume can only and exclusively be handled with the help of computer programs, which the development of AI systems can have an increasing impact on. The third area is the criminal statistical data analysis. The collection of statistical data using traditional methods required enormous human resources. The AI is a huge step forward in that it can analyze the database itself, based on the requested aspects, a collection according to any aspect can be available in a few seconds, and the AI itself can analyze the database and indicate if it finds an important connection either from the point of view of crime prevention or crime detection. Finally, the use of AI during decision-making in both investigative and judicial fields is analyzed in detail. While some are skeptical about the future role of AI in decision-making, many believe that the question is not whether AI will participate in decision-making, but only when and to what extent it will transform the current decision-making system.

Keywords: artificial intelligence, international criminal cooperation, planning and organizing of the investigation, risk assessment

Procedia PDF Downloads 43
22653 The Impact of Motivation on English Language Learning: A Study of HSC Students of Jatir Janak Bangabandhu Sheikh Mujibur Rahman Government College, Dhaka, Bangladesh

Authors: Farina Yasmin

Abstract:

Motivation is an important issue in an EFL setting where very little exposure to English in everyday life is clearly evident. In Bangladesh, English is taught as a foreign language. Language teachers cannot effectively teach a language if they do not understand the relationship between motivation and its effect on foreign language learning. The main purpose of this research is to explore the fact why HSC students are less motivated towards English language learning, what factors are affecting motivation, how to motivate them and the role of motivation in their success. The research questions were (a) what are the reasons of lack of motivation? and (b) what are the impacts of motivation on English language learning? The study was both qualitative and quantitative in nature. The data was collected via pretest - posttest, interviews, and a questionnaire on the five point Likert scale. Triangulation of the data was made for the validity of the research. The population of this research consisted of 50 HSC level students from Jatir Janak Bangabandhu Sheikh Mujibur Rahman Government College, Dhaka, Bangladesh. The data was analyzed with means, comparison and t-test. The results showed that there is a strong relation between motivation and success in foreign language learning. Finally, some pedagogical implications and suggestions were presented to arouse the students’ motivation to learn English.

Keywords: EFL, HSC, motivation, success

Procedia PDF Downloads 380
22652 Podemos Party Origin: From Social Protest to Spanish Parliament

Authors: Víctor Manuel Muñoz-Sánchez, Antonio Manuel Pérez-Flores

Abstract:

This paper analyzes the institutionalization of social protest in Spain. In the current crisis Podemos party seems to represent the political positions of the most affected citizens by the economic situation. It studies using quantitative techniques (statistical bivariate analysis), focusing on the exploitation of several bases of statistics data from the Center for Sociological and Research of Spanish Government, 15M movement characterization to its institutionalization in the Podemos party. Making a comparison between the participant's profile by the 15M and the social bases of Podemos votes. Data on the transformation of the socio-demographic profile of the fans, connoisseurs and 15M participants and voters are given.

Keywords: collective action, emerging parties, political parties, social protest

Procedia PDF Downloads 390
22651 Inter-Cell-Interference Mitigation Scheme in Wireless Communication System

Authors: Jae-Hyun Ro, Yong-Jun Kim, Eui-Hak Lee, Hyoung-Kyu Song

Abstract:

Mobile communication has been developing very rapidly since it appeared. However, although mobile communication market has been rapidly developing, many mobile users are not offered good quality of service (QoS) due to increment of the amount of data traffic. Recently, femtocell is very hot issue in mobile communication because femtocell can solve the problems of data traffic and offer better QoS to mobile users. However, the deployment of femtocell in existing macrocell coverage area is not so simple due to the influence of inter-cell-interference (ICI) with existing macrocell. Thus, this paper proposes femtocell scheme which is able to reduce the influence of ICI to deploy femtocell easily.

Keywords: CDD, femtocell, interference, macrocell, OFDM

Procedia PDF Downloads 502
22650 Security Analysis and Implementation of Achterbahn-128 for Images Encryption

Authors: Aissa Belmeguenai, Oulaya Berrak, Khaled Mansouri

Abstract:

In this work, efficiency implementation and security evaluation of the keystream generator of Achterbahn-128 for images encryption and decryption was introduced. The implementation for this simulated project is written with MATLAB.7.5. First of all, two different original images are used to validate the proposed design. The developed program is used to transform the original images data into digital image file. Finally, the proposed program is implemented to encrypt and decrypt images data. Several tests are done to prove the design performance, including visual tests and security evaluation.

Keywords: Achterbahn-128, keystream generator, stream cipher, image encryption, security analysis

Procedia PDF Downloads 316
22649 Computational Intelligence and Machine Learning for Urban Drainage Infrastructure Asset Management

Authors: Thewodros K. Geberemariam

Abstract:

The rapid physical expansion of urbanization coupled with aging infrastructure presents a unique decision and management challenges for many big city municipalities. Cities must therefore upgrade and maintain the existing aging urban drainage infrastructure systems to keep up with the demands. Given the overall contribution of assets to municipal revenue and the importance of infrastructure to the success of a livable city, many municipalities are currently looking for a robust and smart urban drainage infrastructure asset management solution that combines management, financial, engineering and technical practices. This robust decision-making shall rely on sound, complete, current and relevant data that enables asset valuation, impairment testing, lifecycle modeling, and forecasting across the multiple asset portfolios. On this paper, predictive computational intelligence (CI) and multi-class machine learning (ML) coupled with online, offline, and historical record data that are collected from an array of multi-parameter sensors are used for the extraction of different operational and non-conforming patterns hidden in structured and unstructured data to determine and produce actionable insight on the current and future states of the network. This paper aims to improve the strategic decision-making process by identifying all possible alternatives; evaluate the risk of each alternative, and choose the alternative most likely to attain the required goal in a cost-effective manner using historical and near real-time urban drainage infrastructure data for urban drainage infrastructures assets that have previously not benefited from computational intelligence and machine learning advancements.

Keywords: computational intelligence, machine learning, urban drainage infrastructure, machine learning, classification, prediction, asset management space

Procedia PDF Downloads 154
22648 Classification of Forest Types Using Remote Sensing and Self-Organizing Maps

Authors: Wanderson Goncalves e Goncalves, José Alberto Silva de Sá

Abstract:

Human actions are a threat to the balance and conservation of the Amazon forest. Therefore the environmental monitoring services play an important role as the preservation and maintenance of this environment. This study classified forest types using data from a forest inventory provided by the 'Florestal e da Biodiversidade do Estado do Pará' (IDEFLOR-BIO), located between the municipalities of Santarém, Juruti and Aveiro, in the state of Pará, Brazil, covering an area approximately of 600,000 hectares, Bands 3, 4 and 5 of the TM-Landsat satellite image, and Self - Organizing Maps. The information from the satellite images was extracted using QGIS software 2.8.1 Wien and was used as a database for training the neural network. The midpoints of each sample of forest inventory have been linked to images. Later the Digital Numbers of the pixels have been extracted, composing the database that fed the training process and testing of the classifier. The neural network was trained to classify two forest types: Rain Forest of Lowland Emerging Canopy (Dbe) and Rain Forest of Lowland Emerging Canopy plus Open with palm trees (Dbe + Abp) in the Mamuru Arapiuns glebes of Pará State, and the number of examples in the training data set was 400, 200 examples for each class (Dbe and Dbe + Abp), and the size of the test data set was 100, with 50 examples for each class (Dbe and Dbe + Abp). Therefore, total mass of data consisted of 500 examples. The classifier was compiled in Orange Data Mining 2.7 Software and was evaluated in terms of the confusion matrix indicators. The results of the classifier were considered satisfactory, and being obtained values of the global accuracy equal to 89% and Kappa coefficient equal to 78% and F1 score equal to 0,88. It evaluated also the efficiency of the classifier by the ROC plot (receiver operating characteristics), obtaining results close to ideal ratings, showing it to be a very good classifier, and demonstrating the potential of this methodology to provide ecosystem services, particularly in anthropogenic areas in the Amazon.

Keywords: artificial neural network, computational intelligence, pattern recognition, unsupervised learning

Procedia PDF Downloads 364
22647 Clinical Validation of an Automated Natural Language Processing Algorithm for Finding COVID-19 Symptoms and Complications in Patient Notes

Authors: Karolina Wieczorek, Sophie Wiliams

Abstract:

Introduction: Patient data is often collected in Electronic Health Record Systems (EHR) for purposes such as providing care as well as reporting data. This information can be re-used to validate data models in clinical trials or in epidemiological studies. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. Mentioning a disease in a discharge letter does not necessarily mean that a patient suffers from this disease. Many of them discuss a diagnostic process, different tests, or discuss whether a patient has a certain disease. The COVID-19 dataset in this study used natural language processing (NLP), an automated algorithm which extracts information related to COVID-19 symptoms, complications, and medications prescribed within the hospital. Free-text patient clinical patient notes are rich sources of information which contain patient data not captured in a structured form, hence the use of named entity recognition (NER) to capture additional information. Methods: Patient data (discharge summary letters) were exported and screened by an algorithm to pick up relevant terms related to COVID-19. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. A list of 124 Systematized Nomenclature of Medicine (SNOMED) Clinical Terms has been provided in Excel with corresponding IDs. Two independent medical student researchers were provided with a dictionary of SNOMED list of terms to refer to when screening the notes. They worked on two separate datasets called "A” and "B”, respectively. Notes were screened to check if the correct term had been picked-up by the algorithm to ensure that negated terms were not picked up. Results: Its implementation in the hospital began on March 31, 2020, and the first EHR-derived extract was generated for use in an audit study on June 04, 2020. The dataset has contributed to large, priority clinical trials (including International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) by bulk upload to REDcap research databases) and local research and audit studies. Successful sharing of EHR-extracted datasets requires communicating the provenance and quality, including completeness and accuracy of this data. The results of the validation of the algorithm were the following: precision (0.907), recall (0.416), and F-score test (0.570). Percentage enhancement with NLP extracted terms compared to regular data extraction alone was low (0.3%) for relatively well-documented data such as previous medical history but higher (16.6%, 29.53%, 30.3%, 45.1%) for complications, presenting illness, chronic procedures, acute procedures respectively. Conclusions: This automated NLP algorithm is shown to be useful in facilitating patient data analysis and has the potential to be used in more large-scale clinical trials to assess potential study exclusion criteria for participants in the development of vaccines.

Keywords: automated, algorithm, NLP, COVID-19

Procedia PDF Downloads 103
22646 Solubility of Water in CO2 Mixtures at Pipeline Operation Conditions

Authors: Mohammad Ahmad, Sander Gersen, Erwin Wilbers

Abstract:

Carbon capture, transport and underground storage have become a major solution to reduce CO2 emissions from power plants and other large CO2 sources. A big part of this captured CO2 stream is transported at high pressure dense phase conditions and stored in offshore underground depleted oil and gas fields. CO2 is also transported in offshore pipelines to be used for enhanced oil and gas recovery. The captured CO2 stream with impurities may contain water that causes severe corrosion problems, flow assurance failure and might damage valves and instrumentations. Thus, free water formation should be strictly prevented. The purpose of this work is to study the solubility of water in pure CO2 and in CO2 mixtures under real pipeline pressure (90-150 bar) and temperature operation conditions (5-35°C). A set up was constructed to generate experimental data. The results show the solubility of water in CO2 mixtures increasing with the increase of the temperature or/and with the increase in pressure. A drop in water solubility in CO2 is observed in the presence of impurities. The data generated were then used to assess the capabilities of two mixture models: the GERG-2008 model and the EOS-CG model. By generating the solubility data, this study contributes to determine the maximum allowable water content in CO2 pipelines.

Keywords: carbon capture and storage, water solubility, equation of states, fluids engineering

Procedia PDF Downloads 306
22645 Climate Trends, Variability, and Impacts of El Niño-Southern Oscillation on Rainfall Amount in Ethiopia

Authors: Zerihun Yohannes Amare, Belayneh Birku Geremew, Nigatu Melise Kebede, Sisaynew Getahun Amera

Abstract:

In Ethiopia, agricultural production is predominantly rainfed. The El Niño Southern Oscillation (ENSO) is the driver of climate variability, which affects the agricultural production system in the country. This paper aims to study trends, variability of rainfall, and impacts of El Niño Southern Oscillation (ENSO) on rainfall amount. The study was carried out in Ethiopia's Western Amhara National Regional State, which features a variety of seasons that characterize the nation. Monthly rainfall data were collected from fifteen meteorological stations of Western Amhara. Selected El Niño and La Niña years were also extracted from National Oceanic and Atmospheric Administration (NOAA) from 1986 to 2015. Once the data quality was checked and inspected, the monthly rainfall data of the selected stations were arranged in Microsoft Excel Spreadsheet and analyzed using XLSTAT software. The coefficient of variation and the Mann-Kendall non-parametric statistical test was employed to analyze trends and variability of rainfall and temperature. The long-term recorded annual rainfall data indicated that there was an increasing trend from 1986 to 2015 insignificantly. The rainfall variability was less (Coefficient of Variation, CV = 8.6%); also, the mean monthly rainfall of Western Amhara decreased during El Niño years and increased during La Niña years, especially in the rainy season (JJAS) over 30 years. This finding will be useful to suggest possible adaptation strategies and efficient use of resources during planning and implementation.

Keywords: rainfall, Mann-Kendall test, El Niño, La Niña, Western Amhara, Ethiopia

Procedia PDF Downloads 100
22644 Modification Encryption Time and Permutation in Advanced Encryption Standard Algorithm

Authors: Dalal N. Hammod, Ekhlas K. Gbashi

Abstract:

Today, cryptography is used in many applications to achieve high security in data transmission and in real-time communications. AES has long gained global acceptance and is used for securing sensitive data in various industries but has suffered from slow processing and take a large time to transfer data. This paper suggests a method to enhance Advance Encryption Standard (AES) Algorithm based on time and permutation. The suggested method (MAES) is based on modifying the SubByte and ShiftRrows in the encryption part and modification the InvSubByte and InvShiftRows in the decryption part. After the implementation of the proposal and testing the results, the Modified AES achieved good results in accomplishing the communication with high performance criteria in terms of randomness, encryption time, storage space, and avalanche effects. The proposed method has good randomness to ciphertext because this method passed NIST statistical tests against attacks; also, (MAES) reduced the encryption time by (10 %) than the time of the original AES; therefore, the modified AES is faster than the original AES. Also, the proposed method showed good results in memory utilization where the value is (54.36) for the MAES, but the value for the original AES is (66.23). Also, the avalanche effects used for calculating diffusion property are (52.08%) for the modified AES and (51.82%) percentage for the original AES.

Keywords: modified AES, randomness test, encryption time, avalanche effects

Procedia PDF Downloads 249
22643 Analysis of Secondary School Students' Perceptions about Information Technologies through a Word Association Test

Authors: Fetah Eren, Ismail Sahin, Ismail Celik, Ahmet Oguz Akturk

Abstract:

The aim of this study is to discover secondary school students’ perceptions related to information technologies and the connections between concepts in their cognitive structures. A word association test consisting of six concepts related to information technologies is used to collect data from 244 secondary school students. Concept maps that present students’ cognitive structures are drawn with the help of frequency data. Data are analyzed and interpreted according to the connections obtained as a result of the concept maps. It is determined students associate most with these concepts—computer, Internet, and communication of the given concepts, and associate least with these concepts—computer-assisted education and information technologies. These results show the concepts, Internet, communication, and computer, are an important part of students’ cognitive structures. In addition, students mostly answer computer, phone, game, Internet and Facebook as the key concepts. These answers show students regard information technologies as a means for entertainment and free time activity, not as a means for education.

Keywords: word association test, cognitive structure, information technology, secondary school

Procedia PDF Downloads 415
22642 Parameter Estimation for Contact Tracing in Graph-Based Models

Authors: Augustine Okolie, Johannes Müller, Mirjam Kretzchmar

Abstract:

We adopt a maximum-likelihood framework to estimate parameters of a stochastic susceptible-infected-recovered (SIR) model with contact tracing on a rooted random tree. Given the number of detectees per index case, our estimator allows to determine the degree distribution of the random tree as well as the tracing probability. Since we do not discover all infectees via contact tracing, this estimation is non-trivial. To keep things simple and stable, we develop an approximation suited for realistic situations (contract tracing probability small, or the probability for the detection of index cases small). In this approximation, the only epidemiological parameter entering the estimator is the basic reproduction number R0. The estimator is tested in a simulation study and applied to covid-19 contact tracing data from India. The simulation study underlines the efficiency of the method. For the empirical covid-19 data, we are able to compare different degree distributions and perform a sensitivity analysis. We find that particularly a power-law and a negative binomial degree distribution meet the data well and that the tracing probability is rather large. The sensitivity analysis shows no strong dependency on the reproduction number.

Keywords: stochastic SIR model on graph, contact tracing, branching process, parameter inference

Procedia PDF Downloads 82
22641 Big Data Analysis on the Development of Jinan’s Consumption Centers under the Influence of E-Commerce

Authors: Hang Wang, Xiaoming Gao

Abstract:

The rapid development of e-commerce has significantly transformed consumer behavior and urban consumption patterns worldwide. This study explores the impact of e-commerce on the development and spatial distribution of consumption centers, with a particular focus on Jinan City, China. Traditionally, urban consumption centers are defined by physical commercial spaces, such as shopping malls and markets. However, the rise of e-commerce has introduced a shift towards virtual consumption hubs, with a corresponding impact on physical retail locations. Utilizing Gaode POI (Point of Interest) data, this research aims to provide a comprehensive analysis of the spatial distribution of consumption centers in Jinan, comparing e-commerce-driven virtual consumption hubs with traditional physical consumption centers. The study methodology involves gathering and analyzing POI data, focusing on logistics distribution for e-commerce activities and mobile charging point locations to represent offline consumption behavior. A spatial clustering technique is applied to examine the concentration of commercial activities and to identify emerging trends in consumption patterns. The findings reveal a clear differentiation between e-commerce and physical consumption centers in Jinan. E-commerce activities are dispersed across a wider geographic area, correlating closely with residential zones and logistics centers, while traditional consumption hubs remain concentrated around historical and commercial areas such as Honglou and the old city center. Additionally, the research identifies an ongoing transition within Jinan’s consumption landscape, with online and offline retail coexisting, though at different spatial and functional levels. This study contributes to urban planning by providing insights into how e-commerce is reshaping consumption behaviors and spatial structures in cities like Jinan. By leveraging big data analytics, the research offers a valuable tool for urban designers and planners to adapt to the evolving demands of digital commerce and to optimize the spatial layout of city infrastructure to better serve the needs of modern consumers.

Keywords: big data, consumption centers, e-commerce, urban planning, jinan

Procedia PDF Downloads 28
22640 The Potential Threat of Cyberterrorism to the National Security: Theoretical Framework

Authors: Abdulrahman S. Alqahtani

Abstract:

The revolution of computing and networks could revolutionise terrorism in the same way that it has brought about changes in other aspects of life. The modern technological era has faced countries with a new set of security challenges. There are many states and potential adversaries who have the potential and capacity in cyberspace, which makes them able to carry out cyber-attacks in the future. Some of them are currently conducting surveillance, gathering and analysis of technical information, and mapping of networks and nodes and infrastructure of opponents, which may be exploited in future conflicts. This poster presents the results of the quantitative study (survey) to test the validity of the proposed theoretical framework for the cyber terrorist threats. This theoretical framework will help to in-depth understand these new digital terrorist threats. It may also be a practical guide for managers and technicians in critical infrastructure, to understand and assess the threats they face. It might also be the foundation for building a national strategy to counter cyberterrorism. In the beginning, it provides basic information about the data. To purify the data, reliability and exploratory factor analysis, as well as confirmatory factor analysis (CFA) were performed. Then, Structural Equation Modelling (SEM) was utilised to test the final model of the theory and to assess the overall goodness-of-fit between the proposed model and the collected data set.

Keywords: cyberterrorism, critical infrastructure, , national security, theoretical framework, terrorism

Procedia PDF Downloads 408
22639 Encryption and Decryption of Nucleic Acid Using Deoxyribonucleic Acid Algorithm

Authors: Iftikhar A. Tayubi, Aabdulrahman Alsubhi, Abdullah Althrwi

Abstract:

The deoxyribonucleic acid text provides a single source of high-quality Cryptography about Deoxyribonucleic acid sequence for structural biologists. We will provide an intuitive, well-organized and user-friendly web interface that allows users to encrypt and decrypt Deoxy Ribonucleic Acid sequence text. It includes complex, securing by using Algorithm to encrypt and decrypt Deoxy Ribonucleic Acid sequence. The utility of this Deoxy Ribonucleic Acid Sequence Text is that, it can provide a user-friendly interface for users to Encrypt and Decrypt store the information about Deoxy Ribonucleic Acid sequence. These interfaces created in this project will satisfy the demands of the scientific community by providing fully encrypt of Deoxy Ribonucleic Acid sequence during this website. We have adopted a methodology by using C# and Active Server Page.NET for programming which is smart and secure. Deoxy Ribonucleic Acid sequence text is a wonderful piece of equipment for encrypting large quantities of data, efficiently. The users can thus navigate from one encoding and store orange text, depending on the field for user’s interest. Algorithm classification allows a user to Protect the deoxy ribonucleic acid sequence from change, whether an alteration or error occurred during the Deoxy Ribonucleic Acid sequence data transfer. It will check the integrity of the Deoxy Ribonucleic Acid sequence data during the access.

Keywords: algorithm, ASP.NET, DNA, encrypt, decrypt

Procedia PDF Downloads 237
22638 Repairing Broken Trust: The Influence of Positive Induced Emotion and Gender

Authors: Zach Banzon, Marina Caculitan, Gianne Laisac, Stephanie Lopez, Marguerite Villegas

Abstract:

The role of incidental positive emotions and gender on people’s trust decisions have been established by existing research. The aim of this experiment is to address the gap in the literature by examining whether these factors will have a similar effect on trust behavior even after the experience of betrayal. A total of 144 undergraduate students participated in a trust game involving the anonymous interaction of a participant and a transgressor. Of these participants, only 125 (63 males and 62 females) were included in the data analyses. A story was used to prime incidental positive emotions or emotions originally unrelated to the trustee. Recovered trust was measured by relating the proportion of the money passed before and after betrayal. Data was analyzed using two-way analysis of variance having two levels for gender (male, female) and two for priming (with, without), with trust propensity scores entered as a covariate. It was predicted that trust recovery will be more apparent in females than in males but the data obtained was not significantly different between the genders. Induced positive emotions, however, had a statistically significant effect on trust behavior even after betrayal. No significant interaction effect was found between induced positive emotion and gender. The experiment provides evidence that the manipulation of situational variables, to a certain extent, can facilitate the reparation of trust.

Keywords: gender effect, positive emotions, trust game, trust recovery

Procedia PDF Downloads 273