Search results for: mixed methods approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26774

Search results for: mixed methods approach

344 The Implantable MEMS Blood Pressure Sensor Model With Wireless Powering And Data Transmission

Authors: Vitaliy Petrov, Natalia Shusharina, Vitaliy Kasymov, Maksim Patrushev, Evgeny Bogdanov

Abstract:

The leading worldwide death reasons are ischemic heart disease and other cardiovascular illnesses. Generally, the common symptom is high blood pressure. Long-time blood pressure control is very important for the prophylaxis, correct diagnosis and timely therapy. Non-invasive methods which are based on Korotkoff sounds are impossible to apply often and for a long time. Implantable devices can combine longtime monitoring with high accuracy of measurements. The main purpose of this work is to create a real-time monitoring system for decreasing the death rate from cardiovascular diseases. These days implantable electronic devices began to play an important role in medicine. Usually implantable devices consist of a transmitter, powering which could be wireless with a special made battery and measurement circuit. Common problems in making implantable devices are short lifetime of the battery, big size and biocompatibility. In these work, blood pressure measure will be the focus because it’s one of the main symptoms of cardiovascular diseases. Our device will consist of three parts: the implantable pressure sensor, external transmitter and automated workstation in a hospital. The Implantable part of pressure sensors could be based on piezoresistive or capacitive technologies. Both sensors have some advantages and some limitations. The Developed circuit is based on a small capacitive sensor which is made of the technology of microelectromechanical systems (MEMS). The Capacitive sensor can provide high sensitivity, low power consumption and minimum hysteresis compared to the piezoresistive sensor. For this device, it was selected the oscillator-based circuit where frequency depends from the capacitance of sensor hence from capacitance one can calculate pressure. The external device (transmitter) used for wireless charging and signal transmission. Some implant devices for these applications are passive, the external device sends radio wave signal on internal LC circuit device. The external device gets reflected the signal from the implant and from a change of frequency is possible to calculate changing of capacitance and then blood pressure. However, this method has some disadvantages, such as the patient position dependence and static using. Developed implantable device doesn’t have these disadvantages and sends blood pressure data to the external part in real-time. The external device continuously sends information about blood pressure to hospital cloud service for analysis by a physician. Doctor’s automated workstation at the hospital also acts as a dashboard, which displays actual medical data of patients (which require attention) and stores it in cloud service. Usually, critical heart conditions occur few hours before heart attack but the device is able to send an alarm signal to the hospital for an early action of medical service. The system was tested with wireless charging and data transmission. These results can be used for ASIC design for MEMS pressure sensor.

Keywords: MEMS sensor, RF power, wireless data, oscillator-based circuit

Procedia PDF Downloads 560
343 Approximate-Based Estimation of Single Event Upset Effect on Statistic Random-Access Memory-Based Field-Programmable Gate Arrays

Authors: Mahsa Mousavi, Hamid Reza Pourshaghaghi, Mohammad Tahghighi, Henk Corporaal

Abstract:

Recently, Statistic Random-Access Memory-based (SRAM-based) Field-Programmable Gate Arrays (FPGAs) are widely used in aeronautics and space systems where high dependability is demanded and considered as a mandatory requirement. Since design’s circuit is stored in configuration memory in SRAM-based FPGAs; they are very sensitive to Single Event Upsets (SEUs). In addition, the adverse effects of SEUs on the electronics used in space are much higher than in the Earth. Thus, developing fault tolerant techniques play crucial roles for the use of SRAM-based FPGAs in space. However, fault tolerance techniques introduce additional penalties in system parameters, e.g., area, power, performance and design time. In this paper, an accurate estimation of configuration memory vulnerability to SEUs is proposed for approximate-tolerant applications. This vulnerability estimation is highly required for compromising between the overhead introduced by fault tolerance techniques and system robustness. In this paper, we study applications in which the exact final output value is not necessarily always a concern meaning that some of the SEU-induced changes in output values are negligible. We therefore define and propose Approximate-based Configuration Memory Vulnerability Factor (ACMVF) estimation to avoid overestimating configuration memory vulnerability to SEUs. In this paper, we assess the vulnerability of configuration memory by injecting SEUs in configuration memory bits and comparing the output values of a given circuit in presence of SEUs with expected correct output. In spite of conventional vulnerability factor calculation methods, which accounts any deviations from the expected value as failures, in our proposed method a threshold margin is considered depending on user-case applications. Given the proposed threshold margin in our model, a failure occurs only when the difference between the erroneous output value and the expected output value is more than this margin. The ACMVF is subsequently calculated by acquiring the ratio of failures with respect to the total number of SEU injections. In our paper, a test-bench for emulating SEUs and calculating ACMVF is implemented on Zynq-7000 FPGA platform. This system makes use of the Single Event Mitigation (SEM) IP core to inject SEUs into configuration memory bits of the target design implemented in Zynq-7000 FPGA. Experimental results for 32-bit adder show that, when 1% to 10% deviation from correct output is considered, the counted failures number is reduced 41% to 59% compared with the failures number counted by conventional vulnerability factor calculation. It means that estimation accuracy of the configuration memory vulnerability to SEUs is improved up to 58% in the case that 10% deviation is acceptable in output results. Note that less than 10% deviation in addition result is reasonably tolerable for many applications in approximate computing domain such as Convolutional Neural Network (CNN).

Keywords: fault tolerance, FPGA, single event upset, approximate computing

Procedia PDF Downloads 163
342 A Community Solution to Address Extensive Nitrate Contamination in the Lower Yakima Valley Aquifer

Authors: Melanie Redding

Abstract:

Historic widespread nitrate contamination of the Lower Yakima Valley aquifer in Washington State initiated a community-based effort to reduce nitrate concentrations to below-drinking water standards. This group commissioned studies on characterizing local nitrogen sources, deep soil assessments, drinking water, and assessing nitrate concentrations at the water table. Nitrate is the most prevalent groundwater contaminant with common sources from animal and human waste, fertilizers, plants and precipitation. It is challenging to address groundwater contamination when common sources, such as agriculture, on-site sewage systems, and animal production, are widespread. Remediation is not possible, so mitigation is essential. The Lower Yakima Valley is located over 175,000 acres, with a population of 56,000 residents. Approximately 25% of the population do not have access to safe, clean drinking water, and 20% of the population is at or below the poverty level. Agriculture is the primary economic land-use activity. Irrigated agriculture and livestock production make up the largest percentage of acreage and nitrogen load. Commodities include apples, grapes, hops, dairy, silage corn, triticale, alfalfa and cherries. These commodities are important to the economic viability of the residents of the Lower Yakima Valley, as well as Washington State. Mitigation of nitrate in groundwater is challenging. The goal is to ensure everyone has safe drinking water. There are no easy remedies due to the extensive and pervasiveness of the contamination. Monitoring at the water table indicates that 45% of the 30 spatially distributed monitoring wells exceeded the drinking water standard. This indicates that there are multiple sources that are impacting water quality. Washington State has several areas which have extensive groundwater nitrate contamination. The groundwater in these areas continues to degrade over time. However, the Lower Yakima Valley is being successful in addressing this health issue because of the following reasons: the community is engaged and committed; there is one common goal; there has been extensive public education and outreach to citizens; and generating credible data using sound scientific methods. Work in this area is continuing as an ambient groundwater monitoring network is established to assess the condition of the aquifer over time. Nitrate samples are being collected from 170 wells, spatially distributed across the aquifer. This research entails quarterly sampling for two years to characterize seasonal variability and then continue annually afterward. This assessment will provide the data to statistically determine trends in nitrate concentrations across the aquifer, over time. Thirty-three of these wells are monitoring wells that are screened across the aquifer. The water quality from these wells are indicative of activities at the land surface. Additional work is being conducted to identify land use management practices that are effective in limiting nitrate migration through the soil column. Tracking nitrate in the soil column every season is an important component of bridging land-use practices with the fate and transport of nitrate through the subsurface. Patience, tenacity, and the ability to think outside the box are essential for dealing with widespread nitrate contamination of groundwater.

Keywords: community, groundwater, monitoring, nitrate

Procedia PDF Downloads 149
341 Serum Concentration of the CCL7 Chemokine in Diabetic Pregnant Women during Pregnancy until the Postpartum Period

Authors: Fernanda Piculo, Giovana Vesentini, Gabriela Marini, Debora Cristina Damasceno, Angelica Mercia Pascon Barbosa, Marilza Vieira Cunha Rudge

Abstract:

Introduction: Women with previous gestational diabetes mellitus (GDM) were significantly more likely to have urinary incontinence (UI) and pelvic floor muscle dysfunction compared to non-diabetic women two years after a cesarean section. Additional results demonstrated that induced diabetes causes detrimental effects on pregnant rat urethral muscle. These results indicate the need for exploration of the mechanistic role of a recovery factor in female UI. Chemokine ligand 7 (CCL7) was significantly over expressed in rat serum, urethral and vaginal tissues immediately following induction of stress UI in a rat model simulating birth trauma. CCL7 over expression has shown potency for stimulating targeted stem cell migration and provide a translational link (clinical measurement) which further provide opportunities for treatment. The aim of this study was to investigate the CCL7 levels profile in diabetic pregnant women with urinary incontinence during pregnancy over the first year postpartum. Methods: This study was conducted in the Perinatal Diabetes Research Center of the Botucatu Medical School/UNESP, and was approved by the Research Ethics Committee of the Institution (CAAE: 20639813.0.0000.5411). The diagnosis of GDM was established between 24th and 28th gestational weeks, by the 75 g-OGTT test according to ADA’s criteria. Urinary incontinence was defined according to the International Continence Society and the CCL7 levels was measured by ELISA (R&D Systems, Catalog Number DCC700). Two hundred twelve women were classified into four study groups: normoglycemic continent (NC), normoglycemic incontinent (NI), diabetic continent (DC) and diabetic incontinent (DI). They were evaluated at six-time-points: 12-18, 24-28 and 34-38 gestational weeks, 24-48 hours, 6 weeks and 6-12 months postpartum. Results: At 12-18 weeks, it was possible to consider only two groups, continent and incontinent, because at this early gestational period has not yet been the diagnosis of GDM. The group with GDM and UI (DI group) showed lower levels of CCL7 in all time points during pregnancy and postpartum, compared to normoglycemic groups (NC and NI), indicating that these women have not recovered from child birth induced UI during the 6-12 months postpartum compared to their controls, and that the progression of UI and/or lack of recovery throughout the first postpartum year can be related with lower levels of CCL7. Instead, serum CCL7 was significantly increased in the NC group. Taken together, these findings of overexpression of CCL7 in the NC group and decreased levels in the DI group, could confirm that diabetes delays the recovery from child birth induced UI, and that CCL7 could potentially be used as a serum marker of injury. Conclusion: This study demonstrates lower levels of CCL7 in the DI group during pregnancy and postpartum and suggests that the progression of UI in diabetic women and/or lack of recovery throughout the first postpartum year can be related with low levels of CCL7. This provides a translational potential where CCL7 measurement could be used as a surrogate for injury after delivery. Successful controlled CCL7 mediated stem cell homing to the lower urinary tract could one day introduce the potential for non-operative treatment or prevention of stress urinary incontinence.

Keywords: CCL7, gestational diabetes, pregnancy, urinary incontinence

Procedia PDF Downloads 310
340 Accountability of Artificial Intelligence: An Analysis Using Edgar Morin’s Complex Thought

Authors: Sylvie Michel, Sylvie Gerbaix, Marc Bidan

Abstract:

Artificial intelligence (AI) can be held accountable for its detrimental impacts. This question gains heightened relevance given AI's pervasive reach across various domains, magnifying its power and potential. The expanding influence of AI raises fundamental ethical inquiries, primarily centering on biases, responsibility, and transparency. This encompasses discriminatory biases arising from algorithmic criteria or data, accidents attributed to autonomous vehicles or other systems, and the imperative of transparent decision-making. This article aims to stimulate reflection on AI accountability, denoting the necessity to elucidate the effects it generates. Accountability comprises two integral aspects: adherence to legal and ethical standards and the imperative to elucidate the underlying operational rationale. The objective is to initiate a reflection on the obstacles to this "accountability," facing the challenges of the complexity of artificial intelligence's system and its effects. Then, this article proposes to mobilize Edgar Morin's complex thought to encompass and face the challenges of this complexity. The first contribution is to point out the challenges posed by the complexity of A.I., with fractional accountability between a myriad of human and non-human actors, such as software and equipment, which ultimately contribute to the decisions taken and are multiplied in the case of AI. Accountability faces three challenges resulting from the complexity of the ethical issues combined with the complexity of AI. The challenge of the non-neutrality of algorithmic systems as fully ethically non-neutral actors is put forward by a revealing ethics approach that calls for assigning responsibilities to these systems. The challenge of the dilution of responsibility is induced by the multiplicity and distancing between the actors. Thus, a dilution of responsibility is induced by a split in decision-making between developers, who feel they fulfill their duty by strictly respecting the requests they receive, and management, which does not consider itself responsible for technology-related flaws. Accountability is confronted with the challenge of transparency of complex and scalable algorithmic systems, non-human actors self-learning via big data. A second contribution involves leveraging E. Morin's principles, providing a framework to grasp the multifaceted ethical dilemmas and subsequently paving the way for establishing accountability in AI. When addressing the ethical challenge of biases, the "hologrammatic" principle underscores the imperative of acknowledging the non-ethical neutrality of algorithmic systems inherently imbued with the values and biases of their creators and society. The "dialogic" principle advocates for the responsible consideration of ethical dilemmas, encouraging the integration of complementary and contradictory elements in solutions from the very inception of the design phase. Aligning with the principle of organizing recursiveness, akin to the "transparency" of the system, it promotes a systemic analysis to account for the induced effects and guides the incorporation of modifications into the system to rectify deviations and reintroduce modifications into the system to rectify its drifts. In conclusion, this contribution serves as an inception for contemplating the accountability of "artificial intelligence" systems despite the evident ethical implications and potential deviations. Edgar Morin's principles, providing a lens to contemplate this complexity, offer valuable perspectives to address these challenges concerning accountability.

Keywords: accountability, artificial intelligence, complexity, ethics, explainability, transparency, Edgar Morin

Procedia PDF Downloads 37
339 The Multiplier Effects of Intelligent Transport System to Nigerian Economy

Authors: Festus Okotie

Abstract:

Nigeria is the giant of Africa with great and diverse transport potentials yet to be fully tapped into and explored.it is the most populated nation in Africa with nearly 200 million people, the sixth largest oil producer overall and largest oil producer in Africa with proven oil and gas reserves of 37 billion barrels and 192 trillion cubic feet, over 300 square kilometers of arable land and significant deposits of largely untapped minerals. A world bank indicator which measures trading across border ranked Nigeria at 183 out of 185 countries in 2017 and although different governments in the past made efforts through different interventions such as 2007 ports reforms led by Ngozi Okonjo-Iweala, a former minister of Finance and world bank managing director also attempted to resolve some of the challenges such as infrastructure shortcomings, policy and regulatory inconsistencies, overlapping functions and duplicated roles among the different MDA’S. It is one of the fundamental structures smart nations and cities are using to improve the living conditions of its citizens and achieving sustainability. Examples of some of its benefits includes tracking high pedestrian areas, traffic patterns, railway stations, planning and scheduling bus times, it also enhances interoperability, creates alerts of transport situation and has swift capacity to share information among the different platforms and transport modes. It also offers a comprehensive approach to risk management, putting emergency procedures and response capabilities in place, identifying dangers, including vandalism or violence, fare evasion, and medical emergencies. The Nigerian transport system is urgently in need of modern infrastructures such as ITS. Smart city transport technology helps cities to function productively, while improving services for businesses and lives of is citizens. This technology has the ability to improve travel across traditional modes of transport, such as cars and buses, with immediate benefits for city dwellers and also helps in managing transport systems such as dangerous weather conditions, heavy traffic, and unsafe speeds which can result in accidents and loss of lives. Intelligent transportation systems help in traffic control such as permitting traffic lights to react to changing traffic patterns, instead of working on a fixed schedule in traffic. Intelligent transportation systems is very important in Nigeria’s transportation sector and so would require trained personnel to drive its efficiency to greater height because the purpose of introducing it is to add value and at the same time reduce motor vehicle miles and traffic congestion which is a major challenge around Tin can island and Apapa Port, a major transportation hub in Nigeria. The need for the federal government, state governments, houses of assembly to organise a national transportation workshop to begin the process of addressing the challenges in our nation’s transport sector is highly expedient and so bills that will facilitate the implementation of policies to promote intelligent transportation systems needs to be sponsored because of its potentials to create thousands of jobs for our citizens, provide farmers with better access to cities and a better living condition for Nigerians.

Keywords: intelligent, transport, system, Nigeria

Procedia PDF Downloads 91
338 Effect of Resistance Exercise on Hypothalamic-Pituitary-Gonadal Axis

Authors: Alireza Barari, Saeed Shirali, Ahmad Abdi

Abstract:

Abstract: Introduction: Physical activity may be related to male reproductive function by affecting on thehypothalamic-pituitary-gonadal(HPG) axis. Our aim was to determine the effects of 6 weeks resistance exercise on reproductive hormones, HPG axis. The hypothalamic-pituitary-gonadal (HPG) axis refers tothe effects of endocrine glands in three-level including (i) the hypothalamic releasing hormone GnRH, which is synthesized in in a small heterogenous neuronal population and released in a pulsatile fashion, (ii) the anterior pituitary hormones, follicle-stimulating hormone(FSH) and luteinizing hormone (LH) and (iii) the gonadal hormones, which include both steroid such as testosterone (T), estradiol and progesterone and peptide hormones (such as inhibin). Hormonal changes that create a more anabolic environment have been suggested to contribute to the adaptation to strength exercise. Physical activity has an extensive impact on male reproductive function depending upon the intensity and duration of the exercise and the fitness level of the individual. However, strenuous exercise represents a physical stress and inflammation changed that challenges homeostasis. Materials and methods: Sixteen male volunteered were included in a 6-week control period followed by 6 weeks of resistance training (leg press, lat pull, chest press, squat, seatedrow, abdominal crunch, shoulder press, biceps curl and triceps press down) four times per week. intensity of training loading was 60%-75% of one maximum repetition. Participants performed 3 sets of 10 repetitions. Rest periods were two min between exercises and sets. Start with warm up exercises include: The muscles relax and stretch the body, which was for 10 minutes. Body composition, VO2max and the circulating level of free testosterone (fT), luteinizing hormone (LH), follicle-stimulating hormone (FSH), sex hormone binding globulin (SHBG) and inhibin B measured prior and post 6-week intervention. The hormonal levels of each serum sample were measured using commercially available ELISA kits. Analysis of anthropometrical data and hormonal level were compared using the independent samples t- test in both groups and using SPSS (version 19). P ≤ 0.05 was considered statistically significant. Results: For muscle strength, both lower- and upper-body strength were increased significantly. Aerobic fitness level improved in trained participant from 39.4 ± 5.6 to 41.9 ± 5.3 (P = 0.002). fT concentration rise progressively in the trained group and was significantly greater than those in the control group (P = 0.000). By the end of the 6-week resistance training, serum SHBG significantly increased in the trained group compared with the control group (P = 0.013). In response to resistance training, LH, FSH and inhibin B were not significantly changed. Discussion: According to our finfings, 6 weeks of resistance training induce fat loss without any changes in body weight and BMI. A decline of 25.3% in percentage of body fat with statiscally same weight was due to increase in muscle mass that happened during resistance exercise periods . Six weeks of resistance training resulted in significant improvement in BF%, VO2max and increasing strength and the level of fT and SHBG.

Keywords: resistance, hypothalamic, pituitary, gonadal axis

Procedia PDF Downloads 379
337 Comprehensive Analysis of RNA m5C Regulator ALYREF as a Suppressive Factor of Anti-tumor Immune and a Potential Tumor Prognostic Marker in Pan-Cancer

Authors: Yujie Yuan, Yiyang Fan, Hong Fan

Abstract:

Objective: The RNA methylation recognition protein Aly/REF export factor (ALYREF) is considered one type of “reader” protein acting as a recognition protein of m5C, has been reported involved in several biological progresses including cancer initiation and progression. 5-methylcytosine (m5C) is a conserved and prevalent RNA modification in all species, as accumulating evidence suggests its role in the promotion of tumorigenesis. It has been claimed that ALYREF mediates nuclear export of mRNA with m5C modification and regulates biological effects of cancer cells. However, the systematical regulatory pathways of ALYREF in cancer tissues have not been clarified, yet. Methods: The expression level of ALYREF in pan-cancer and their normal tissues was compared through the data acquired from The Cancer Genome Atlas (TCGA). The University of Alabama at Birmingham Cancer data analysis Portal UALCAN was used to analyze the relationship between ALYREF and clinical pathological features. The relationship between the expression level of ALYREF and prognosis of pan-cancer, and the correlation genes of ALYREF were figured out by using Gene Expression Correlation Analysis database GEPIA. Immune related genes were obtained from TISIDB (an integrated repository portal for tumor-immune system interactions). Immune-related research was conducted by using Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) and TIMER. Results: Based on the data acquired from TCGA, ALYREF has an obviously higher-level expression in various types of cancers compared with relevant normal tissues excluding thyroid carcinoma and kidney chromophobe. The immunohistochemical images on The Human Protein Atlas showed that ALYREF can be detected in cytoplasm, membrane, but mainly located in nuclear. In addition, a higher expression level of ALYREF in tumor tissue generates a poor prognosis in majority of cancers. According to the above results, cancers with a higher expression level of ALYREF compared with normal tissues and a significant correlation between ALYREF and prognosis were selected for further analysis. By using TISIDB, we found that portion of ALYREF co-expression genes (such as BIRC5, H2AFZ, CCDC137, TK1, and PPM1G) with high Pearson correlation coefficient (PCC) were involved in anti-tumor immunity or affect resistance or sensitivity to T cell-mediated killing. Furthermore, based on the results acquired from GEPIA, there was significant correlation between ALYREF and PD-L1. It was exposed that there is a negative correlation between the expression level of ALYREF and ESTIMATE score. Conclusion: The present study indicated that ALYREF plays a vital and universal role in cancer initiation and progression of pan-cancer through regulating mitotic progression, DNA synthesis and metabolic process, and RNA processing. The correlation between ALYREF and PD-L1 implied ALYREF may affect the therapeutic effect of immunotherapy of tumor. More evidence revealed that ALYREF may play an important role in tumor immunomodulation. The correlation between ALYREF and immune cell infiltration level indicated that ALYREF can be a potential therapeutic target. Exploring the regulatory mechanism of ALYREF in tumor tissues may expose the reason for poor efficacy of immunotherapy and offer more directions of tumor treatment.

Keywords: ALYREF, pan-cancer, immunotherapy, PD-L1

Procedia PDF Downloads 40
336 Raman Spectral Fingerprints of Healthy and Cancerous Human Colorectal Tissues

Authors: Maria Karnachoriti, Ellas Spyratou, Dimitrios Lykidis, Maria Lambropoulou, Yiannis S. Raptis, Ioannis Seimenis, Efstathios P. Efstathopoulos, Athanassios G. Kontos

Abstract:

Colorectal cancer is the third most common cancer diagnosed in Europe, according to the latest incidence data provided by the World Health Organization (WHO), and early diagnosis has proved to be the key in reducing cancer-related mortality. In cases where surgical interventions are required for cancer treatment, the accurate discrimination between healthy and cancerous tissues is critical for the postoperative care of the patient. The current study focuses on the ex vivo handling of surgically excised colorectal specimens and the acquisition of their spectral fingerprints using Raman spectroscopy. Acquired data were analyzed in an effort to discriminate, in microscopic scale, between healthy and malignant margins. Raman spectroscopy is a spectroscopic technique with high detection sensitivity and spatial resolution of few micrometers. The spectral fingerprint which is produced during laser-tissue interaction is unique and characterizes the biostructure and its inflammatory or cancer state. Numerous published studies have demonstrated the potential of the technique as a tool for the discrimination between healthy and malignant tissues/cells either ex vivo or in vivo. However, the handling of the excised human specimens and the Raman measurement conditions remain challenging, unavoidably affecting measurement reliability and repeatability, as well as the technique’s overall accuracy and sensitivity. Therefore, tissue handling has to be optimized and standardized to ensure preservation of cell integrity and hydration level. Various strategies have been implemented in the past, including the use of balanced salt solutions, small humidifiers or pump-reservoir-pipette systems. In the current study, human colorectal specimens of 10X5 mm were collected from 5 patients up to now who underwent open surgery for colorectal cancer. A novel, non-toxic zinc-based fixative (Z7) was used for tissue preservation. Z7 demonstrates excellent protein preservation and protection against tissue autolysis. Micro-Raman spectra were recorded with a Renishaw Invia spectrometer from successive random 2 micrometers spots upon excitation at 785 nm to decrease fluorescent background and secure avoidance of tissue photodegradation. A temperature-controlled approach was adopted to stabilize the tissue at 2 °C, thus minimizing dehydration effects and consequent focus drift during measurement. A broad spectral range, 500-3200 cm-1,was covered with five consecutive full scans that lasted for 20 minutes in total. The average spectra were used for least square fitting analysis of the Raman modes.Subtle Raman differences were observed between normal and cancerous colorectal tissues mainly in the intensities of the 1556 cm-1 and 1628 cm-1 Raman modes which correspond to v(C=C) vibrations in porphyrins, as well as in the range of 2800-3000 cm-1 due to CH2 stretching of lipids and CH3 stretching of proteins. Raman spectra evaluation was supported by histological findings from twin specimens. This study demonstrates that Raman spectroscopy may constitute a promising tool for real-time verification of clear margins in colorectal cancer open surgery.

Keywords: colorectal cancer, Raman spectroscopy, malignant margins, spectral fingerprints

Procedia PDF Downloads 70
335 Preparedness of Health System in Providing Continuous Health Care: A Case Study From Sri Lanka

Authors: Samantha Ramachandra, Avanthi Rupasinghe

Abstract:

Demographic transition from lower to higher percentage of elderly population eventually coupled with epidemiological transition from communicable to non-communicable diseases (NCD). Higher percentage of NCD overload the health system as NCD survivors claims continuous health care. The demands are challenging to a resource constrained setting but reorganizing the system may find solutions. The study focused on the facilities available and their utilization at outpatient department (OPD) setting of the public hospitals of Sri Lanka for continuous medical care. This will help in identifying steps of reorganizing the system to provide better care with the maximum utilization of available facilities. The study was conducted as a situation analysis with secondary data at hospital planning units. Variable were identified according to the world health organization (WHO) recommendation on continuous health care for elders in “age-friendly primary health care toolkit”. Data were collected from secondary and tertiary care hospitals of Sri Lanka where most of the continuous care services are available. Out of 58 secondary and tertiary care hospitals, 16 were included in the study to represent each hospital categories. Average number of patient attending for episodic treatment at OPD and Clinical follow-up of chronic conditions shows vast disparity according to the category of the hospital ranging from 3750 – 800 per day at OPD and 1250 – 200 per clinic session. Average time spent per person at OPD session is low, range from 1.54 - 2.28 minutes, the time was increasing as the hospital category goes down. 93.7% hospitals had special arrangements for providing acute care on chronic conditions such as catheter, feeding tube and wound care. 25% hospitals had special clinics for elders, 81.2% hospitals had healthy lifestyle clinics (HLC), 75% hospitals had physical rehabilitation facilities and 68.8% hospitals had facilities for counselling. Elderly clinics and HLC were mostly available at lower grade hospitals where as rehabilitation and counselling facilities were mostly available at bigger hospitals. HLC are providing health education for both patients and their family members, refer patients for screening of complication but not provide medical examinations, investigations or treatments even though they operate in the hospital setting. Physical rehabilitation is basically offered for patients with rheumatological conditions but utilization of centers for injury rehabilitation and rehabilitation of survivors following major illness such as myocardial infarctions, stroke, cancer is not satisfactory (12.5%). Human Resource distribution within hospital shows vast disparity and there are 103 physiotherapists in the biggest hospital where only 36 physiotherapists available at the next level hospital. Counselling facilities also provided mainly for the patient with psychological conditions (100%) but they were not providing counselling for newly diagnosed patients with major illnesses (0%). According to results, most of the public-sector hospitals in Sri Lanka have basic facilities required in providing continuous care but the utilization of services need more focus. Hospital administration or the government need to have initial steps in proper utilization of them in improving continuous health care incorporating team approach of rehabilitation. The author wishes to acknowledge that this paper was made possible by the support and guidance given by the “Australia Awards Fellowships Program for Sri Lanka – 2017,” which was funded by the Department of Foreign Affairs and Trade, Australia, and co-hosted by Monash University, Australia and the Sri Lanka Institute of Development Administration.

Keywords: continuous care, outpatient department, non communicable diseases, rehabilitation

Procedia PDF Downloads 137
334 Exploring Safety Culture in Interventional Radiology: A Cross-Sectional Survey on Team Members' Attitudes

Authors: Anna Bjällmark, Victoria Persson, Bodil Karlsson, May Bazzi

Abstract:

Introduction: Interventional radiology (IR) is a continuously growing discipline that allows minimally invasive treatments of various medical conditions. The IR environment is, in several ways, comparable to the complex and accident-prone operation room (OR) environment. This implies that the IR environment may also be associated with various types of risks related to the work process and communication in the team. Patient safety is a central aspect of healthcare and involves the prevention and reduction of adverse events related to patient care. To maintain patient safety, it is crucial to build a safety culture where the staff are encouraged to report events and incidents that may have affected patient safety. It is also important to continuously evaluate the staff´s attitudes to patient safety. Despite the increasing number of IR procedures, research on the staff´s view regarding patients is lacking. Therefore, the main aim of the study was to describe and compare the IR team members' attitudes to patient safety. The secondary aim was to evaluate whether the WHO safety checklist was routinely used for IR procedures. Methods: An electronic survey was distributed to 25 interventional units in Sweden. The target population was the staff working in the IR team, i.e., physicians, radiographers, nurses, and assistant nurses. A modified version of the Safety Attitudes Questionnaire (SAQ) was used. Responses from 19 of 25 IR units (44 radiographers, 18 physicians, 5 assistant nurses, and 1 nurse) were received. The respondents rated their level of agreement for 27 items related to safety culture on a five-point Likert scale ranging from “Disagree strongly” to “Agree strongly.” Data were analyzed statistically using SPSS. The percentage of positive responses (PPR) was calculated by taking the percentage of respondents who got a scale score of 75 or higher. The respondents rated which corresponded to response options “Agree slightly” or “Agree strongly”. Thus, average scores ≥ 75% were classified as “positive” and average scores < 75% were classified as “non-positive”. Findings: The results indicated that the IR team had the highest factor scores and the highest percentages of positive responses in relation to job satisfaction (90/94%), followed by teamwork climate (85/92%). In contrast, stress recognition received the lowest ratings (54/25%). Attitudes related to these factors were relatively consistent between different professions, with only a few significant differences noted (Factor score: p=0.039 for job satisfaction, p=0.050 for working conditions. Percentage of positive responses: p=0.027 for perception of management). Radiographers tended to report slightly lower values compared to other professions for these factors (p<0.05). The respondents reported that the WHO safety checklist was not routinely used at their IR unit but acknowledged its importance for patient safety. Conclusion: This study reported high scores concerning job satisfaction and teamwork climate but lower scores concerning perception of management and stress recognition indicating that the latter are areas of improvement. Attitudes remained relatively consistent among the professions, but the radiographers reported slightly lower values in terms of job satisfaction and perception of the management. The WHO safety checklist was considered important for patient safety.

Keywords: interventional radiology, patient safety, safety attitudes questionnaire, WHO safety checklist

Procedia PDF Downloads 38
333 The Legal and Regulatory Gaps of Blockchain-Enabled Energy Prosumerism

Authors: Karisma Karisma, Pardis Moslemzadeh Tehrani

Abstract:

This study aims to conduct a high-level strategic dialogue on the lack of consensus, consistency, and legal certainty regarding blockchain-based energy prosumerism so that appropriate institutional and governance structures can be put in place to address the inadequacies and gaps in the legal and regulatory framework. The drive to achieve national and global decarbonization targets is a driving force behind climate goals and policies under the Paris Agreement. In recent years, efforts to ‘demonopolize’ and ‘decentralize’ energy generation and distribution have driven the energy transition toward decentralized systems, invoking concepts such as ownership, sovereignty, and autonomy of RE sources. The emergence of individual and collective forms of prosumerism and the rapid diffusion of blockchain is expected to play a critical role in the decarbonization and democratization of energy systems. However, there is a ‘regulatory void’ relating to individual and collective forms of prosumerism that could prevent the rapid deployment of blockchain systems and potentially stagnate the operationalization of blockchain-enabled energy sharing and trading activities. The application of broad and facile regulatory fixes may be insufficient to address the major regulatory gaps. First, to the authors’ best knowledge, the concepts and elements circumjacent to individual and collective forms of prosumerism have not been adequately described in the legal frameworks of many countries. Second, there is a lack of legal certainty regarding the creation and adaptation of business models in a highly regulated and centralized energy system, which inhibits the emergence of prosumer-driven niche markets. There are also current and prospective challenges relating to the legal status of blockchain-based platforms for facilitating energy transactions, anticipated with the diffusion of blockchain technology. With the rise of prosumerism in the energy sector, the areas of (a) network charges, (b) energy market access, (c) incentive schemes, (d) taxes and levies, and (e) licensing requirements are still uncharted territories in many countries. The uncertainties emanating from this area pose a significant hurdle to the widespread adoption of blockchain technology, a complementary technology that offers added value and competitive advantages for energy systems. The authors undertake a conceptual and theoretical investigation to elucidate the lack of consensus, consistency, and legal certainty in the study of blockchain-based prosumerism. In addition, the authors set an exploratory tone to the discussion by taking an analytically eclectic approach that builds on multiple sources and theories to delve deeper into this topic. As an interdisciplinary study, this research accounts for the convergence of regulation, technology, and the energy sector. The study primarily adopts desk research, which examines regulatory frameworks and conceptual models for crucial policies at the international level to foster an all-inclusive discussion. With their reflections and insights into the interaction of blockchain and prosumerism in the energy sector, the authors do not aim to develop definitive regulatory models or instrument designs, but to contribute to the theoretical dialogue to navigate seminal issues and explore different nuances and pathways. Given the emergence of blockchain-based energy prosumerism, identifying the challenges, gaps and fragmentation of governance regimes is key to facilitating global regulatory transitions.

Keywords: blockchain technology, energy sector, prosumer, legal and regulatory.

Procedia PDF Downloads 157
332 Design Challenges for Severely Skewed Steel Bridges

Authors: Muna Mitchell, Akshay Parchure, Krishna Singaraju

Abstract:

There is an increasing need for medium- to long-span steel bridges with complex geometry due to site restrictions in developed areas. One of the solutions to grade separations in congested areas is to use longer spans on skewed supports that avoid at-grade obstructions limiting impacts to the foundation. Where vertical clearances are also a constraint, continuous steel girders can be used to reduce superstructure depths. Combining continuous long steel spans on severe skews can resolve the constraints at a cost. The behavior of skewed girders is challenging to analyze and design with subsequent complexity during fabrication and construction. As a part of a corridor improvement project, Walter P Moore designed two 1700-foot side-by-side bridges carrying four lanes of traffic in each direction over a railroad track. The bridges consist of prestressed concrete girder approach spans and three-span continuous steel plate girder units. The roadway design added complex geometry to the bridge with horizontal and vertical curves combined with superelevation transitions within the plate girder units. The substructure at the steel units was skewed approximately 56 degrees to satisfy the existing railroad right-of-way requirements. A horizontal point of curvature (PC) near the end of the steel units required the use flared girders and chorded slab edges. Due to the flared girder geometry, the cross-frame spacing in each bay is unique. Staggered cross frames were provided based on AASHTO LRFD and NCHRP guidelines for high skew steel bridges. Skewed steel bridges develop significant forces in the cross frames and rotation in the girder websdue to differential displacements along the girders under dead and live loads. In addition, under thermal loads, skewed steel bridges expand and contract not along the alignment parallel to the girders but along the diagonal connecting the acute corners, resulting in horizontal displacement both along and perpendicular to the girders. AASHTO LRFD recommends a 95 degree Fahrenheit temperature differential for the design of joints and bearings. The live load and the thermal loads resulted in significant horizontal forces and rotations in the bearings that necessitated the use of HLMR bearings. A unique bearing layout was selected to minimize the effect of thermal forces. The span length, width, skew, and roadway geometry at the bridges also required modular bridge joint systems (MBJS) with inverted-T bent caps to accommodate movement in the steel units. 2D and 3D finite element analysis models were developed to accurately determine the forces and rotations in the girders, cross frames, and bearings and to estimate thermal displacements at the joints. This paper covers the decision-making process for developing the framing plan, bearing configurations, joint type, and analysis models involved in the design of the high-skew three-span continuous steel plate girder bridges.

Keywords: complex geometry, continuous steel plate girders, finite element structural analysis, high skew, HLMR bearings, modular joint

Procedia PDF Downloads 153
331 Design and Construction of a Home-Based, Patient-Led, Therapeutic, Post-Stroke Recovery System Using Iterative Learning Control

Authors: Marco Frieslaar, Bing Chu, Eric Rogers

Abstract:

Stroke is a devastating illness that is the second biggest cause of death in the world (after heart disease). Where it does not kill, it leaves survivors with debilitating sensory and physical impairments that not only seriously harm their quality of life, but also cause a high incidence of severe depression. It is widely accepted that early intervention is essential for recovery, but current rehabilitation techniques largely favor hospital-based therapies which have restricted access, expensive and specialist equipment and tend to side-step the emotional challenges. In addition, there is insufficient funding available to provide the long-term assistance that is required. As a consequence, recovery rates are poor. The relatively unexplored solution is to develop therapies that can be harnessed in the home and are formulated from technologies that already exist in everyday life. This would empower individuals to take control of their own improvement and provide choice in terms of when and where they feel best able to undertake their own healing. This research seeks to identify how effective post-stroke, rehabilitation therapy can be applied to upper limb mobility, within the physical context of a home rather than a hospital. This is being achieved through the design and construction of an automation scheme, based on iterative learning control and the Riener muscle model, that has the ability to adapt to the user and react to their level of fatigue and provide tangible physical recovery. It utilizes a SMART Phone and laptop to construct an iterative learning control (ILC) system, that monitors upper arm movement in three dimensions, as a series of exercises are undertaken. The equipment generates functional electrical stimulation to assist in muscle activation and thus improve directional accuracy. In addition, it monitors speed, accuracy, areas of motion weakness and similar parameters to create a performance index that can be compared over time and extrapolated to establish an independent and objective assessment scheme, plus an approximate estimation of predicted final outcome. To further extend its assessment capabilities, nerve conduction velocity readings are taken by the software, between the shoulder and hand muscles. This is utilized to measure the speed of response of neuron signal transfer along the arm and over time, an online indication of regeneration levels can be obtained. This will prove whether or not sufficient training intensity is being achieved even before perceivable movement dexterity is observed. The device also provides the option to connect to other users, via the internet, so that the patient can avoid feelings of isolation and can undertake movement exercises together with others in a similar position. This should create benefits not only for the encouragement of rehabilitation participation, but also an emotional support network potential. It is intended that this approach will extend the availability of stroke recovery options, enable ease of access at a low cost, reduce susceptibility to depression and through these endeavors, enhance the overall recovery success rate.

Keywords: home-based therapy, iterative learning control, Riener muscle model, SMART phone, stroke rehabilitation

Procedia PDF Downloads 241
330 Enhancing Photocatalytic Activity of Oxygen Vacancies-Rich Tungsten Trioxide (WO₃) for Sustainable Energy Conversion and Water Purification

Authors: Satam Alotibi, Osama A. Hussein, Aziz H. Al-Shaibani, Nawaf A. Al-Aqeel, Abdellah Kaiba, Fatehia S. Alhakami, Mohammed Alyami, Talal F. Qahtan

Abstract:

The demand for sustainable and efficient energy conversion using solar energy has grown rapidly in recent years. In this pursuit, solar-to-chemical conversion has emerged as a promising approach, with oxygen vacancies-rich tungsten trioxide (WO₃) playing a crucial role. This study presents a method for synthesizing oxygen vacancies-rich WO3, resulting in a significant enhancement of its photocatalytic activity, representing a significant step towards sustainable energy solutions. Experimental results underscore the importance of oxygen vacancies in modifying the properties of WO₃. These vacancies introduce additional energy states within the material, leading to a reduction in the bandgap, increased light absorption, and acting as electron traps, thereby reducing emissions. Our focus lies in developing oxygen vacancies-rich WO₃, which demonstrates unparalleled potential for improved photocatalytic applications. The effectiveness of oxygen vacancies-rich WO₃ in solar-to-chemical conversion was showcased through rigorous assessments of its photocatalytic degradation performance. Sunlight irradiation was employed to evaluate the material's effectiveness in degrading organic pollutants in wastewater. The results unequivocally demonstrate the superior photocatalytic performance of oxygen vacancies-rich WO₃ compared to conventional WO₃ nanomaterials, establishing its efficacy in sustainable and efficient energy conversion. Furthermore, the synthesized material is utilized to fabricate films, which are subsequently employed in immobilized WO₃ and oxygen vacancies-rich WO₃ reactors for water purification under natural sunlight irradiation. This application offers a sustainable and efficient solution for water treatment, harnessing solar energy for effective decontamination. In addition to investigating the photocatalytic capabilities, we extensively analyze the structural and chemical properties of the synthesized material. The synthesis process involves in situ thermal reduction of WO₃ nano-powder in a nitrogen environment, meticulously monitored using thermogravimetric analysis (TGA) to ensure precise control over the synthesis of oxygen vacancies-rich WO₃. Comprehensive characterization techniques such as UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), FTIR, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) provide deep insights into the material's optical properties, chemical composition, elemental states, structure, surface properties, and crystalline structure. This study represents a significant advancement in sustainable energy conversion through solar-to-chemical processes and water purification. By harnessing the unique properties of oxygen vacancies-rich WO₃, we not only enhance our understanding of energy conversion mechanisms but also pave the way for the development of highly efficient and environmentally friendly photocatalytic materials. The application of this material in water purification demonstrates its versatility and potential to address critical environmental challenges. These findings bring us closer to a sustainable energy future and cleaner water resources, laying a solid foundation for a more sustainable planet.

Keywords: sustainable energy conversion, solar-to-chemical conversion, oxygen vacancies-rich tungsten trioxide (WO₃), photocatalytic activity enhancement, water purification

Procedia PDF Downloads 41
329 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 218
328 Forming-Free Resistive Switching Effect in ZnₓTiᵧHfzOᵢ Nanocomposite Thin Films for Neuromorphic Systems Manufacturing

Authors: Vladimir Smirnov, Roman Tominov, Vadim Avilov, Oleg Ageev

Abstract:

The creation of a new generation micro- and nanoelectronics elements opens up unlimited possibilities for electronic devices parameters improving, as well as developing neuromorphic computing systems. Interest in the latter is growing up every year, which is explained by the need to solve problems related to the unstructured classification of data, the construction of self-adaptive systems, and pattern recognition. However, for its technical implementation, it is necessary to fulfill a number of conditions for the basic parameters of electronic memory, such as the presence of non-volatility, the presence of multi-bitness, high integration density, and low power consumption. Several types of memory are presented in the electronics industry (MRAM, FeRAM, PRAM, ReRAM), among which non-volatile resistive memory (ReRAM) is especially distinguished due to the presence of multi-bit property, which is necessary for neuromorphic systems manufacturing. ReRAM is based on the effect of resistive switching – a change in the resistance of the oxide film between low-resistance state (LRS) and high-resistance state (HRS) under an applied electric field. One of the methods for the technical implementation of neuromorphic systems is cross-bar structures, which are ReRAM cells, interconnected by cross data buses. Such a structure imitates the architecture of the biological brain, which contains a low power computing elements - neurons, connected by special channels - synapses. The choice of the ReRAM oxide film material is an important task that determines the characteristics of the future neuromorphic system. An analysis of literature showed that many metal oxides (TiO2, ZnO, NiO, ZrO2, HfO2) have a resistive switching effect. It is worth noting that the manufacture of nanocomposites based on these materials allows highlighting the advantages and hiding the disadvantages of each material. Therefore, as a basis for the neuromorphic structures manufacturing, it was decided to use ZnₓTiᵧHfzOᵢ nanocomposite. It is also worth noting that the ZnₓTiᵧHfzOᵢ nanocomposite does not need an electroforming, which degrades the parameters of the formed ReRAM elements. Currently, this material is not well studied, therefore, the study of the effect of resistive switching in forming-free ZnₓTiᵧHfzOᵢ nanocomposite is an important task and the goal of this work. Forming-free nanocomposite ZnₓTiᵧHfzOᵢ thin film was grown by pulsed laser deposition (Pioneer 180, Neocera Co., USA) on the SiO2/TiN (40 nm) substrate. Electrical measurements were carried out using a semiconductor characterization system (Keithley 4200-SCS, USA) with W probes. During measurements, TiN film was grounded. The analysis of the obtained current-voltage characteristics showed a resistive switching from HRS to LRS resistance states at +1.87±0.12 V, and from LRS to HRS at -2.71±0.28 V. Endurance test shown that HRS was 283.21±32.12 kΩ, LRS was 1.32±0.21 kΩ during 100 measurements. It was shown that HRS/LRS ratio was about 214.55 at reading voltage of 0.6 V. The results can be useful for forming-free nanocomposite ZnₓTiᵧHfzOᵢ films in neuromorphic systems manufacturing. This work was supported by RFBR, according to the research project № 19-29-03041 mk. The results were obtained using the equipment of the Research and Education Center «Nanotechnologies» of Southern Federal University.

Keywords: nanotechnology, nanocomposites, neuromorphic systems, RRAM, pulsed laser deposition, resistive switching effect

Procedia PDF Downloads 103
327 In-Process Integration of Resistance-Based, Fiber Sensors during the Braiding Process for Strain Monitoring of Carbon Fiber Reinforced Composite Materials

Authors: Oscar Bareiro, Johannes Sackmann, Thomas Gries

Abstract:

Carbon fiber reinforced polymer composites (CFRP) are used in a wide variety of applications due to its advantageous properties and design versatility. The braiding process enables the manufacture of components with good toughness and fatigue strength. However, failure mechanisms of CFRPs are complex and still present challenges associated with their maintenance and repair. Within the broad scope of structural health monitoring (SHM), strain monitoring can be applied to composite materials to improve reliability, reduce maintenance costs and safely exhaust service life. Traditional SHM systems employ e.g. fiber optics, piezoelectrics as sensors, which are often expensive, time consuming and complicated to implement. A cost-efficient alternative can be the exploitation of the conductive properties of fiber-based sensors such as carbon, copper, or constantan - a copper-nickel alloy – that can be utilized as sensors within composite structures to achieve strain monitoring. This allows the structure to provide feedback via electrical signals to a user which are essential for evaluating the structural condition of the structure. This work presents a strategy for the in-process integration of resistance-based sensors (Elektrisola Feindraht AG, CuNi23Mn, Ø = 0.05 mm) into textile preforms during its manufacture via the braiding process (Herzog RF-64/120) to achieve strain monitoring of braided composites. For this, flat samples of instrumented composite laminates of carbon fibers (Toho Tenax HTS40 F13 24K, 1600 tex) and epoxy resin (Epikote RIMR 426) were manufactured via vacuum-assisted resin infusion. These flat samples were later cut out into test specimens and the integrated sensors were wired to the measurement equipment (National Instruments, VB-8012) for data acquisition during the execution of mechanical tests. Quasi-static tests were performed (tensile, 3-point bending tests) following standard protocols (DIN EN ISO 527-1 & 4, DIN EN ISO 14132); additionally, dynamic tensile tests were executed. These tests were executed to assess the sensor response under different loading conditions and to evaluate the influence of the sensor presence on the mechanical properties of the material. Several orientations of the sensor with regards to the applied loading and sensor placements inside the laminate were tested. Strain measurements from the integrated sensors were made by programming a data acquisition code (LabView) written for the measurement equipment. Strain measurements from the integrated sensors were then correlated to the strain/stress state for the tested samples. From the assessment of the sensor integration approach it can be concluded that it allows for a seamless sensor integration into the textile preform. No damage to the sensor or negative effect on its electrical properties was detected during inspection after integration. From the assessment of the mechanical tests of instrumented samples it can be concluded that the presence of the sensors does not alter significantly the mechanical properties of the material. It was found that there is a good correlation between resistance measurements from the integrated sensors and the applied strain. It can be concluded that the correlation is of sufficient accuracy to determinate the strain state of a composite laminate based solely on the resistance measurements from the integrated sensors.

Keywords: braiding process, in-process sensor integration, instrumented composite material, resistance-based sensor, strain monitoring

Procedia PDF Downloads 83
326 Antibacterial Nanofibrous Film Encapsulated with 4-terpineol/β-cyclodextrin Inclusion Complexes: Relative Humidity-Triggered Release and Shrimp Preservation Application

Authors: Chuanxiang Cheng, Tiantian Min, Jin Yue

Abstract:

Antimicrobial active packaging enables extensive biological effects to improve food safety. However, the efficacy of antimicrobial packaging hinges on factors including the diffusion rate of the active agent toward the food surface, the initial content in the antimicrobial agent, and the targeted food shelf life. Among the possibilities of antimicrobial packaging design, an interesting approach involves the incorporation of volatile antimicrobial agents into the packaging material. In this case, the necessity for direct contact between the active packaging material and the food surface is mitigated, as the antimicrobial agent exerts its action through the packaging headspace atmosphere towards the food surface. However, it still remains difficult to achieve controlled and precise release of bioactive compounds to the specific target location with required quantity in food packaging applications. Remarkably, the development of stimuli-responsive materials for electrospinning has introduced the possibility of achieving controlled release of active agents under specific conditions, thereby yielding enduring biological effects. Relative humidity (RH) for the storage of food categories such as meat and aquatic products typically exceeds 90%. Consequently, high RH can be used as an abiotic trigger for the release of active agents to prevent microbial growth. Hence, a novel RH - responsive polyvinyl alcohol/chitosan (PVA/CS) composite nanofibrous film incorporated with 4-terpineol/β-cyclodextrin inclusion complexes (4-TA@β-CD ICs) was engineered by electrospinning that can be deposited as a functional packaging materials. The characterization results showed the thermal stability of the films was enhanced after the incorporation due to the hydrogen bonds between ICs and polymers. Remarkably, the 4 wt% 4-TA@β-CD ICs/PVA/CS film exhibited enhanced crystallinity, moderate hydrophilic (Water contact angle of 81.53°), light barrier property (Transparency of 1.96%) and water resistance (Water vapor permeability of 3.17 g mm/m2 h kPa). Moreover, this film also showed optimized mechanical performance with a Young’s modulus of 11.33 MPa, a tensile strength of 19.99 MPa and an elongation at break of 4.44 %. Notably, the antioxidant and antibacterial properties of this packaging material were significantly improved. The film demonstrated the half-inhibitory concentrations (IC50) values of 87.74% and 85.11% for scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2′-azinobis (3-ethylbenzothiazoline-6-sulfonic) (ABTS) free radicals, respectively, in addition to an inhibition efficiency of 65% against Shewanella putrefaciens, the characteristic bacteria in aquatic products. Most importantly, the film achieved controlled release of 4-TA under high 98% RH by inducing the plasticization of polymers caused by water molecules, swelling of polymer chains, and destruction of hydrogen bonds within the cyclodextrin inclusion complex. Consequently, low relative humidity is suitable for the preservation of nanofibrous film, while high humidity conditions typical in fresh food packaging environments effectively stimulated the release of active compounds in the film. This film with a long-term antimicrobial effect successfully extended the shelf life of Litopenaeus vannamei shrimp to 7 days at 4 °C. This attractive design could pave the way for the development of new food packaging materials.

Keywords: controlled release, electrospinning, nanofibrous film, relative humidity–responsive, shrimp preservation

Procedia PDF Downloads 40
325 Miniaturizing the Volumetric Titration of Free Nitric Acid in U(vi) Solutions: On the Lookout for a More Sustainable Process Radioanalytical Chemistry through Titration-On-A-Chip

Authors: Jose Neri, Fabrice Canto, Alastair Magnaldo, Laurent Guillerme, Vincent Dugas

Abstract:

A miniaturized and automated approach for the volumetric titration of free nitric acid in U(VI) solutions is presented. Free acidity measurement refers to the acidity quantification in solutions containing hydrolysable heavy metal ions such as U(VI), U(IV) or Pu(IV) without taking into account the acidity contribution from the hydrolysis of such metal ions. It is, in fact, an operation having an essential role for the control of the nuclear fuel recycling process. The main objective behind the technical optimization of the actual ‘beaker’ method was to reduce the amount of radioactive substance to be handled by the laboratory personnel, to ease the instrumentation adjustability within a glove-box environment and to allow a high-throughput analysis for conducting more cost-effective operations. The measurement technique is based on the concept of the Taylor-Aris dispersion in order to create inside of a 200 μm x 5cm circular cylindrical micro-channel a linear concentration gradient in less than a second. The proposed analytical methodology relies on the actinide complexation using pH 5.6 sodium oxalate solution and subsequent alkalimetric titration of nitric acid with sodium hydroxide. The titration process is followed with a CCD camera for fluorescence detection; the neutralization boundary can be visualized in a detection range of 500nm- 600nm thanks to the addition of a pH sensitive fluorophore. The operating principle of the developed device allows the active generation of linear concentration gradients using a single cylindrical micro channel. This feature simplifies the fabrication and ease of use of the micro device, as it does not need a complex micro channel network or passive mixers to generate the chemical gradient. Moreover, since the linear gradient is determined by the liquid reagents input pressure, its generation can be fully achieved in faster intervals than one second, being a more timely-efficient gradient generation process compared to other source-sink passive diffusion devices. The resulting linear gradient generator device was therefore adapted to perform for the first time, a volumetric titration on a chip where the amount of reagents used is fixed to the total volume of the micro channel, avoiding an important waste generation like in other flow-based titration techniques. The associated analytical method is automated and its linearity has been proven for the free acidity determination of U(VI) samples containing up to 0.5M of actinide ion and nitric acid in a concentration range of 0.5M to 3M. In addition to automation, the developed analytical methodology and technique greatly improves the standard off-line oxalate complexation and alkalimetric titration method by reducing a thousand fold the required sample volume, forty times the nuclear waste per analysis as well as the analysis time by eight-fold. The developed device represents, therefore, a great step towards an easy-to-handle nuclear-related application, which in the short term could be used to improve laboratory safety as much as to reduce the environmental impact of the radioanalytical chain.

Keywords: free acidity, lab-on-a-chip, linear concentration gradient, Taylor-Aris dispersion, volumetric titration

Procedia PDF Downloads 364
324 Understanding What People with Epilepsy and Their Care-Partners Value about an Electronic Patient Portal

Authors: K. Power, M. White, B. Dunleavey, E. Comerford, C. Doherty, N. Delanty, R. Corbridge, M. Fitzsimons

Abstract:

Introduction: Providing people with access to their own healthcare information and engaging them as co-authors of their health record can promote better transparency, trust, and inclusivity in the healthcare system. With the advent of electronic health records, there is a move towards involving patients as partners in their healthcare by providing them with access to their own health data via electronic patient portals (ePortal). For example, a recently developed ePortal to the Irish National Epilepsy Electronic Patient Record (EPR) provides access to summary medical records, tools for Patient Reported Outcomes (PROM), health goal-setting and preparation for clinical appointments. Aim: To determine what people with epilepsy (their families/carers) value about the Irish epilepsy ePortal. Methods: A socio-technical process was employed recruiting 30 families of people with epilepsy who also have an intellectual disability (ID). Family members who are a care partner of the person with epilepsy (PWE) were invited to co-design, develop and implement the ePortal. Family members engaged in usability and utility testing which involved a face to face meeting to learn about the ePortal, register for a user account and evaluate its structure and content. Family members were instructed to login to the portal on at least two separate occasions following the meeting and to complete a self-report evaluation tool during this time. The evaluation tool, based on a Usability Questionnaire (Lewis, 1993), consists of a short assessment of comfort using technology, instructions for using the ePortal and some tasks to complete. Tasks included validating summary record details, assessing ePortal ease of use, evaluation of information presented. Participants were asked for suggestions on how to improve the portal and make it more applicable to PWE who also have an ID. Results: Family members responded positively to the ePortal and valued the ability to share information between clinicians and care partners; use the ePortal as a passport between different healthcare settings (e.g., primary care to hospital). In the context of elderly parents of PWE, the ePortal is valued as a tool for supporting shared care between family members. Participants welcomed the facility to log lists of questions and goals to discuss with the clinician at the next clinical appointment as a means of improving quality of care. Participants also suggested further enhancements to the ePortal such as access to clinic letters which can provide an aide memoir in terms of the careplan agreed with the clinical team. For example, through the ePortal, people could see what investigations or therapies are scheduled. Conclusion: The Epilepsy Patient Portal is accessible via a range of devices such as smartphones and tablets. ePortals have the potential to help personalise care, improve patient involvement in clinical decision making, engage them as quality and safety partners, and help clinicians be more responsive to patient needs. Acknowledgement: The epilepsy ePortal project is part of PISCES, a Lighthouse Project funded by eHealth Ireland and HSE to help build an understanding of the benefits of eHealth technologies in the Irish Healthcare System.

Keywords: electronic patient portal, electronic patient record, epilepsy, intellectual disability, usability testing

Procedia PDF Downloads 308
323 i2kit: A Tool for Immutable Infrastructure Deployments

Authors: Pablo Chico De Guzman, Cesar Sanchez

Abstract:

Microservice architectures are increasingly in distributed cloud applications due to the advantages on the software composition, development speed, release cycle frequency and the business logic time to market. On the other hand, these architectures also introduce some challenges on the testing and release phases of applications. Container technology solves some of these issues by providing reproducible environments, easy of software distribution and isolation of processes. However, there are other issues that remain unsolved in current container technology when dealing with multiple machines, such as networking for multi-host communication, service discovery, load balancing or data persistency (even though some of these challenges are already solved by traditional cloud vendors in a very mature and widespread manner). Container cluster management tools, such as Kubernetes, Mesos or Docker Swarm, attempt to solve these problems by introducing a new control layer where the unit of deployment is the container (or the pod — a set of strongly related containers that must be deployed on the same machine). These tools are complex to configure and manage and they do not follow a pure immutable infrastructure approach since servers are reused between deployments. Indeed, these tools introduce dependencies at execution time for solving networking or service discovery problems. If an error on the control layer occurs, which would affect running applications, specific expertise is required to perform ad-hoc troubleshooting. As a consequence, it is not surprising that container cluster support is becoming a source of revenue for consulting services. This paper presents i2kit, a deployment tool based on the immutable infrastructure pattern, where the virtual machine is the unit of deployment. The input for i2kit is a declarative definition of a set of microservices, where each microservice is defined as a pod of containers. Microservices are built into machine images using linuxkit —- a tool for creating minimal linux distributions specialized in running containers. These machine images are then deployed to one or more virtual machines, which are exposed through a cloud vendor load balancer. Finally, the load balancer endpoint is set into other microservices using an environment variable, providing service discovery. The toolkit i2kit reuses the best ideas from container technology to solve problems like reproducible environments, process isolation, and software distribution, and at the same time relies on mature, proven cloud vendor technology for networking, load balancing and persistency. The result is a more robust system with no learning curve for troubleshooting running applications. We have implemented an open source prototype that transforms i2kit definitions into AWS cloud formation templates, where each microservice AMI (Amazon Machine Image) is created on the fly using linuxkit. Even though container cluster management tools have more flexibility for resource allocation optimization, we defend that adding a new control layer implies more important disadvantages. Resource allocation is greatly improved by using linuxkit, which introduces a very small footprint (around 35MB). Also, the system is more secure since linuxkit installs the minimum set of dependencies to run containers. The toolkit i2kit is currently under development at the IMDEA Software Institute.

Keywords: container, deployment, immutable infrastructure, microservice

Procedia PDF Downloads 153
322 Improving the Accuracy of Stress Intensity Factors Obtained by Scaled Boundary Finite Element Method on Hybrid Quadtree Meshes

Authors: Adrian W. Egger, Savvas P. Triantafyllou, Eleni N. Chatzi

Abstract:

The scaled boundary finite element method (SBFEM) is a semi-analytical numerical method, which introduces a scaling center in each element’s domain, thus transitioning from a Cartesian reference frame to one resembling polar coordinates. Consequently, an analytical solution is achieved in radial direction, implying that only the boundary need be discretized. The only limitation imposed on the resulting polygonal elements is that they remain star-convex. Further arbitrary p- or h-refinement may be applied locally in a mesh. The polygonal nature of SBFEM elements has been exploited in quadtree meshes to alleviate all issues conventionally associated with hanging nodes. Furthermore, since in 2D this results in only 16 possible cell configurations, these are precomputed in order to accelerate the forward analysis significantly. Any cells, which are clipped to accommodate the domain geometry, must be computed conventionally. However, since SBFEM permits polygonal elements, significantly coarser meshes at comparable accuracy levels are obtained when compared with conventional quadtree analysis, further increasing the computational efficiency of this scheme. The generalized stress intensity factors (gSIFs) are computed by exploiting the semi-analytical solution in radial direction. This is initiated by placing the scaling center of the element containing the crack at the crack tip. Taking an analytical limit of this element’s stress field as it approaches the crack tip, delivers an expression for the singular stress field. By applying the problem specific boundary conditions, the geometry correction factor is obtained, and the gSIFs are then evaluated based on their formal definition. Since the SBFEM solution is constructed as a power series, not unlike mode superposition in FEM, the two modes contributing to the singular response of the element can be easily identified in post-processing. Compared to the extended finite element method (XFEM) this approach is highly convenient, since neither enrichment terms nor a priori knowledge of the singularity is required. Computation of the gSIFs by SBFEM permits exceptional accuracy, however, when combined with hybrid quadtrees employing linear elements, this does not always hold. Nevertheless, it has been shown that crack propagation schemes are highly effective even given very coarse discretization since they only rely on the ratio of mode one to mode two gSIFs. The absolute values of the gSIFs may still be subject to large errors. Hence, we propose a post-processing scheme, which minimizes the error resulting from the approximation space of the cracked element, thus limiting the error in the gSIFs to the discretization error of the quadtree mesh. This is achieved by h- and/or p-refinement of the cracked element, which elevates the amount of modes present in the solution. The resulting numerical description of the element is highly accurate, with the main error source now stemming from its boundary displacement solution. Numerical examples show that this post-processing procedure can significantly improve the accuracy of the computed gSIFs with negligible computational cost even on coarse meshes resulting from hybrid quadtrees.

Keywords: linear elastic fracture mechanics, generalized stress intensity factors, scaled finite element method, hybrid quadtrees

Procedia PDF Downloads 117
321 Operational Characteristics of the Road Surface Improvement

Authors: Iuri Salukvadze

Abstract:

Construction takes importance role in the history of mankind, there is not a single thing-product in our lives in which the builder’s work was not to be materialized, because to create all of it requires setting up factories, roads, and bridges, etc. The function of the Republic of Georgia, as part of the connecting Europe-Asia transport corridor, is significantly increased. In the context of transit function a large part of the cargo traffic belongs to motor transport, hence the improvement of motor roads transport infrastructure is rather important and rise the new, increased operational demands for existing as well as new motor roads. Construction of the durable road surface is related to rather large values, but because of high transport-operational properties, such as high-speed, less fuel consumption, less depreciation of tires, etc. If the traffic intensity is high, therefore the reimbursement of expenses occurs rapidly and accordingly is increasing income. If the traffic intensity is relatively small, it is recommended to use lightened structures of road carpet in order to pay for capital investments amounted to no more than normative one. The road carpet is divided into the following basic types: asphaltic concrete and cement concrete. Asphaltic concrete is the most perfect type of road carpet. It is arranged in two or three layers on rigid foundation and will be compacted. Asphaltic concrete is artificial building material, which due stratum will be selected and measured from stone skeleton and sand, interconnected by bitumen and a mixture of mineral powder. Less strictly selected similar material is called as bitumen-mineral mixture. Asphaltic concrete is non-rigid building material and well durable on vertical loadings; it is less resistant to the impact of horizontal forces. The cement concrete is monolithic and durable material, it is well durable the horizontal loads and is less resistant related to vertical loads. The cement concrete consists from strictly selected, measured stone material and sand, the binder is cement. The cement concrete road carpet represents separate slabs of sizes from 3 ÷ 5 op to 6 ÷ 8 meters. The slabs are reinforced by a rather complex system. Between the slabs are arranged seams that are designed for avoiding of additional stresses due temperature fluctuations on the length of slabs. For the joint behavior of separate slabs, they are connected by metal rods. Rods provide the changes in the length of slabs and distribute to the slab vertical forces and bending moments. The foundation layers will be extremely durable, for that is required high-quality stone material, cement, and metal. The qualification work aims to: in order for improvement of traffic conditions on motor roads to prolong operational conditions and improving their characteristics. The work consists from three chapters, 80 pages, 5 tables and 5 figures. In the work are stated general concepts as well as carried out by various companies using modern methods tests and their results. In the chapter III are stated carried by us tests related to this issue and specific examples to improving the operational characteristics.

Keywords: asphalt, cement, cylindrikal sample of asphalt, building

Procedia PDF Downloads 196
320 Spatio-Temporal Dynamic of Woody Vegetation Assessment Using Oblique Landscape Photographs

Authors: V. V. Fomin, A. P. Mikhailovich, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova

Abstract:

Ground-level landscape photos can be used as a source of objective data on woody vegetation and vegetation dynamics. We proposed a method for processing, analyzing, and presenting ground photographs, which has the following advantages: 1) researcher has to form holistic representation of the study area in form of a set of interlapping ground-level landscape photographs; 2) it is necessary to define or obtain characteristics of the landscape, objects, and phenomena present on the photographs; 3) it is necessary to create new or supplement existing textual descriptions and annotations for the ground-level landscape photographs; 4) single or multiple ground-level landscape photographs can be used to develop specialized geoinformation layers, schematic maps or thematic maps; 5) it is necessary to determine quantitative data that describes both images as a whole, and displayed objects and phenomena, using algorithms for automated image analysis. It is suggested to match each photo with a polygonal geoinformation layer, which is a sector consisting of areas corresponding with parts of the landscape visible in the photos. Calculation of visibility areas is performed in a geoinformation system within a sector using a digital model of a study area relief and visibility analysis functions. Superposition of the visibility sectors corresponding with various camera viewpoints allows matching landscape photos with each other to create a complete and wholesome representation of the space in question. It is suggested to user-defined data or phenomenons on the images with the following superposition over the visibility sector in the form of map symbols. The technology of geoinformation layers’ spatial superposition over the visibility sector creates opportunities for image geotagging using quantitative data obtained from raster or vector layers within the sector with the ability to generate annotations in natural language. The proposed method has proven itself well for relatively open and clearly visible areas with well-defined relief, for example, in mountainous areas in the treeline ecotone. When the polygonal layers of visibility sectors for a large number of different points of photography are topologically superimposed, a layer of visibility of sections of the entire study area is formed, which is displayed in the photographs. Also, as a result of this overlapping of sectors, areas that did not appear in the photo will be assessed as gaps. According to the results of this procedure, it becomes possible to obtain information about the photos that display a specific area and from which points of photography it is visible. This information may be obtained either as a query on the map or as a query for the attribute table of the layer. The method was tested using repeated photos taken from forty camera viewpoints located on Ray-Iz mountain massif (Polar Urals, Russia) from 1960 until 2023. It has been successfully used in combination with other ground-based and remote sensing methods of studying the climate-driven dynamics of woody vegetation in the Polar Urals. Acknowledgment: This research was collaboratively funded by the Russian Ministry for Science and Education project No. FEUG-2023-0002 (image representation) and Russian Science Foundation project No. 24-24-00235 (automated textual description).

Keywords: woody, vegetation, repeated, photographs

Procedia PDF Downloads 29
319 Simulation and Analysis of Mems-Based Flexible Capacitive Pressure Sensors with COMSOL

Authors: Ding Liangxiao

Abstract:

The technological advancements in Micro-Electro-Mechanical Systems (MEMS) have significantly contributed to the development of new, flexible capacitive pressure sensors,which are pivotal in transforming wearable and medical device technologies. This study employs the sophisticated simulation tools available in COMSOL Multiphysics® to develop and analyze a MEMS-based sensor with a tri-layered design. This sensor comprises top and bottom electrodes made from gold (Au), noted for their excellent conductivity, a middle dielectric layer made from a composite of Silver Nanowires (AgNWs) embedded in Thermoplastic Polyurethane (TPU), and a flexible, durable substrate of Polydimethylsiloxane (PDMS). This research was directed towards understanding how changes in the physical characteristics of the AgNWs/TPU dielectric layer—specifically, its thickness and surface area—impact the sensor's operational efficacy. We assessed several key electrical properties: capacitance, electric potential, and membrane displacement under varied pressure conditions. These investigations are crucial for enhancing the sensor's sensitivity and ensuring its adaptability across diverse applications, including health monitoring systems and dynamic user interface technologies. To ensure the reliability of our simulations, we applied the Effective Medium Theory to calculate the dielectric constant of the AgNWs/TPU composite accurately. This approach is essential for predicting how the composite material will perform under different environmental and operational stresses, thus facilitating the optimization of the sensor design for enhanced performance and longevity. Moreover, we explored the potential benefits of innovative three-dimensional structures for the dielectric layer compared to traditional flat designs. Our hypothesis was that 3D configurations might improve the stress distribution and optimize the electrical field interactions within the sensor, thereby boosting its sensitivity and accuracy. Our simulation protocol includes comprehensive performance testing under simulated environmental conditions, such as temperature fluctuations and mechanical pressures, which mirror the actual operational conditions. These tests are crucial for assessing the sensor's robustness and its ability to function reliably over extended periods, ensuring high reliability and accuracy in complex real-world environments. In our current research, although a full dynamic simulation analysis of the three-dimensional structures has not yet been conducted, preliminary explorations through three-dimensional modeling have indicated the potential for mechanical and electrical performance improvements over traditional planar designs. These initial observations emphasize the potential advantages and importance of incorporating advanced three-dimensional modeling techniques in the development of Micro-Electro-Mechanical Systems (MEMS)sensors, offering new directions for the design and functional optimization of future sensors. Overall, this study not only highlights the powerful capabilities of COMSOL Multiphysics® for modeling sophisticated electronic devices but also underscores the potential of innovative MEMS technology in advancing the development of more effective, reliable, and adaptable sensor solutions for a broad spectrum of technological applications.

Keywords: MEMS, flexible sensors, COMSOL Multiphysics, AgNWs/TPU, PDMS, 3D modeling, sensor durability

Procedia PDF Downloads 8
318 Iran’s Sexual and Reproductive Rights Roll-Back: An Overview of Iran’s New Population Policies

Authors: Raha Bahreini

Abstract:

This paper discusses the roll-back of women’s sexual and reproductive rights in the Islamic Republic of Iran, which has come in the wake of a striking shift in the country’s official population policies. Since the late 1980s, Iran has won worldwide praise for its sexual and reproductive health and services, which have contributed to a steady decline in the country’s fertility rate–from 7.0 births per women in 1980 to 5.5 in 1988, 2.8 in 1996 and 1.85 in 2014. This is owed to a significant increase in the voluntary use of modern contraception in both rural and urban areas. In 1976, only 37 per cent of women were using at least one method of contraception; by 2014 this figure had reportedly risen to a high of nearly 79 per cent for married girls and women living in urban areas and 73.78 per cent for those living in rural areas. Such progress may soon be halted. In July 2012, Iran’s Supreme Leader Ayatollah Sayed Ali Khamenei denounced Iran’s family planning policies as an imitation of Western lifestyle. He exhorted the authorities to increase Iran’s population to 150 to 200 million (from around 78.5 million), including by cutting subsidies for contraceptive methods and dismantling the state’s Family and Population Planning Programme. Shortly thereafter, Iran’s Minister of Health and Medical Education announced the scrapping of the budget for the state-funded Family and Population Planning Programme. Iran’s Parliament subsequently introduced two bills; the Comprehensive Population and Exaltation of Family Bill (Bill 315), and the Bill to Increase Fertility Rates and Prevent Population Decline (Bill 446). Bill 446 outlaws voluntary tubectomies, which are believed to be the second most common method of modern contraception in Iran, and blocks access to information about contraception, denying women the opportunity to make informed decisions about the number and spacing of their children. Coupled with the elimination of state funding for Iran’s Family and Population Programme, the move would undoubtedly result in greater numbers of unwanted pregnancies, forcing more women to seek illegal and unsafe abortions. Bill 315 proposes various discriminatory measures in the areas of employment, divorce, and protection from domestic violence in order to promote a culture wherein wifedom and child-bearing is seen as women’s primary duty. The Bill, for example, instructs private and public entities to prioritize, in sequence, men with children, married men without children and married women with children when hiring for certain jobs. It also bans the recruitment of single individuals as family law lawyers, public and private school teachers and members of the academic boards of universities and higher education institutes. The paper discusses the consequences of these initiatives which would, if continued, set the human rights of women and girls in Iran back by decades, leaving them with a future shaped by increased inequality, discrimination, poor health, limited choices and restricted freedoms, in breach of Iran’s international human rights obligations.

Keywords: family planning and reproductive health, gender equality and empowerment of women, human rights, population growth

Procedia PDF Downloads 280
317 Cancer Stem Cell-Associated Serum Proteins Obtained by Maldi TOF/TOF Mass Spectrometry in Women with Triple-Negative Breast Cancer

Authors: Javier Enciso-Benavides, Fredy Fabian, Carlos Castaneda, Luis Alfaro, Alex Choque, Aparicio Aguilar, Javier Enciso

Abstract:

Background: The use of biomarkers in breast cancer diagnosis, therapy, and prognosis has gained increasing interest. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and may cause relapse. Therefore, due to the importance of diagnosis, therapy, and prognosis, several biomarkers that characterize CSCs have been identified; however, in treatment-naïve triple-negative breast tumors, there is an urgent need to identify new biomarkers and therapeutic targets. According to this, the aim of this study was to identify serum proteins associated with cancer stem cells and pluripotency in women with triple-negative breast tumors in order to subsequently identify a biomarker for this type of breast tumor. Material and Methods: Whole blood samples from 12 women with histopathologically diagnosed triple-negative breast tumors were used after obtaining informed consent from the patient. Blood serum was obtained by conventional procedure and frozen at -80ºC. Identification of cancer stem cell-associated proteins was performed by matrix-assisted laser desorption/ionisation-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS), protein analysis was obtained using the AB Sciex TOF/TOF™ 5800 system (AB Sciex, USA). Sequences not aligned by ProteinPilot™ software were analyzed by Protein BLAST. Results: The following proteins related to pluripotency and cancer stem cells were identified by MALDI TOF/TOF mass spectrometry: A-chain, Serpin A12 [Homo sapiens], AIEBP [Homo sapiens], Alpha-one antitrypsin, AT {internal fragment} [human, partial peptide, 20 aa] [Homo sapiens], collagen alpha 1 chain precursor variant [Homo sapiens], retinoblastoma-associated protein variant [Homo sapiens], insulin receptor, CRA_c isoform [Homo sapiens], Hydroxyisourate hydrolase [Streptomyces scopuliridis], MUCIN-6 [Macaca mulatta], Alpha-actinin-3 [Chrysochloris asiatica], Polyprotein M, CRA_d isoform, partial [Homo sapiens], Transcription factor SOX-12 [Homo sapiens]. Recommendations: The serum proteins identified in this study should be investigated in the exosome of triple-negative breast cancer stem cells and in the blood serum of women without breast cancer. Subsequently, proteins found only in the blood serum of women with triple-negative breast cancer should be identified in situ in triple-negative breast cancer tissue in order to identify a biomarker to study the evolution of this type of cancer, or that could be a therapeutic target. Conclusions: Eleven cancer stem cell-related serum proteins were identified in 12 women with triple-negative breast cancer, of which MUCIN-6, retinoblastoma-associated protein variant, transcription factor SOX-12, and collagen alpha 1 chain are the most representative and have not been studied so far in this type of breast tumor. Acknowledgement: This work was supported by Proyecto CONCYTEC–Banco Mundial “Mejoramiento y Ampliacion de los Servicios del Sistema Nacional de Ciencia Tecnología e Innovacion Tecnologica” 8682-PE (104-2018-FONDECYT-BM-IADT-AV).

Keywords: triple-negative breast cancer, MALDI TOF/TOF MS, serum proteins, cancer stem cells

Procedia PDF Downloads 188
316 A Hardware-in-the-loop Simulation for the Development of Advanced Control System Design for a Spinal Joint Wear Simulator

Authors: Kaushikk Iyer, Richard M Hall, David Keeling

Abstract:

Hardware-in-the-loop (HIL) simulation is an advanced technique for developing and testing complex real-time control systems. This paper presents the benefits of HIL simulation and how it can be implemented and used effectively to develop, test, and validate advanced control algorithms used in a spinal joint Wear simulator for the Tribological testing of spinal disc prostheses. spinal wear simulator is technologically the most advanced machine currently employed For the in-vitro testing of newly developed spinal Discimplants. However, the existing control techniques, such as a simple position control Does not allow the simulator to test non-sinusoidal waveforms. Thus, there is a need for better and advanced control methods that can be developed and tested Rigorouslybut safely before deploying it into the real simulator. A benchtop HILsetupis was created for experimentation, controller verification, and validation purposes, allowing different control strategies to be tested rapidly in a safe environment. The HIL simulation aspect in this setup attempts to replicate similar spinal motion and loading conditions. The spinal joint wear simulator containsa four-Barlinkpowered by electromechanical actuators. LabVIEW software is used to design a kinematic model of the spinal wear Simulator to Validatehow each link contributes towards the final motion of the implant under test. As a result, the implant articulates with an angular motion specified in the international standards, ISO-18192-1, that define fixed, simplified, and sinusoid motion and load profiles for wear testing of cervical disc implants. Using a PID controller, a velocity-based position control algorithm was developed to interface with the benchtop setup that performs HIL simulation. In addition to PID, a fuzzy logic controller (FLC) was also developed that acts as a supervisory controller. FLC provides intelligence to the PID controller by By automatically tuning the controller for profiles that vary in amplitude, shape, and frequency. This combination of the fuzzy-PID controller is novel to the wear testing application for spinal simulators and demonstrated superior performance against PIDwhen tested for a spectrum of frequency. Kaushikk Iyer is a Ph.D. Student at the University of Leeds and an employee at Key Engineering Solutions, Leeds, United Kingdom, (e-mail: [email protected], phone: +44 740 541 5502). Richard M Hall is with the University of Leeds, the United Kingdom as a professor in the Mechanical Engineering Department (e-mail: [email protected]). David Keeling is the managing director of Key Engineering Solutions, Leeds, United Kingdom (e-mail: [email protected]). Results obtained are successfully validated against the load and motion tolerances specified by the ISO18192-1 standard and fall within limits, that is, ±0.5° at the maxima and minima of the motion and ±2 % of the complete cycle for phasing. The simulation results prove the efficacy of the test setup using HIL simulation to verify and validate the accuracy and robustness of the prospective controller before its deployment into the spinal wear simulator. This method of testing controllers enables a wide range of possibilities to test advanced control algorithms that can potentially test even profiles of patients performing various dailyliving activities.

Keywords: Fuzzy-PID controller, hardware-in-the-loop (HIL), real-time simulation, spinal wear simulator

Procedia PDF Downloads 150
315 Functional Outcome of Speech, Voice and Swallowing Following Excision of Glomus Jugulare Tumor

Authors: B. S. Premalatha, Kausalya Sahani

Abstract:

Background: Glomus jugulare tumors arise within the jugular foramen and are commonly seen in females particularly on the left side. Surgical excision of the tumor may cause lower cranial nerve deficits. Cranial nerve involvement produces hoarseness of voice, slurred speech, and dysphagia along with other physical symptoms, thereby affecting the quality of life of individuals. Though oncological clearance is mainly emphasized on while treating these individuals, little importance is given to their communication, voice and swallowing problems, which play a crucial part in daily functioning. Objective: To examine the functions of voice, speech and swallowing outcomes of the subjects, following excision of glomus jugulare tumor. Methods: Two female subjects aged 56 and 62 years had come with a complaint of change in voice, inability to swallow and reduced clarity of speech following surgery for left glomus jugulare tumor were participants of the study. Their surgical information revealed multiple cranial nerve palsies involving the left facial, left superior and recurrent branches of the vagus nerve, left pharyngeal, left soft palate, left hypoglossal and vestibular nerves. Functional outcomes of voice, speech and swallowing were evaluated by perceptual and objective assessment procedures. Assessment included the examination of oral structures and functions, dysarthria by Frenchey dysarthria assessment, cranial nerve functions and swallowing functions. MDVP and Dr. Speech software were used to evaluate acoustic parameters of voice and quality of voice respectively. Results: The study revealed that both the subjects, subsequent to excision of glomus jugulare tumor, showed a varied picture of affected oral structure and functions, articulation, voice and swallowing functions. The cranial nerve assessment showed impairment of the vagus, hypoglossal, facial and glossopharyngeal nerves. Voice examination indicated vocal cord paralysis associated with breathy quality of voice, weak voluntary cough, reduced pitch and loudness range, and poor respiratory support. Perturbation parameters as jitter, shimmer were affected along with s/z ratio indicative of voice fold pathology. Reduced MPD(Maximum Phonation Duration) of vowels indicated that disturbed coordination between respiratory and laryngeal systems. Hypernasality was found to be a prominent feature which reduced speech intelligibility. Imprecise articulation was seen in both the subjects as the hypoglossal nerve was affected following surgery. Injury to vagus, hypoglossal, gloss pharyngeal and facial nerves disturbed the function of swallowing. All the phases of swallow were affected. Aspiration was observed before and during the swallow, confirming the oropharyngeal dysphagia. All the subsystems were affected as per Frenchey Dysarthria Assessment signifying the diagnosis of flaccid dysarthria. Conclusion: There is an observable communication and swallowing difficulty seen following excision of glomus jugulare tumor. Even with complete resection, extensive rehabilitation may be necessary due to significant lower cranial nerve dysfunction. The finding of the present study stresses the need for involvement of as speech and swallowing therapist for pre-operative counseling and assessment of functional outcomes.

Keywords: functional outcome, glomus jugulare tumor excision, multiple cranial nerve impairment, speech and swallowing

Procedia PDF Downloads 229