Search results for: urban road network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9005

Search results for: urban road network

6395 Building Information Modelling Based Value for Money Assessment in Public-Private Partnership

Authors: Guoqian Ren, Haijiang Li, Jisong Zhang

Abstract:

Over the past 40 years, urban development has undergone large-scale, high-speed expansion, beyond what was previously considered normal and in a manner not proportionally related to population growth or physical considerations. With more scientific and refined decision-making in the urban construction process, new urbanization approaches, aligned with public-private partnerships (PPPs) which evolved in the early 1990s, have become acceptable and, in some situations, even better solutions to outstanding urban municipal construction projects, especially in developing countries. However, as the main driving force to deal with urban public services, PPPs are still problematic regarding value for money (VFM) process in most large-scale construction projects. This paper therefore reviews recent PPP articles in popular project management journals and relevant toolkits, published in the last 10 years, to identify the indicators that influence VFM within PPPs across regions. With increasing concerns about profitability and environmental and social impacts, the current PPP structure requires a more integrated platform to manage multi-performance project life cycles. Building information modelling (BIM), a popular approach to the procurement process in AEC sectors, provides the potential to ensure VFM while also working in tandem with the semantic approach to holistically measure life cycle costs (LCC) and achieve better sustainability. This paper suggests that BIM applied to the entire PPP life cycle could support holistic decision-making regarding VFM processes and thus meet service targets.

Keywords: public-private partnership, value for money, building information modelling, semantic approach

Procedia PDF Downloads 209
6394 Dialogues of Medical Places and Health Care in Oporto City (20th Century)

Authors: Monique Palma, Isabel Amaral

Abstract:

This paper aims at mapping medical places in Oporto in the twentieth century in order to bring the urban history of medicine and healthcare in Portugal to a large audience, using Oporto as a case study. This analysis is consistent with the SDS's 2030 goals for policy guidance for heritage and development actors. As a result, it is critical to begin this research in order to place on the political agenda the preservation of Portuguese culture's history, memory, and heritage, particularly the medical culture, which is one of the most important drivers of civilizational development. To understand the evolution of medical care in urban history, we will conduct archive research (manuals, treatises, reports, periodic journals, newspapers, etc.) and interviews with key actors from medical institutions and medical museums. The findings of this study will be used to develop medical itineraries for inclusion in touristic agendas in Portugal and abroad, to include Portuguese medicine in global roadmaps, and to promote the preservation of the most iconic places of health care and medical heritage, as well as tools to promote social cohesion, dialogue among people, and "sense of place" globally.

Keywords: medical itineraries, history of medicine, urban history, Oporto

Procedia PDF Downloads 228
6393 Organic Matter Removal in Urban and Agroindustry Wastewater by Chemical Precipitation Process

Authors: Karina Santos Silvério, Fátima Carvalho, Maria Adelaide Almeida

Abstract:

The impacts caused by anthropogenic actions on the water environment have been one of the main challenges of modern society. Population growth, added to water scarcity and climate change, points to a need to increase the resilience of production systems to increase efficiency regarding the management of wastewater generated in the different processes. Based on this context, the study developed under the NETA project (New Strategies in Wastewater Treatment) aimed to evaluate the efficiency of the Chemical Precipitation Process (CPP), using the hydrated lime (Ca(OH )₂) as a reagent in wastewater from the agroindustry sector, namely swine wastewater, slaughterhouse and urban wastewater, in order to make the productive means 100% circular, causing a direct positive impact on the environment. The purpose of CPP is to innovate in the field of effluent treatment technologies, as it allows rapid application and is economically profitable. In summary, the study was divided into four main stages: 1) Application of the reagent in a single step, raising the pH to 12.5 2) Obtaining sludge and treated effluent. 3) Natural neutralization of the effluent through Carbonation using atmospheric CO₂. 4) Characterization and evaluation of the feasibility of the chemical precipitation technique in the treatment of different wastewaters through the technique of determining the chemical oxygen demand (COD) and other supporting physical-chemical parameters. The results showed an approximate average removal efficiency above 80% for all effluents, highlighting the swine effluent with 90% removal, followed by urban effluent with 88% and slaughterhouse with 81% on average. Significant improvement was also obtained with regard to color and odor removal after Carbonation to pH 8.00.

Keywords: agroindustry wastewater, urban wastewater, natural carbonatation, chemical precipitation technique

Procedia PDF Downloads 82
6392 Support Systems for Vehicle Use

Authors: G. González, J. Ramírez, A. Rubiano

Abstract:

This article describes different patented systems for safe use in vehicles based on GPS technology, speed sensors, gyroscopes, maps, communication systems, and monitors, that inform the driver about traffic jam, obstruction in the road, speed limits, among others. Once the information is analyzed and contrasted to final propose new technical needs to be solved.

Keywords: GPS, information technology, telecommunications, communication networks, gyroscope, environmental pollution

Procedia PDF Downloads 468
6391 The Omicron Variant BA.2.86.1 of SARS- 2 CoV-2 Demonstrates an Altered Interaction Network and Dynamic Features to Enhance the Interaction with the hACE2

Authors: Taimur Khan, Zakirullah, Muhammad Shahab

Abstract:

The SARS-CoV-2 variant BA.2.86 (Omicron) has emerged with unique mutations that may increase its transmission and infectivity. This study investigates how these mutations alter the Omicron receptor-binding domain's interaction network and dynamic properties (RBD) compared to the wild-type virus, focusing on its binding affinity to the human ACE2 (hACE2) receptor. Protein-protein docking and all-atom molecular dynamics simulations were used to analyze structural and dynamic differences. Despite the structural similarity to the wild-type virus, the Omicron variant exhibits a distinct interaction network involving new residues that enhance its binding capacity. The dynamic analysis reveals increased flexibility in the RBD, particularly in loop regions crucial for hACE2 interaction. Mutations significantly alter the secondary structure, leading to greater flexibility and conformational adaptability compared to the wild type. Binding free energy calculations confirm that the Omicron RBD has a higher binding affinity (-70.47 kcal/mol) to hACE2 than the wild-type RBD (-61.38 kcal/mol). These results suggest that the altered interaction network and enhanced dynamics of the Omicron variant contribute to its increased infectivity, providing insights for the development of targeted therapeutics and vaccines.

Keywords: SARS-CoV-2, molecular dynamic simulation, receptor binding domain, vaccine

Procedia PDF Downloads 22
6390 Khiaban (the Street) as an Ancient Percept of the Iranian Urban Landscape: An Aesthetic Reading of Lalehzar Street, the First Modern Khiaban in Iran

Authors: Mohammad Atashinbar

Abstract:

Lalehzar was one of the main streets in central Tehran in late Qajar and 1st Pahlavi (1880-1940) and a center of attention for the government. It was a natural walk during the last decade of the reign of Nasser al-Din Shah (1880-1895). However, this street lost its prosperity status under the 2nd Pahlavi and evolved from a modern cultural street to a commercial corridor. Lalehzar's decline was the result of the immigration of the upper class from the inner city to the northern part and the consequent transfer of amenities and luxury goods with them. It seems that during Lalehzar's six decades of prosperity, this khiâbân has received an aesthetic look, which has made it enjoyable and appreciated by Tehran’s people. Various post-revolutionary urban management measures have been taken to revive Lalehzar and improve the quality of its urban life. Since the beginning of the Safavid era, the khiâbân was accompanied by the concept of urban space, and its characteristics are explained by referring to the main axis of the Persian Garden with rows of trees, streams, and a line of flowers on both sides. The construction of a street inside the city as an urban space benefits from a mental concept as a spiritual and exciting space, especially in common forms in the Persian Garden. Before that, the khiâbân was a religious and mythical concept, and we can even say that the mastery of this concept led to its appearance in the garden. In Tehran, Lalehzar Street is a gateway to modernity. The aesthetic changes in Lalehzar Street, inspired by Nasser al-Din Shah's journey to Europe around 1870, coinciding with the changes in architectural and urban landscape movements around the world between 1880 and 1940. The Shah is impressed by the modernist urbanism and, in particular, the Champs-Élysées in Paris. A tree-lined promenade with the hallmarks of the Persian Garden is familiar to Nasser al-Din Shah's mental image of beauty. In its state of mind, the main axis of the Persian Garden has the characteristics of a promenade. Therefore, the origins of the aesthetic of Lalehzar Street come from the aesthetics of the khiâbân. Admitting that the Champs-Élysées served as a model for Lalehzar, it seems that the Shah wanted to associate the Champs-Élysées with Lalehzar and highlight its landscape aspects by building this street. Depending on whether the percepts have their own aesthetic, this proposal seeks to analyze the aesthetic evolutions of the khiâbân as a percept towards the street as a component of the urban landscape in Lalehzar. The research attempts to review the aesthetic aspects of Lalehzar between 1880-1940 by using iconographic analysis, based on the available historical data, to find the leading aesthetics principles of this street. The aesthetic view to Lalehzar as an artwork is one of the main achievements of this study.

Keywords: Lalehzar, aesthetics, percept, Tehran, street

Procedia PDF Downloads 151
6389 Solar Energy Management: A Case Study of Bhubaneswar City

Authors: Rachita Lal

Abstract:

Solar energy is a clean energy source. Because it is readily available in India and has many potential decentralized uses, urban local authorities may use it in various ways to manage the energy needs in the territory under their control. Apart from these and other services for which people pay a substantial number of money, urban local councils play a crucial role in administering essential services like water supply, street lighting, and health care. ULBs may contribute considerably to the transition to solar energy, both for their benefit and simultaneously for several additional direct and indirect advantages at multiple levels. The research primarily focuses on using clean energy management to reduce urban areas' reliance on traditional (electricity) energy. A technique for estimating the rooftop solar power potential using GIS (Geographical Information System) is described. Given that the combustion of fossil fuels produces 75% of India's power, meeting the country's energy needs through renewable energy sources is a step toward sustainable development and combating climate change. The study will further help in categorization, phasing, and understanding the demand and supply and thus calculating the cumulative benefits. The main objectives are to study the consumption of conventional energy in the study area and to identify the potential areas where solar photovoltaic intervention can be installed.

Keywords: solar energy, GIS, clean energy management, sustainable development

Procedia PDF Downloads 88
6388 Loss of Green Space in Urban Metropolitan and Its Alarming Impacts on Teenagers' Life: A Case Study on Dhaka

Authors: Nuzhat Sharmin

Abstract:

Human being is the most integral part of the nature and responsible for maintaining ecological balance both in rural and urban areas. But unfortunately, we are not doing our job with a holistic approach. The rapid growth of urbanization is making human life more isolated from greenery. Nowadays modern urban living involves sensory deprivation and overloaded stress. In many cities and towns of the world are expanding unabated in the name of urbanization and industrialization and in fact becoming jungles of concrete. Dhaka is one of the examples of such cities where open and green spaces are decreasing because of accommodating the overflow of population. This review paper has been prepared based on interviewing 30 teenagers, both male and female in Dhaka city. There were 12 open-ended questions in the questionnaire. For the literature review information had been gathered from scholarly papers published in various peer-reviewed journals. Some information was collected from the newspapers and some from fellow colleagues working around the world. Ideally about 25% of an urban area should be kept open or with parks, fields and/or plants and vegetation. But currently Dhaka has only about 10-12% open space and these also are being filled up rapidly. Old Dhaka has only about 5% open space while the new Dhaka has about 12%. Dhaka is now one of the most populated cities in the world. Accommodating this huge influx of people Dhaka is continuously losing its open space. As a result, children and teenagers are losing their interest in playing games and making friends, rather they are mostly occupied by television, gadgets and social media. It has been known from the interview that only 28% of teenagers regularly play. But the majority of them have to play on the street and rooftop for the lack of open space. On an average they are occupied with electronic devices for 8.3 hours/day. 64% of them has chronic diseases and often visit doctors. Most shockingly 35% of them claimed for not having any friends. Green space offers relief from stress. Areas of natural environment in towns and cities are theoretically seen providing setting for recovery and recuperation from anxiety and strains of the urban environment. Good quality green spaces encourage people to walk, run, cycle and play. Green spaces improve air quality and reduce noise, while trees and shrubbery help to filter out dust and pollutants. Relaxation, contemplation and passive recreation are essential to stress management. All city governments that are losing its open spaces should immediately pay attention to this aesthetic issue for the benefit of urban people. All kinds of development must be sustainable both for human being and nature.

Keywords: greenery, health, human, urban

Procedia PDF Downloads 175
6387 DCDNet: Lightweight Document Corner Detection Network Based on Attention Mechanism

Authors: Kun Xu, Yuan Xu, Jia Qiao

Abstract:

The document detection plays an important role in optical character recognition and text analysis. Because the traditional detection methods have weak generalization ability, and deep neural network has complex structure and large number of parameters, which cannot be well applied in mobile devices, this paper proposes a lightweight Document Corner Detection Network (DCDNet). DCDNet is a two-stage architecture. The first stage with Encoder-Decoder structure adopts depthwise separable convolution to greatly reduce the network parameters. After introducing the Feature Attention Union (FAU) module, the second stage enhances the feature information of spatial and channel dim and adaptively adjusts the size of receptive field to enhance the feature expression ability of the model. Aiming at solving the problem of the large difference in the number of pixel distribution between corner and non-corner, Weighted Binary Cross Entropy Loss (WBCE Loss) is proposed to define corner detection problem as a classification problem to make the training process more efficient. In order to make up for the lack of Dataset of document corner detection, a Dataset containing 6620 images named Document Corner Detection Dataset (DCDD) is made. Experimental results show that the proposed method can obtain fast, stable and accurate detection results on DCDD.

Keywords: document detection, corner detection, attention mechanism, lightweight

Procedia PDF Downloads 354
6386 Introduce a New Model of Anomaly Detection in Computer Networks Using Artificial Immune Systems

Authors: Mehrshad Khosraviani, Faramarz Abbaspour Leyl Abadi

Abstract:

The fundamental component of the computer network of modern information society will be considered. These networks are connected to the network of the internet generally. Due to the fact that the primary purpose of the Internet is not designed for, in recent decades, none of these networks in many of the attacks has been very important. Today, for the provision of security, different security tools and systems, including intrusion detection systems are used in the network. A common diagnosis system based on artificial immunity, the designer, the Adhasaz Foundation has been evaluated. The idea of using artificial safety methods in the diagnosis of abnormalities in computer networks it has been stimulated in the direction of their specificity, there are safety systems are similar to the common needs of m, that is non-diagnostic. For example, such methods can be used to detect any abnormalities, a variety of attacks, being memory, learning ability, and Khodtnzimi method of artificial immune algorithm pointed out. Diagnosis of the common system of education offered in this paper using only the normal samples is required for network and any additional data about the type of attacks is not. In the proposed system of positive selection and negative selection processes, selection of samples to create a distinction between the colony of normal attack is used. Copa real data collection on the evaluation of ij indicates the proposed system in the false alarm rate is often low compared to other ir methods and the detection rate is in the variations.

Keywords: artificial immune system, abnormality detection, intrusion detection, computer networks

Procedia PDF Downloads 353
6385 A 5G Architecture Based to Dynamic Vehicular Clustering Enhancing VoD Services Over Vehicular Ad hoc Networks

Authors: Lamaa Sellami, Bechir Alaya

Abstract:

Nowadays, video-on-demand (VoD) applications are becoming one of the tendencies driving vehicular network users. In this paper, considering the unpredictable vehicle density, the unexpected acceleration or deceleration of the different cars included in the vehicular traffic load, and the limited radio range of the employed communication scheme, we introduce the “Dynamic Vehicular Clustering” (DVC) algorithm as a new scheme for video streaming systems over VANET. The proposed algorithm takes advantage of the concept of small cells and the introduction of wireless backhauls, inspired by the different features and the performance of the Long Term Evolution (LTE)- Advanced network. The proposed clustering algorithm considers multiple characteristics such as the vehicle’s position and acceleration to reduce latency and packet loss. Therefore, each cluster is counted as a small cell containing vehicular nodes and an access point that is elected regarding some particular specifications.

Keywords: video-on-demand, vehicular ad-hoc network, mobility, vehicular traffic load, small cell, wireless backhaul, LTE-advanced, latency, packet loss

Procedia PDF Downloads 141
6384 Sustainable Conservation and Renewal Strategies for Industrial Heritage Communities from the Perspective of the Spirit of Place

Authors: Liu Yao

Abstract:

With the acceleration of urbanization and the profound change in industrial structure, a large number of unused and abandoned industrial heritage has emerged in the city, and the industrial communities attached to them have also fallen into a state of decline. This decline is not only reflected in the aging and decay of physical space but also in the rupture and absence of historical and cultural veins. Therefore, in urban renewal, we should not only pay attention to the physical transformation and reconstruction but also think deeply about how to inherit the spiritual core of industrial heritage communities, how to awaken and reconstruct their place memory, and how to promote its organic integration with the process of urban redevelopment. This study takes the Jiangnan Cement Factory industrial heritage community as a typical case and analyzes the challenges and opportunities it faces in the process of renewal, protection and utilization. With the continuation of the spirit of place as the core, we are committed to realizing the sustainable development of the community's industry, space and culture. Based on this, we propose three types of regeneration strategies, including industrial activation, spatial restoration and spiritual continuity, in order to provide useful theoretical references and practical guidance for the future conservation of industrial heritage and the sustainable development of communities.

Keywords: spirit of place, industrial heritage communities, urban renewal, sustainable communities

Procedia PDF Downloads 50
6383 Analyzing the Street Pattern Characteristics on Young People’s Choice to Walk or Not: A Study Based on Accelerometer and Global Positioning Systems Data

Authors: Ebru Cubukcu, Gozde Eksioglu Cetintahra, Burcin Hepguzel Hatip, Mert Cubukcu

Abstract:

Obesity and overweight cause serious health problems. Public and private organizations aim to encourage walking in various ways in order to cope with the problem of obesity and overweight. This study aims to understand how the spatial characteristics of urban street pattern, connectivity and complexity influence young people’s choice to walk or not. 185 public university students in Izmir, the third largest city in Turkey, participated in the study. Each participant had worn an accelerometer and a global positioning (GPS) device for a week. The accelerometer device records data on the intensity of the participant’s activity at a specified time interval, and the GPS device on the activities’ locations. Combining the two datasets, activity maps are derived. These maps are then used to differentiate the participants’ walk trips and motor vehicle trips. Given that, the frequency of walk and motor vehicle trips are calculated at the street segment level, and the street segments are then categorized into two as ‘preferred by pedestrians’ and ‘preferred by motor vehicles’. Graph Theory-based accessibility indices are calculated to quantify the spatial characteristics of the streets in the sample. Six different indices are used: (I) edge density, (II) edge sinuosity, (III) eta index, (IV) node density, (V) order of a node, and (VI) beta index. T-tests show that the index values for the ‘preferred by pedestrians’ and ‘preferred by motor vehicles’ are significantly different. The findings indicate that the spatial characteristics of the street network have a measurable effect on young people’s choice to walk or not. Policy implications are discussed. This study is funded by the Scientific and Technological Research Council of Turkey, Project No: 116K358.

Keywords: graph theory, walkability, accessibility, street network

Procedia PDF Downloads 226
6382 Citation Analysis of New Zealand Court Decisions

Authors: Tobias Milz, L. Macpherson, Varvara Vetrova

Abstract:

The law is a fundamental pillar of human societies as it shapes, controls and governs how humans conduct business, behave and interact with each other. Recent advances in computer-assisted technologies such as NLP, data science and AI are creating opportunities to support the practice, research and study of this pervasive domain. It is therefore not surprising that there has been an increase in investments into supporting technologies for the legal industry (also known as “legal tech” or “law tech”) over the last decade. A sub-discipline of particular appeal is concerned with assisted legal research. Supporting law researchers and practitioners to retrieve information from the vast amount of ever-growing legal documentation is of natural interest to the legal research community. One tool that has been in use for this purpose since the early nineteenth century is legal citation indexing. Among other use cases, they provided an effective means to discover new precedent cases. Nowadays, computer-assisted network analysis tools can allow for new and more efficient ways to reveal the “hidden” information that is conveyed through citation behavior. Unfortunately, access to openly available legal data is still lacking in New Zealand and access to such networks is only commercially available via providers such as LexisNexis. Consequently, there is a need to create, analyze and provide a legal citation network with sufficient data to support legal research tasks. This paper describes the development and analysis of a legal citation Network for New Zealand containing over 300.000 decisions from 125 different courts of all areas of law and jurisdiction. Using python, the authors assembled web crawlers, scrapers and an OCR pipeline to collect and convert court decisions from openly available sources such as NZLII into uniform and machine-readable text. This facilitated the use of regular expressions to identify references to other court decisions from within the decision text. The data was then imported into a graph-based database (Neo4j) with the courts and their respective cases represented as nodes and the extracted citations as links. Furthermore, additional links between courts of connected cases were added to indicate an indirect citation between the courts. Neo4j, as a graph-based database, allows efficient querying and use of network algorithms such as PageRank to reveal the most influential/most cited courts and court decisions over time. This paper shows that the in-degree distribution of the New Zealand legal citation network resembles a power-law distribution, which indicates a possible scale-free behavior of the network. This is in line with findings of the respective citation networks of the U.S. Supreme Court, Austria and Germany. The authors of this paper provide the database as an openly available data source to support further legal research. The decision texts can be exported from the database to be used for NLP-related legal research, while the network can be used for in-depth analysis. For example, users of the database can specify the network algorithms and metrics to only include specific courts to filter the results to the area of law of interest.

Keywords: case citation network, citation analysis, network analysis, Neo4j

Procedia PDF Downloads 107
6381 Evaluating Emission Reduction Due to a Proposed Light Rail Service: A Micro-Level Analysis

Authors: Saeid Eshghi, Neeraj Saxena, Abdulmajeed Alsultan

Abstract:

Carbon dioxide (CO2) alongside other gas emissions in the atmosphere cause a greenhouse effect, resulting in an increase of the average temperature of the planet. Transportation vehicles are among the main contributors of CO2 emission. Stationary vehicles with initiated motors produce more emissions than mobile ones. Intersections with traffic lights that force the vehicles to become stationary for a period of time produce more CO2 pollution than other parts of the road. This paper focuses on analyzing the CO2 produced by the traffic flow at Anzac Parade Road - Barker Street intersection in Sydney, Australia, before and after the implementation of Light rail transport (LRT). The data are gathered during the construction phase of the LRT by collecting the number of vehicles on each path of the intersection for 15 minutes during the evening rush hour of 1 week (6-7 pm, July 04-31, 2018) and then multiplied by 4 to calculate the flow of vehicles in 1 hour. For analyzing the data, the microscopic simulation software “VISSIM” has been used. Through the analysis, the traffic flow was processed in three stages: before and after implementation of light rail train, and one during the construction phase. Finally, the traffic results were input into another software called “EnViVer”, to calculate the amount of CO2 during 1 h. The results showed that after the implementation of the light rail, CO2 will drop by a minimum of 13%. This finding provides an evidence that light rail is a sustainable mode of transport.

Keywords: carbon dioxide, emission modeling, light rail, microscopic model, traffic flow

Procedia PDF Downloads 143
6380 Nutrition Program Planning Based on Local Resources in Urban Fringe Areas of a Developing Country

Authors: Oktia Woro Kasmini Handayani, Bambang Budi Raharjo, Efa Nugroho, Bertakalswa Hermawati

Abstract:

Obesity prevalence and severe malnutrition in Indonesia has increased from 2007 to 2013. The utilization of local resources in nutritional program planning can be used to program efficiency and to reach the goal. The aim of this research is to plan a nutrition program based on local resources for urban fringe areas in a developing country. This research used a qualitative approach, with a focus on local resources including social capital, social system, cultural system. The study was conducted in Mijen, Central Java, as one of the urban fringe areas in Indonesia. Purposive and snowball sampling techniques are used to determine participants. A total of 16 participants took part in the study. Observation, interviews, focus group discussion, SWOT analysis, brainstorming and Miles and Huberman models were used to analyze the data. We have identified several local resources, such as the contributions from nutrition cadres, social organizations, social financial resources, as well as the cultural system and social system. The outstanding contribution of nutrition cadres is the participation and creativity to improve nutritional status. In addition, social organizations, like the role of the integrated health center for children (Pos Pelayanan Terpadu), can be engaged in the nutrition program planning. This center is supported by House of Nutrition to assist in nutrition program planning, and provide social support to families, neighbors and communities as social capitals. The study also reported that cultural systems that show appreciation for well-nourished children are a better way to improve the problem of balanced nutrition. Social systems such as teamwork and mutual cooperation can also be a potential resource to support nutritional programs and overcome associated problems. The impact of development in urban areas such as the introduction of more green areas which improve the perceived status of local people, as well as new health services facilitated by people and companies, can also be resources to support nutrition programs. Local resources in urban fringe areas can be used in the planning of nutrition programs. The expansion of partnership with all stakeholders, empowering the community through optimizing the roles of nutrition care centers for children as our recommendation with regard to nutrition program planning.

Keywords: developing country, local resources, nutrition program, urban fringe

Procedia PDF Downloads 251
6379 Smart-Textile Containers for Urban Mobility

Authors: René Vieroth, Christian Dils, M. V. Krshiwoblozki, Christine Kallmayer, Martin Schneider-Ramelow, Klaus-Dieter Lang

Abstract:

Green urban mobility in commercial and private contexts is one of the great challenges for the continuously growing cities all over the world. Bicycle based solutions are already and since a long time the key to success. Modern developments like e-bikes and high-end cargo-bikes complement the portfolio. Weight, aerodynamic drag, and security for the transported goods are the key factors for working solutions. Recent achievements in the field of smart-textiles allowed the creation of a totally new generation of intelligent textile cargo containers, which fulfill those demands. The fusion of technical textiles, design and electrical engineering made it possible to create an ecological solution which is very near to become a product. This paper shows all the details of this solution that includes an especially developed sensor textile for cut detection, a protective textile layer for intrusion prevention, an universal-charging-unit for energy harvesting from diverse sources and a low-energy alarm system with GSM/GPRS connection, GPS location and RFID interface.

Keywords: cargo-bike, cut-detection, e-bike, energy-harvesting, green urban mobility, logistics, smart-textiles, textile-integrity sensor

Procedia PDF Downloads 315
6378 Influence of the Refractory Period on Neural Networks Based on the Recognition of Neural Signatures

Authors: José Luis Carrillo-Medina, Roberto Latorre

Abstract:

Experimental evidence has revealed that different living neural systems can sign their output signals with some specific neural signature. Although experimental and modeling results suggest that neural signatures can have an important role in the activity of neural networks in order to identify the source of the information or to contextualize a message, the functional meaning of these neural fingerprints is still unclear. The existence of cellular mechanisms to identify the origin of individual neural signals can be a powerful information processing strategy for the nervous system. We have recently built different models to study the ability of a neural network to process information based on the emission and recognition of specific neural fingerprints. In this paper we further analyze the features that can influence on the information processing ability of this kind of networks. In particular, we focus on the role that the duration of a refractory period in each neuron after emitting a signed message can play in the network collective dynamics.

Keywords: neural signature, neural fingerprint, processing based on signal identification, self-organizing neural network

Procedia PDF Downloads 492
6377 Experimental Study and Neural Network Modeling in Prediction of Surface Roughness on Dry Turning Using Two Different Cutting Tool Nose Radii

Authors: Deba Kumar Sarma, Sanjib Kr. Rajbongshi

Abstract:

Surface finish is an important product quality in machining. At first, experiments were carried out to investigate the effect of the cutting tool nose radius (considering 1mm and 0.65mm) in prediction of surface finish with process parameters of cutting speed, feed and depth of cut. For all possible cutting conditions, full factorial design was considered as two levels four parameters. Commercial Mild Steel bar and High Speed Steel (HSS) material were considered as work-piece and cutting tool material respectively. In order to obtain functional relationship between process parameters and surface roughness, neural network was used which was found to be capable for the prediction of surface roughness within a reasonable degree of accuracy. It was observed that tool nose radius of 1mm provides better surface finish in comparison to 0.65 mm. Also, it was observed that feed rate has a significant influence on surface finish.

Keywords: full factorial design, neural network, nose radius, surface finish

Procedia PDF Downloads 368
6376 Application of Neural Network in Portfolio Product Companies: Integration of Boston Consulting Group Matrix and Ansoff Matrix

Authors: M. Khajezadeh, M. Saied Fallah Niasar, S. Ali Asli, D. Davani Davari, M. Godarzi, Y. Asgari

Abstract:

This study aims to explore the joint application of both Boston and Ansoff matrices in the operational development of the product. We conduct deep analysis, by utilizing the Artificial Neural Network, to predict the position of the product in the market while the company is interested in increasing its share. The data are gathered from two industries, called hygiene and detergent. In doing so, the effort is being made by investigating the behavior of top player companies and, recommend strategic orientations. In conclusion, this combination analysis is appropriate for operational development; as well, it plays an important role in providing the position of the product in the market for both hygiene and detergent industries. More importantly, it will elaborate on the company’s strategies to increase its market share related to a combination of the Boston Consulting Group (BCG) Matrix and Ansoff Matrix.

Keywords: artificial neural network, portfolio analysis, BCG matrix, Ansoff matrix

Procedia PDF Downloads 143
6375 Real-Time Pedestrian Detection Method Based on Improved YOLOv3

Authors: Jingting Luo, Yong Wang, Ying Wang

Abstract:

Pedestrian detection in image or video data is a very important and challenging task in security surveillance. The difficulty of this task is to locate and detect pedestrians of different scales in complex scenes accurately. To solve these problems, a deep neural network (RT-YOLOv3) is proposed to realize real-time pedestrian detection at different scales in security monitoring. RT-YOLOv3 improves the traditional YOLOv3 algorithm. Firstly, the deep residual network is added to extract vehicle features. Then six convolutional neural networks with different scales are designed and fused with the corresponding scale feature maps in the residual network to form the final feature pyramid to perform pedestrian detection tasks. This method can better characterize pedestrians. In order to further improve the accuracy and generalization ability of the model, a hybrid pedestrian data set training method is used to extract pedestrian data from the VOC data set and train with the INRIA pedestrian data set. Experiments show that the proposed RT-YOLOv3 method achieves 93.57% accuracy of mAP (mean average precision) and 46.52f/s (number of frames per second). In terms of accuracy, RT-YOLOv3 performs better than Fast R-CNN, Faster R-CNN, YOLO, SSD, YOLOv2, and YOLOv3. This method reduces the missed detection rate and false detection rate, improves the positioning accuracy, and meets the requirements of real-time detection of pedestrian objects.

Keywords: pedestrian detection, feature detection, convolutional neural network, real-time detection, YOLOv3

Procedia PDF Downloads 142
6374 Review of Transportation Modeling Software

Authors: Hassan M. Al-Ahmadi, Hamad Bader Almobayedh

Abstract:

Planning for urban transportation is essential for developing effective and sustainable transportation networks that meet the needs of various communities. Advanced modeling software is required for effective transportation planning, management, and optimization. This paper compares PTV VISUM, Aimsun, TransCAD, and Emme, four industry-leading software tools for transportation planning and modeling. Each software has strengths and limitations, and the project's needs, financial constraints, and level of technical expertise influence the choice of software. Transportation experts can design and improve urban transportation systems that are effective, sustainable, and meet the changing needs of their communities by utilizing these software tools.

Keywords: PTV VISUM, Aimsun, TransCAD, transportation modeling software

Procedia PDF Downloads 31
6373 A Study on the Mechanism of the Regeneration of ‘Villages-in-City’ under Rapid Urbanization: Cases Study of Luojiazhuang

Authors: Mengying Du, Xiang Chen

Abstract:

‘villages-in-city’ is the unique product of rapid urbanization in China which embodies the contradiction between historical context and urbanization. This article mainly analyzes the corresponding strategy to the common problems such as urban texture, historical context, community structure, and industry pattern during the regeneration of ‘villages-in-city’ of Luojiazhuang. Taking government investment, community demands, the trend of urban renewal and transformation models of the ‘villages-in-city’ into consideration, the author propose a mechanism to balance those factors, and to achieve mutual confirmation with the instance of Luojiazhuang.

Keywords: community demands, historical context, villages-in-city, urbanization

Procedia PDF Downloads 309
6372 The Study of ZigBee Protocol Application in Wireless Networks

Authors: Ardavan Zamanpour, Somaieh Yassari

Abstract:

ZigBee protocol network was developed in industries and MIT laboratory in 1997. ZigBee is a wireless networking technology by alliance ZigBee which is designed to low board and low data rate applications. It is a Protocol which connects between electrical devises with very low energy and cost. The first version of IEEE 802.15.4 which was formed ZigBee was based on 2.4GHZ MHZ 912MHZ 868 frequency band. The name of system is often reminded random directions that bees (BEES) traversing during pollination of products. Such as alloy of the ways in which information packets are traversed within the mesh network. This paper aims to study the performance and effectiveness of this protocol in wireless networks.

Keywords: ZigBee, protocol, wireless, networks

Procedia PDF Downloads 369
6371 Impact of Integrated Signals for Doing Human Activity Recognition Using Deep Learning Models

Authors: Milagros Jaén-Vargas, Javier García Martínez, Karla Miriam Reyes Leiva, María Fernanda Trujillo-Guerrero, Francisco Fernandes, Sérgio Barroso Gonçalves, Miguel Tavares Silva, Daniel Simões Lopes, José Javier Serrano Olmedo

Abstract:

Human Activity Recognition (HAR) is having a growing impact in creating new applications and is responsible for emerging new technologies. Also, the use of wearable sensors is an important key to exploring the human body's behavior when performing activities. Hence, the use of these dispositive is less invasive and the person is more comfortable. In this study, a database that includes three activities is used. The activities were acquired from inertial measurement unit sensors (IMU) and motion capture systems (MOCAP). The main objective is differentiating the performance from four Deep Learning (DL) models: Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and hybrid model Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), when considering acceleration, velocity and position and evaluate if integrating the IMU acceleration to obtain velocity and position represent an increment in performance when it works as input to the DL models. Moreover, compared with the same type of data provided by the MOCAP system. Despite the acceleration data is cleaned when integrating, results show a minimal increase in accuracy for the integrated signals.

Keywords: HAR, IMU, MOCAP, acceleration, velocity, position, feature maps

Procedia PDF Downloads 98
6370 RBF Neural Network Based Adaptive Robust Control for Bounded Position/Force Control of Bilateral Teleoperation Arms

Authors: Henni Mansour Abdelwaheb

Abstract:

This study discusses the design of a bounded position/force feedback controller developed to ensure position and force tracking for bilateral teleoperation arms operating with variable delay, and actuator saturation. Also, an adaptive robust Radial Basis Function (RBF) neural network is used to estimate the environment torque. The parameters of the environment torque are then sent from the slave site to the master site as a non-power signal to avoid passivity problems. Moreover, a nonlinear function is applied to each controller term as a smooth saturation function, providing a bounded control signal and preserving the system’s actuators. Lastly, the Lyapunov approach demonstrates the global stability of the controlled system, and numerical experiment results further confirm the validity of the presented strategy.

Keywords: teleoperation manipulators system, time-varying delay, actuator saturation, adaptive robust rbf neural network approximation, uncertainties

Procedia PDF Downloads 77
6369 Classification of Manufacturing Data for Efficient Processing on an Edge-Cloud Network

Authors: Onyedikachi Ulelu, Andrew P. Longstaff, Simon Fletcher, Simon Parkinson

Abstract:

The widespread interest in 'Industry 4.0' or 'digital manufacturing' has led to significant research requiring the acquisition of data from sensors, instruments, and machine signals. In-depth research then identifies methods of analysis of the massive amounts of data generated before and during manufacture to solve a particular problem. The ultimate goal is for industrial Internet of Things (IIoT) data to be processed automatically to assist with either visualisation or autonomous system decision-making. However, the collection and processing of data in an industrial environment come with a cost. Little research has been undertaken on how to specify optimally what data to capture, transmit, process, and store at various levels of an edge-cloud network. The first step in this specification is to categorise IIoT data for efficient and effective use. This paper proposes the required attributes and classification to take manufacturing digital data from various sources to determine the most suitable location for data processing on the edge-cloud network. The proposed classification framework will minimise overhead in terms of network bandwidth/cost and processing time of machine tool data via efficient decision making on which dataset should be processed at the ‘edge’ and what to send to a remote server (cloud). A fast-and-frugal heuristic method is implemented for this decision-making. The framework is tested using case studies from industrial machine tools for machine productivity and maintenance.

Keywords: data classification, decision making, edge computing, industrial IoT, industry 4.0

Procedia PDF Downloads 182
6368 Investigation of Resilient Circles in Local Community and Industry: Waju-Traditional Culture in Japan and Modern Technology Application

Authors: R. Ueda

Abstract:

Today global society is seeking resilient partnership in local organizations and individuals, which realizes multi-stakeholders relationship. Although it is proposed by modern global framework of sustainable development, it is conceivable that such affiliation can be found out in the traditional local community in Japan, and that traditional spirit is tacitly sustaining in modern context of disaster mitigation in society and economy. Then this research is aiming to clarify and analyze implication for the global world by actual case studies. Regional and urban resilience is the ability of multi-stakeholders to cooperate flexibly and to adapt in response to changes in the circumstances caused by disasters, but there are various conflicts affecting coordination of disaster relief measures. These conflicts arise not only from a lack of communication and an insufficient network, but also from the difficulty to jointly draw common context from fragmented information. This is because of the weakness of our modern engineering which focuses on maintenance and restoration of individual systems. Here local ‘circles’ holistically includes local community and interacts periodically. Focusing on examples of resilient organizations and wisdom created in communities, what can be seen throughout history is a virtuous cycle where the information and the knowledge are structured, the context to be adapted becomes clear, and an adaptation at a higher level is made possible, by which the collaboration between organizations is deepened and expanded. And the wisdom of a solid and autonomous disaster prevention formed by the historical community called’ Waju’ – an area surrounded by circle embankment to protect the settlement from flood – lives on in government efforts of the coastal industrial island of today. Industrial company there collaborates to create a circle including common evacuation space, road access improvement and infrastructure recovery. These days, people here adopts new interface technology. Large-scale AR- Augmented Reality for more than hundred people is expressing detailed hazard by tsunami and liquefaction. Common experiences of the major disaster space and circle of mutual discussion are enforcing resilience. Collaboration spirit lies in the center of circle. A consistent key point is a virtuous cycle where the information and the knowledge are structured, the context to be adapted becomes clear, and an adaptation at a higher level is made possible, by which the collaboration between organizations is deepened and expanded. This writer believes that both self-governing human organizations and the societal implementation of technical systems are necessary. Infrastructure should be autonomously instituted by associations of companies and other entities in industrial areas for working closely with local governments. To develop advanced disaster prevention and multi-stakeholder collaboration, partnerships among industry, government, academia and citizens are important.

Keywords: industrial recovery, multi-sakeholders, traditional culture, user experience, Waju

Procedia PDF Downloads 113
6367 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification

Procedia PDF Downloads 349
6366 Investigations into Effect of Neural Network Predictive Control of UPFC for Improving Transient Stability Performance of Multimachine Power System

Authors: Sheela Tiwari, R. Naresh, R. Jha

Abstract:

The paper presents an investigation into the effect of neural network predictive control of UPFC on the transient stability performance of a multi-machine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers and an improved damping of the power oscillations as compared to the conventional PI controller.

Keywords: identification, neural networks, predictive control, transient stability, UPFC

Procedia PDF Downloads 371