Search results for: inspiratory muscle training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4547

Search results for: inspiratory muscle training

1937 Virtual Reality in COVID-19 Stroke Rehabilitation: Preliminary Outcomes

Authors: Kasra Afsahi, Maryam Soheilifar, S. Hossein Hosseini

Abstract:

Background: There is growing evidence that Cerebral Vascular Accident (CVA) can be a consequence of Covid-19 infection. Understanding novel treatment approaches are important in optimizing patient outcomes. Case: This case explores the use of Virtual Reality (VR) in the treatment of a 23-year-old COVID-positive female presenting with left hemiparesis in August 2020. Imaging showed right globus pallidus, thalamus, and internal capsule ischemic stroke. Conventional rehabilitation was started two weeks later, with virtual reality (VR) included. This game-based virtual reality (VR) technology developed for stroke patients was based on upper extremity exercises and functions for stroke. Physical examination showed left hemiparesis with muscle strength 3/5 in the upper extremity and 4/5 in the lower extremity. The range of motion of the shoulder was 90-100 degrees. The speech exam showed a mild decrease in fluency. Mild lower lip dynamic asymmetry was seen. Babinski was positive on the left. Gait speed was decreased (75 steps per minute). Intervention: Our game-based VR system was developed based on upper extremity physiotherapy exercises for post-stroke patients to increase the active, voluntary movement of the upper extremity joints and improve the function. The conventional program was initiated with active exercises, shoulder sanding for joint ROMs, walking shoulder, shoulder wheel, and combination movements of the shoulder, elbow, and wrist joints, alternative flexion-extension, pronation-supination movements, Pegboard and Purdo pegboard exercises. Also, fine movements included smart gloves, biofeedback, finger ladder, and writing. The difficulty of the game increased at each stage of the practice with progress in patient performances. Outcome: After 6 weeks of treatment, gait and speech were normal and upper extremity strength was improved to near normal status. No adverse effects were noted. Conclusion: This case suggests that VR is a useful tool in the treatment of a patient with covid-19 related CVA. The safety of newly developed instruments for such cases provides new approaches to improve the therapeutic outcomes and prognosis as well as increased satisfaction rate among patients.

Keywords: covid-19, stroke, virtual reality, rehabilitation

Procedia PDF Downloads 145
1936 The Effect of Mesenchymal Stem Cells on Full Thickness Skin Wound Healing in Albino Rats

Authors: Abir O. El Sadik

Abstract:

Introduction: Wound healing involves the interaction of multiple biological processes among different types of cells, intercellular matrix and specific signaling factors producing enhancement of cell proliferation of the epidermis over dermal granulation tissue. Several studies investigated multiple strategies to promote wound healing and to minimize infection and fluid losses. However, burn crisis, and its related morbidity and mortality are still elevated. The aim of the present study was to examine the effects of mesenchymal stem cells (MSCs) in accelerating wound healing and to compare the most efficient route of administration of MSCs, either intradermal or systemic injection, with focusing on the mechanisms producing epidermal and dermal cell regeneration. Material and methods: Forty-two adult male Sprague Dawley albino rats were divided into three equal groups (fourteen rats in each group): control group (group I); full thickness surgical skin wound model, Group II: Wound treated with systemic injection of MSCs and Group III: Wound treated with intradermal injection of MSCs. The healing ulcer was examined on day 2, 6, 10 and 15 for gross morphological evaluation and on day 10 and 15 for fluorescent, histological and immunohistochemical studies. Results: The wounds of the control group did not reach complete closure up to the end of the experiment. In MSCs treated groups, better and faster healing of wounds were detected more than the control group. Moreover, the intradermal route of administration of stem cells increased the rate of healing of the wounds more than the systemic injection. In addition, the wounds were found completely healed by the end of the fifteenth day of the experiment in all rats of the group injected intradermally. Microscopically, the wound areas of group III were hardly distinguished from the adjacent normal skin with complete regeneration of all skin layers; epidermis, dermis, hypodermis and underlying muscle layer. Fully regenerated hair follicles and sebaceous glands in the dermis of the healed areas surrounded by different arrangement of collagen fibers with a significant increase in their area percent were recorded in this group more than in other groups. Conclusion: MSCs accelerate the healing process of wound closure. The route of administration of MSCs has a great influence on wound healing as intradermal injection of MSCs was more effective in enhancement of wound healing than systemic injection.

Keywords: intradermal, mesenchymal stem cells, morphology, skin wound, systemic injection

Procedia PDF Downloads 205
1935 Analysing the Variables That Affect Digital Game-Based L2 Vocabulary Learning

Authors: Jose Ramon Calvo-Ferrer

Abstract:

Video games have been extensively employed in educational contexts to teach contents and skills, upon the premise that they engage students and provide instant feedback, which makes them adequate tools in the field of education and training. Term frequency, along with metacognition and implicit corrective feedback, has often been identified as powerful variables in the learning of vocabulary in a foreign language. This study analyses the learning of L2 mobile operating system terminology by a group of students and uses the data collected by the video game The Conference Interpreter to identify the predictive strength of term frequency (times a term is shown), positive metacognition (times a right answer is provided), and negative metacognition (times a term is shown as wrong) regarding L2 vocabulary learning and perceived learning outcomes. The regression analysis shows that the factor ‘positive metacognition’ is a positive predictor of both dependent variables, whereas the other factors seem to have no statistical effect on any of them.

Keywords: digital game-based learning, feedback, metacognition, frequency, video games

Procedia PDF Downloads 159
1934 Lean Comic GAN (LC-GAN): a Light-Weight GAN Architecture Leveraging Factorized Convolution and Teacher Forcing Distillation Style Loss Aimed to Capture Two Dimensional Animated Filtered Still Shots Using Mobile Phone Camera and Edge Devices

Authors: Kaustav Mukherjee

Abstract:

In this paper we propose a Neural Style Transfer solution whereby we have created a Lightweight Separable Convolution Kernel Based GAN Architecture (SC-GAN) which will very useful for designing filter for Mobile Phone Cameras and also Edge Devices which will convert any image to its 2D ANIMATED COMIC STYLE Movies like HEMAN, SUPERMAN, JUNGLE-BOOK. This will help the 2D animation artist by relieving to create new characters from real life person's images without having to go for endless hours of manual labour drawing each and every pose of a cartoon. It can even be used to create scenes from real life images.This will reduce a huge amount of turn around time to make 2D animated movies and decrease cost in terms of manpower and time. In addition to that being extreme light-weight it can be used as camera filters capable of taking Comic Style Shots using mobile phone camera or edge device cameras like Raspberry Pi 4,NVIDIA Jetson NANO etc. Existing Methods like CartoonGAN with the model size close to 170 MB is too heavy weight for mobile phones and edge devices due to their scarcity in resources. Compared to the current state of the art our proposed method which has a total model size of 31 MB which clearly makes it ideal and ultra-efficient for designing of camera filters on low resource devices like mobile phones, tablets and edge devices running OS or RTOS. .Owing to use of high resolution input and usage of bigger convolution kernel size it produces richer resolution Comic-Style Pictures implementation with 6 times lesser number of parameters and with just 25 extra epoch trained on a dataset of less than 1000 which breaks the myth that all GAN need mammoth amount of data. Our network reduces the density of the Gan architecture by using Depthwise Separable Convolution which does the convolution operation on each of the RGB channels separately then we use a Point-Wise Convolution to bring back the network into required channel number using 1 by 1 kernel.This reduces the number of parameters substantially and makes it extreme light-weight and suitable for mobile phones and edge devices. The architecture mentioned in the present paper make use of Parameterised Batch Normalization Goodfellow etc al. (Deep Learning OPTIMIZATION FOR TRAINING DEEP MODELS page 320) which makes the network to use the advantage of Batch Norm for easier training while maintaining the non-linear feature capture by inducing the learnable parameters

Keywords: comic stylisation from camera image using GAN, creating 2D animated movie style custom stickers from images, depth-wise separable convolutional neural network for light-weight GAN architecture for EDGE devices, GAN architecture for 2D animated cartoonizing neural style, neural style transfer for edge, model distilation, perceptual loss

Procedia PDF Downloads 137
1933 Interactive Shadow Play Animation System

Authors: Bo Wan, Xiu Wen, Lingling An, Xiaoling Ding

Abstract:

The paper describes a Chinese shadow play animation system based on Kinect. Users, without any professional training, can personally manipulate the shadow characters to finish a shadow play performance by their body actions and get a shadow play video through giving the record command to our system if they want. In our system, Kinect is responsible for capturing human movement and voice commands data. Gesture recognition module is used to control the change of the shadow play scenes. After packaging the data from Kinect and the recognition result from gesture recognition module, VRPN transmits them to the server-side. At last, the server-side uses the information to control the motion of shadow characters and video recording. This system not only achieves human-computer interaction, but also realizes the interaction between people. It brings an entertaining experience to users and easy to operate for all ages. Even more important is that the application background of Chinese shadow play embodies the protection of the art of shadow play animation.

Keywords: hadow play animation, Kinect, gesture recognition, VRPN, HCI

Procedia PDF Downloads 405
1932 Preparing K-12 Practitioners for Diversity and Use of Evidence-Based Practices and Strategies in Teaching Learners with Autism Spectrum Disorder (ASD)

Authors: Inuusah Mahama

Abstract:

The study focused on the importance of diversity and the use of evidence-based practices and strategies in teaching learners with ASD. The study employed a mixed-methods design, including surveys, interviews, and observations. A total of 500 K-12 practitioners participated in the study, including teachers, administrators, and support staff. The study sought to investigate the current understanding and knowledge level of K-12 practitioners regarding diversity, evidence-based practices, and strategies for teaching learners with ASD. The study also examined the challenges that K-12 practitioners face in preparing learners with ASD and the resources they require to improve their practice. The results indicated that K-12 practitioners in Ghana have limited knowledge and skills in teaching learners with ASD, particularly in using evidence-based practices and strategies. Therefore, there is a need for providing training and professional development opportunities for K-12 practitioners, developing and implementing evidence-based practices and strategies, and increasing awareness of ASD and the need for effective teaching strategies. This would go a long way to improve the quality of education for learners with ASD in Ghana and ultimately lead to better outcomes for these students.

Keywords: autism, practitioners, diversity, evidence-based practises

Procedia PDF Downloads 95
1931 Effect of Sodium Arsenite Exposure on Pharmacodynamic of Meloxicam in Male Wistar Rats

Authors: Prashantkumar Waghe, N. Prakash, N. D. Prasada, L. V. Lokesh, M. Vijay Kumar, Vinay Tikare

Abstract:

Arsenic is a naturally occurring metalloid with potent toxic effects. It is ubiquitous in the environment and released from both natural and anthropogenic sources. It has the potential to cause various health hazards in exposed populations. Arsenic exposure through drinking water is considered as one of the most serious global environmental threats including Southeast Asia. The aim of present study was to evaluate the modulatory role of subacute exposure to sodium (meta) arsenite on the antinociceptive, anti-inflammatory and antipyretic responses mediated by meloxicam in rats. Rats were exposed to arsenic as sodium arsenite through drinking water for 28 days. A single dose of meloxicam (2 mg/kg b. wt.) was administered by oral gavage on the 29th day. The exact time of meloxicam administration depended on the type of test. Rats were divided randomly into 5 groups (n=6). Group I served as normal control and received arsenic free drinking water, while rats in group II were maintained similar to Group I but received meloxicam on 29th day. Groups III, IV and V were pre-exposed to arsenic through drinking water at 0.5, 5.0 and 50 ppm, respectively, for 28 days and was administered meloxicam next day and; pain and inflammation carried out by using formalin-induced nociception and carrageenan-induced inflammatory model(s), respectively by using standard protocol. For assessment of antipyretic effects, one more additional group (Group VI) was taken and given LPS @ 1.8 mg/kg b. wt. for induction of pyrexia (LPS control). Higher dose of arsenic inhibited the meloxicam mediated antinociceptive, anti-inflammatory and antipyretic responses. Further, meloxicam inhibited the arsenic induced level of tumor necrosis factor-α, inetrleukin-1β, interleukin -6 and COX2 mediated prostaglandin E2 in hind paw muscle. These results suggest a functional antagonism of meloxicam by arsenic. This may relate to arsenic mediated local release of tumor necrosis factor-α, inetrleukin-1β, interleukin -6 releases COX2 mediated prostaglandin E2. Based on the experimental study, it is concluded that sub-acute exposure to arsenic through drinking water aggravate pyrexia, inflammation and pain at environment relevant concentration and decrease the therapeutic efficacy of meloxicam at higher level of arsenite exposure. Thus, the observation made has clinical relevance in situations where animals are exposed to arsenite epidemic geographical locations.

Keywords: arsenic, analgesic activity, meloxicam, Wistar rats

Procedia PDF Downloads 189
1930 Retrospective Analysis of 142 Cases of Incision Infection Complicated with Sternal Osteomyelitis after Cardiac Surgery Treated by Activated PRP Gel Filling

Authors: Daifeng Hao, Guang Feng, Jingfeng Zhao, Tao Li, Xiaoye Tuo

Abstract:

Objective: To retrospectively analyze the clinical characteristics of incision infection with sternal osteomyelitis sinus tract after cardiac surgery and the operation method and therapeutic effect of filling and repairing with activated PRP gel. Methods: From March 2011 to October 2022, 142 cases of incision infection after cardiac surgery with sternal osteomyelitis sinus were retrospectively analyzed, and the causes of poor wound healing after surgery, wound characteristics, perioperative wound management were summarized. Treatment during operation, collection and storage process of autologous PRP before debridement surgery, PRP filling repair and activation method after debridement surgery, effect of anticoagulant drugs on surgery, postoperative complications and average wound healing time, etc.. Results: Among the cases in this group, 53.3% underwent coronary artery bypass grafting, 36.8% underwent artificial heart valve replacement, 8.2% underwent aortic artificial vessel replacement, and 1.7% underwent allogeneic heart transplantation. The main causes of poor incision healing were suture reaction, fat liquefaction, osteoporosis, diabetes, and metal allergy in sequence. The wound is characterized by an infected sinus tract. Before the operation, 100-150ml of PRP with 4 times the physiological concentration was collected separately with a blood component separation device. After sinus debridement, PRP was perfused to fill the bony defect in the middle of the sternum, activated with thrombin freeze-dried powder and calcium gluconate injection to form a gel, and the outer skin and subcutaneous tissue were sutured freely. 62.9% of patients discontinued warfarin during the perioperative period, and 37.1% of patients maintained warfarin treatment. There was no significant difference in the incidence of postoperative wound hematoma. The average postoperative wound healing time was 12.9±4.7 days, and there was no obvious postoperative complication. Conclusions: Application of activated PRP gel to fill incision infection with sternal osteomyelitis sinus after cardiac surgery has a less surgical injury and satisfactory and stable curative effect. It can completely replace the previously used pectoralis major muscle flap transplantation operation scheme.

Keywords: platelet-rich plasma, negative-pressure wound therapy, sternal osteomyelitis, cardiac surgery

Procedia PDF Downloads 81
1929 Threshold Concepts in TESOL: A Thematic Analysis of Disciplinary Guiding Principles

Authors: Neil Morgan

Abstract:

The notion of Threshold Concepts has offered a fertile new perspective on the transformative effects of mastery of particular concepts on student understanding of subject matter and their developing identities as inductees into disciplinary discourse communities. Only by successfully traversing key knowledge thresholds, it is claimed, can neophytes gain access to the more sophisticated understandings of subject matter possessed by mature members of a discipline. This paper uses thematic analysis of disciplinary guiding principles to identify nine candidate Threshold Concepts that appear to underpin effective TESOL practice. The relationship between these candidate TESOL Threshold Concepts, TESOL principles, and TESOL instructional techniques appears to be amenable to a schematic representation based on superordinate categories of TESOL practitioner concern and, as such, offers an alternative to the view of Threshold Concepts as a privileged subset of disciplinary core concepts. The paper concludes by exploring the potential of a Threshold Concepts framework to productively inform TESOL initial teacher education (ITE) and in-service education and training (INSET).

Keywords: TESOL, threshold concepts, TESOL principles, TESOL ITE/INSET, community of practice

Procedia PDF Downloads 144
1928 Assessing the Effectiveness of Machine Learning Algorithms for Cyber Threat Intelligence Discovery from the Darknet

Authors: Azene Zenebe

Abstract:

Deep learning is a subset of machine learning which incorporates techniques for the construction of artificial neural networks and found to be useful for modeling complex problems with large dataset. Deep learning requires a very high power computational and longer time for training. By aggregating computing power, high performance computer (HPC) has emerged as an approach to resolving advanced problems and performing data-driven research activities. Cyber threat intelligence (CIT) is actionable information or insight an organization or individual uses to understand the threats that have, will, or are currently targeting the organization. Results of review of literature will be presented along with results of experimental study that compares the performance of tree-based and function-base machine learning including deep learning algorithms using secondary dataset collected from darknet.

Keywords: deep-learning, cyber security, cyber threat modeling, tree-based machine learning, function-based machine learning, data science

Procedia PDF Downloads 158
1927 The Use of Five Times Sit-To-Stand Test in Ambulatory People with Spinal Cord Injury When Tested with or without Hands

Authors: Lalita Khuna, Sugalya Amatachaya, Pipatana Amatachaya, Thiwabhorn Thaweewannakij, Pattra Wattanapan

Abstract:

The five times sit-to-stand test (FTSST) has been widely used to quantify lower extremity motor strength (LEMS), dynamic balance ability, and risk of falls in many individuals. Recently, it has been used in ambulatory patients with spinal cord injury (SCI) but variously using with or without hands according to patients’ ability. This difference might affect the validity of the test in these individuals. Thus, this study assessed the concurrent validity of the FTSST in ambulatory individuals with SCI, separately for those who could complete the test with or without hands using LEMS and standard functional measures as gold standards. Moreover, the data of the tests from those who completed the FTSST with and without hands were compared. A total of 56 ambulatory participants with SCI who could complete sit-to-stand with or without hands were assessed for the time to complete the FTSST according to their ability. Then they were assessed for their LEMS scores and functional abilities, including the 10-meter walk test (10MWT), the walking index for spinal cord injury II (WISCI II), the timed up and go test (TUGT), and the 6-minute walk test (6MWT). The Mann-Whitney U test was used to compare the different findings between the participants who performed the FTSST with and without hands. The Spearman rank correlation coefficient (ρ) was applied to analyze the levels of correlation between the FTSST and standard tests (LEMS scores and functional measures). There were significant differences in the data between the participants who performed the test with and without hands (p < 0.01). The time to complete the FTSST of the participants who performed the test without hands showed moderate to strong correlation with total LEMS scores and all functional measures (ρ = -0.71 to 0.69, p < 0.001). On the contrary, the FTSST data of those who performed the test with hands were significantly correlated only with the 10MWT, TUGT, and 6MWT (ρ = -0.47 to 0.57, p < 0.01). The present findings confirm the concurrent validity of the FTSST when performed without hands for LEMS and functional mobility necessary for the ability of independence and safety of ambulatory individuals with SCI. However, the test using hands distort the ability of the outcomes to reflect LEMS and WISCI II that reflect lower limb functions. By contrast, the 10MWT, TUGT, and 6MWT allowed upper limb contribution in the tests. Therefore, outcomes of these tests showed a significant correlation to the outcomes of FTSST when assessed using hands. Consequently, the use of FTSST with or without hands needs to consider the clinical application of the outcomes, i.e., to reflect lower limb functions or mobility of the patients.

Keywords: mobility, lower limb muscle strength, clinical test, rehabilitation

Procedia PDF Downloads 157
1926 Automated End of Sprint Detection for Force-Velocity-Power Analysis with GPS/GNSS Systems

Authors: Patrick Cormier, Cesar Meylan, Matt Jensen, Dana Agar-Newman, Chloe Werle, Ming-Chang Tsai, Marc Klimstra

Abstract:

Sprint-derived horizontal force-velocity-power (FVP) profiles can be developed with adequate validity and reliability with satellite (GPS/GNSS) systems. However, FVP metrics are sensitive to small nuances in data processing procedures such that minor differences in defining the onset and end of the sprint could result in different FVP metric outcomes. Furthermore, in team-sports, there is a requirement for rapid analysis and feedback of results from multiple athletes, therefore developing standardized and automated methods to improve the speed, efficiency and reliability of this process are warranted. Thus, the purpose of this study was to compare different methods of sprint end detection on the development of FVP profiles from 10Hz GPS/GNSS data through goodness-of-fit and intertrial reliability statistics. Seventeen national team female soccer players participated in the FVP protocol which consisted of 2x40m maximal sprints performed towards the end of a soccer specific warm-up in a training session (1020 hPa, wind = 0, temperature = 30°C) on an open grass field. Each player wore a 10Hz Catapult system unit (Vector S7, Catapult Innovations) inserted in a vest in a pouch between the scapulae. All data were analyzed following common procedures. Variables computed and assessed were the model parameters, estimated maximal sprint speed (MSS) and the acceleration constant τ, in addition to horizontal relative force (F₀), velocity at zero (V₀), and relative mechanical power (Pmax). The onset of the sprints was standardized with an acceleration threshold of 0.1 m/s². The sprint end detection methods were: 1. Time when peak velocity (MSS) was achieved (zero acceleration), 2. Time after peak velocity drops by -0.4 m/s, 3. Time after peak velocity drops by -0.6 m/s, and 4. When the integrated distance from the GPS/GNSS signal achieves 40-m. Goodness-of-fit of each sprint end detection method was determined using the residual sum of squares (RSS) to demonstrate the error of the FVP modeling with the sprint data from the GPS/GNSS system. Inter-trial reliability (from 2 trials) was assessed utilizing intraclass correlation coefficients (ICC). For goodness-of-fit results, the end detection technique that used the time when peak velocity was achieved (zero acceleration) had the lowest RSS values, followed by -0.4 and -0.6 velocity decay, and 40-m end had the highest RSS values. For intertrial reliability, the end of sprint detection techniques that were defined as the time at (method 1) or shortly after (method 2 and 3) when MSS was achieved had very large to near perfect ICC and the time at the 40 m integrated distance (method 4) had large to very large ICCs. Peak velocity was reached at 29.52 ± 4.02-m. Therefore, sport scientists should implement end of sprint detection either when peak velocity is determined or shortly after to improve goodness of fit to achieve reliable between trial FVP profile metrics. Although, more robust processing and modeling procedures should be developed in future research to improve sprint model fitting. This protocol was seamlessly integrated into the usual training which shows promise for sprint monitoring in the field with this technology.

Keywords: automated, biomechanics, team-sports, sprint

Procedia PDF Downloads 121
1925 Patient Satisfaction Measurement Using Face-Q for Non-Incisional Double-Eyelid Blepharoplasty with Modified Single-Knot Continuous Buried Suture Technique

Authors: Kwei Huan Liw, Sashi B. Darshan

Abstract:

Background: Double eyelid surgery has become one of the most sought-after aesthetic procedures among Asians. Many surgeons perform surgical blepharoplasty and various other methods of non-incisional blepharoplasty. Face-Q is a validated method of measuring patient satisfaction for facial aesthetic procedures. Here we have analyzed the overall eye satisfaction score, the upper eyelid appraisal score and the adverse effect on eyes score Methods: 274 patients (548 eyes), aged between 18 to 40 years old, were recruited from 2015-2018. Each patient underwent a non-incisional double-eyelid blepharoplasty using a single-knotted continuous buried suture. 3 – 5 stab incisions were made depending on the upper eyelid size. A needle loaded with 7-0 nylon is passed from the lateral most wound through the dermis and the conjunctiva in an alternate fashion into the remaining stab wounds. The suture is then tunneled back laterally in the deeper dermis and knotted securely with the suture end. The knot is then buried within the orbicularis oculi muscle. Each patient was required to fill the Face-Q questionnaire before the procedure and 2 weeks post procedure. The results are described based on the percentage of the maximum achievable score. Patients were reviewed after 12 to 18 months to assess the long-term outcome. Results: The overall eye satisfaction score demonstrated a high level of post-operative satisfaction (97.85%), compared to 27.32% pre-operatively. The appraisal of upper eyelid scores showed drastic improvement in perception post-operatively (95.31%) compared to 21.44% pre-operatively. Adverse effect on eyes score showed a very low post-operative complication rate (0.4%) The long-term follow-up showed 6 cases that had developed asymmetrical folds. Only 1 patient agreed for revision surgery. The other 5 patients were still satisfied with the outcome and were not keen for revision surgery. None of the cases had loosening of knots. Conclusion: Modified single-knot continuous buried suture technique is a simple and non-invasive method to create aesthetically pleasing non-surgical double-eyelids, which has long-term effects. Proper patient selection is crucial and good surgical technique is required to achieve a desirable outcome.

Keywords: blepharoplasty, double-eyelid, face-Q, non-incisional

Procedia PDF Downloads 123
1924 Ethical Perspectives on Implementation of Computer Aided Design Curriculum in Architecture in Nigeria: A Case Study of Chukwuemeka Odumegwu Ojukwu University, Uli

Authors: Kelechi Ezeji

Abstract:

The use of Computer Aided Design (CAD) technologies has become pervasive in the Architecture, Engineering and Construction (AEC) industry. This has led to its inclusion as an important part of the training module in the curriculum for Architecture Schools in Nigeria. This paper examines the ethical questions that arise in the implementation of Computer Aided Design (CAD) Content of the curriculum for Architectural education. Using existing literature, it begins this scrutiny from the propriety of inclusion of CAD into the education of the architect and the obligations of the different stakeholders in the implementation process. It also examines the questions raised by the negative use of computing technologies as well as perceived negative influence of the use of CAD on design creativity. Survey methodology was employed to gather data from the Department of Architecture, Chukwuemeka Odumegwu Ojukwu University Uli, which has been used as a case study on how the issues raised are being addressed. The paper draws conclusions on what will make for successful ethical implementation.

Keywords: computer aided design, curriculum, education, ethics

Procedia PDF Downloads 417
1923 Predicting Machine-Down of Woodworking Industrial Machines

Authors: Matteo Calabrese, Martin Cimmino, Dimos Kapetis, Martina Manfrin, Donato Concilio, Giuseppe Toscano, Giovanni Ciandrini, Giancarlo Paccapeli, Gianluca Giarratana, Marco Siciliano, Andrea Forlani, Alberto Carrotta

Abstract:

In this paper we describe a machine learning methodology for Predictive Maintenance (PdM) applied on woodworking industrial machines. PdM is a prominent strategy consisting of all the operational techniques and actions required to ensure machine availability and to prevent a machine-down failure. One of the challenges with PdM approach is to design and develop of an embedded smart system to enable the health status of the machine. The proposed approach allows screening simultaneously multiple connected machines, thus providing real-time monitoring that can be adopted with maintenance management. This is achieved by applying temporal feature engineering techniques and training an ensemble of classification algorithms to predict Remaining Useful Lifetime of woodworking machines. The effectiveness of the methodology is demonstrated by testing an independent sample of additional woodworking machines without presenting machine down event.

Keywords: predictive maintenance, machine learning, connected machines, artificial intelligence

Procedia PDF Downloads 229
1922 Specified Human Motion Recognition and Unknown Hand-Held Object Tracking

Authors: Jinsiang Shaw, Pik-Hoe Chen

Abstract:

This paper aims to integrate human recognition, motion recognition, and object tracking technologies without requiring a pre-training database model for motion recognition or the unknown object itself. Furthermore, it can simultaneously track multiple users and multiple objects. Unlike other existing human motion recognition methods, our approach employs a rule-based condition method to determine if a user hand is approaching or departing an object. It uses a background subtraction method to separate the human and object from the background, and employs behavior features to effectively interpret human object-grabbing actions. With an object’s histogram characteristics, we are able to isolate and track it using back projection. Hence, a moving object trajectory can be recorded and the object itself can be located. This particular technique can be used in a camera surveillance system in a shopping area to perform real-time intelligent surveillance, thus preventing theft. Experimental results verify the validity of the developed surveillance algorithm with an accuracy of 83% for shoplifting detection.

Keywords: Automatic Tracking, Back Projection, Motion Recognition, Shoplifting

Procedia PDF Downloads 335
1921 Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length

Authors: Mecheri Zeid Belmecheri, Maamar Ahfir, Izzet Kale

Abstract:

Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram signals (PCG) can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded Phonocardiogram (PCG) signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded ElectroCardioGrams (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show a segmentation testing performance average of 76 % sensitivity and 94 % specificity.

Keywords: heart sounds, PCG segmentation, event detection, recurrent neural networks, PCG curve length

Procedia PDF Downloads 182
1920 Prediction of All-Beta Protein Secondary Structure Using Garnier-Osguthorpe-Robson Method

Authors: K. Tejasri, K. Suvarna Vani, S. Prathyusha, S. Ramya

Abstract:

Proteins are chained sequences of amino acids which are brought together by the peptide bonds. Many varying formations of the chains are possible due to multiple combinations of amino acids and rotation in numerous positions along the chain. Protein structure prediction is one of the crucial goals worked towards by the members of bioinformatics and theoretical chemistry backgrounds. Among the four different structure levels in proteins, we emphasize mainly the secondary level structure. Generally, the secondary protein basically comprises alpha-helix and beta-sheets. Multi-class classification problem of data with disparity is truly a challenge to overcome and has to be addressed for the beta strands. Imbalanced data distribution constitutes a couple of the classes of data having very limited training samples collated with other classes. The secondary structure data is extracted from the protein primary sequence, and the beta-strands are predicted using suitable machine learning algorithms.

Keywords: proteins, secondary structure elements, beta-sheets, beta-strands, alpha-helices, machine learning algorithms

Procedia PDF Downloads 96
1919 Analyzing Behaviour of the Utilization of the Online News Clipping Database: Experience in Suan Sunandha Rajabhat University

Authors: Siriporn Poolsuwan, Kanyarat Bussaban

Abstract:

This research aims to investigate and analyze user’s behaviour towards the utilization of the online news clipping database at Suan Sunandha Rajabhat University, Thailand. Data is gathered from 214 lecturers and 380 undergraduate students by using questionnaires. Findings show that most users knew the online news clipping service from their friends, library’s website and their teachers. The users learned how to use it by themselves and others learned by training of SSRU library. Most users used the online news clipping database one time per month at home and always used the service for general knowledge, up-to-date academic knowledge and assignment reference. Moreover, the results of using the online news clipping service problems include the users themselves, service management, service device- computer and tools – and the network, service provider, and publicity. This research would be benefit for librarians and teachers for planning and designing library services in their works and organization.

Keywords: online database, user behavior, news clipping, library services

Procedia PDF Downloads 319
1918 Effects of Analogy Method on Children's Learning: Practice of Rainbow Experiments

Authors: Hediye Saglam

Abstract:

This research has been carried out to bring in the 6 acquisitions in the 2014 Preschool Teaching Programme of the Turkish Ministry of Education through the method of analogy. This research is practiced based on the experimental pattern with pre-test and final test controlling groups. The working group of the study covers the group between 5-6 ages. The study takes 5 weeks including the 2 weeks spent for pre-test and the final test. It is conducted with the preschool teacher who gives the lesson along with the researcher in the in-class and out-of-class rainbow experiments of the students for 5 weeks. 'One Sample T Test' is used for the evaluation of the pre-test and final test. SPSS 17 programme is applied for the analysis of the data. Results: As an outcome of the study it is observed that analogy method affects children’s learning of the rainbow. For this very reason teachers should receive inservice training for different methods and techniques like analogy. This method should be included in preschool education programme and should be applied by teachers more often.

Keywords: acquisitions of preschool education programme, analogy method, pre-test/final test, rainbow experiments

Procedia PDF Downloads 511
1917 Safety Management and Occupational Injuries Assessing the Mediating Role of Safety Compliance: Downstream Oil and Gas Industry of Malaysia

Authors: Muhammad Ajmal, Ahmad Shahrul Nizam Bin Isha, Shahrina Md. Nordin, Paras Behrani, Al-Baraa Abdulrahman Al-Mekhlafi

Abstract:

This study aims to investigate the impact of safety management practices via safety compliance on occupational injuries in the context of downstream the oil and gas industry of Malaysia. However, it is still challenging for researchers and academicians to control occupational injuries in high-safety-sensitive organizations. In this study response rate was 62%, and 280 valid responses were used for analysis through SmartPLS. The study results revealed that safety management practices (management commitment, safety training, safety promotion policies, workers’ involvement) play a significant role in lowering the rate of accidents in downstream the oil and gas industry via safety compliance. Furthermore, the study results also revealed that safety management practices also reduce safety management costs of organizations, e.g., lost work days and employee absenteeism. Moreover, this study is helpful for safety leaders and managers to understand the importance of safety management practices to lower the ratio of occupational injuries.

Keywords: safety management, safety compliance, occupational injuries, oil and gas, Malaysia

Procedia PDF Downloads 162
1916 The Factors Affecting the Development of the Media and Animations for Vocational School in Thailand

Authors: Tanit Pruktara

Abstract:

The research aimed to study the students’ learning achievement and awareness level on electrical energy consumption and conservation and also to investigate the students’ attitude on the developed multimedia supplemented instructional unit for learning household electrical energy consumption and conservation in grade 10 Thailand student. This study used a quantitative method using MCQ for pre and post-achievement tests and Likert scales for awareness and attitude survey questionnaires. The results from this were employed to improve the multimedia to be appropriate for the classroom and with real life situations in the second phase, the main study. The experimental results showed that the developed learning unit significantly improved the students’ learning achievement as well as their awareness of electric energy conservation. Additional we found the student will enjoy participating in class activities when the lessons are taught using multimedia and helps them to develop the relevance between the course and real world situations.

Keywords: lesson plan, media and animations, training course, vocational school in Thailand

Procedia PDF Downloads 181
1915 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction

Authors: Yan Zhang

Abstract:

Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.

Keywords: Internet of Things, machine learning, predictive maintenance, streaming data

Procedia PDF Downloads 389
1914 A Less Complexity Deep Learning Method for Drones Detection

Authors: Mohamad Kassab, Amal El Fallah Seghrouchni, Frederic Barbaresco, Raed Abu Zitar

Abstract:

Detecting objects such as drones is a challenging task as their relative size and maneuvering capabilities deceive machine learning models and cause them to misclassify drones as birds or other objects. In this work, we investigate applying several deep learning techniques to benchmark real data sets of flying drones. A deep learning paradigm is proposed for the purpose of mitigating the complexity of those systems. The proposed paradigm consists of a hybrid between the AdderNet deep learning paradigm and the Single Shot Detector (SSD) paradigm. The goal was to minimize multiplication operations numbers in the filtering layers within the proposed system and, hence, reduce complexity. Some standard machine learning technique, such as SVM, is also tested and compared to other deep learning systems. The data sets used for training and testing were either complete or filtered in order to remove the images with mall objects. The types of data were RGB or IR data. Comparisons were made between all these types, and conclusions were presented.

Keywords: drones detection, deep learning, birds versus drones, precision of detection, AdderNet

Procedia PDF Downloads 184
1913 Deep learning with Noisy Labels : Learning True Labels as Discrete Latent Variable

Authors: Azeddine El-Hassouny, Chandrashekhar Meshram, Geraldin Nanfack

Abstract:

In recent years, learning from data with noisy labels (Label Noise) has been a major concern in supervised learning. This problem has become even more worrying in Deep Learning, where the generalization capabilities have been questioned lately. Indeed, deep learning requires a large amount of data that is generally collected by search engines, which frequently return data with unreliable labels. In this paper, we investigate the Label Noise in Deep Learning using variational inference. Our contributions are : (1) exploiting Label Noise concept where the true labels are learnt using reparameterization variational inference, while observed labels are learnt discriminatively. (2) the noise transition matrix is learnt during the training without any particular process, neither heuristic nor preliminary phases. The theoretical results shows how true label distribution can be learned by variational inference in any discriminate neural network, and the effectiveness of our approach is proved in several target datasets, such as MNIST and CIFAR32.

Keywords: label noise, deep learning, discrete latent variable, variational inference, MNIST, CIFAR32

Procedia PDF Downloads 132
1912 Teaching and Learning Dialectical Relationship between Thermodynamic Equilibrium and Reaction Rate Constant

Authors: Mohammad Anwar, Shah Waliullah

Abstract:

The development of science and technology in the present era has an urgent demand for the training of thinking of undergraduates. This requirement actively promotes research and teaching of basic theories, beneficial to the career development of students. This study clarified the dialectical relation between the thermodynamic equilibrium constant and reaction rate constant through the contrast thinking method. Findings reveal that both the isobaric Van't Hoff equation and the Arrhenius equation had four similar forms, and the change in the trend of both constants showed a similar law. By the derivation of the formation rate constant of the product (KY) and the consumption rate constant of the reactant (KA), the ratio of both constants at the end state indicated the nature of the equilibrium state in agreement with that of the thermodynamic equilibrium constant (K^θ (T)). This study has thus presented that the thermodynamic equilibrium constant contained the characteristics of microscopic dynamics based on the analysis of the reaction mechanism, and both constants are organically connected and unified. The reaction enthalpy and activation energy are closely related to each other with the same connotation.

Keywords: thermodynamic equilibrium constant, reaction rate constant, PBL teaching, dialectical relation, innovative thinking

Procedia PDF Downloads 114
1911 A Model Towards Creating Positive Accounting Classroom Conditions That Supports Successful Learning at School

Authors: Vine Petzer, Mirna Nel

Abstract:

An explanatory mixed method design was used to investigate accounting classroom conditions in the Further Education and Training (FET) Phase in South Africa. A descriptive survey research study with a heterogeneous group of learners and teachers was conducted in the first phase. In the qualitative phase, semi-structured individual interviews with learners and teachers, as well as observations in the accounting classroom, were employed to gain more in depth understanding of the learning conditions in the accounting classroom. The findings of the empirical research informed the development of a model for teachers in accounting, supporting them to use more effective teaching methods and create positive learning conditions for all learners to experience successful learning. A model towards creating positive Accounting classroom conditions that support successful learning was developed and recommended for education policy and decision-makers for use as a classroom intervention capacity building tool. The model identifies and delineates classroom practices that exert significant effect on learner attainment of quality education.

Keywords: accounting classroom conditions, positive education, successful learning, teaching accounting

Procedia PDF Downloads 150
1910 Attitude and Perception of Non-emergency Vehicle Drivers on Roads Towards Medical Emergency Vehicles: The Role of Empathy and Pro-Social Skills

Authors: Purnima K Bajre, Rujula Talloo

Abstract:

A variety of vehicles are driven on roads such as private vehicles, commercial vehicles, public vehicles, and emergency service vehicles (EMV). Drivers driving different vehicles can have attitude differences towards emergency service vehicles which in turn affects their likelihood to give way to them. The present review aims to understand the factors that mediate this yielding behavior of drivers towards EMVs. Through extensive review of available literature, factors such as effects of lights and sirens, cognitive load, age of the driver, driving general experience, traffic load, drivers’ experience and training with EMVs and drivers’ attitude towards EMV drivers, have emerged as mediating factors. Whereas cognitive load is the most researched area and is observed to be associated negatively with on road drivers’ attitudes towards EMVs, there is a paucity of research to understand the relationships between empathy, pro-social skills, and on road drivers’ attitude towards EMVs.

Keywords: cognitive load, emergency service vehicle, empathy, traffic load

Procedia PDF Downloads 40
1909 The Knowledge and Beliefs Concerning Attention Deficit Hyperactivity Disorder Held by Parents of Children With Attention Deficit Hyperactivity Disorder in Saudi Arabia

Authors: Mohaned G. Abed

Abstract:

Attention Deficit Hyperactivity Disorder (ADHD) is considered one of the most frequently diagnosed psychiatric childhood disorders. It has an effect on 3–5% of school-aged children, and brings about difficulties in academic and social interaction. This study explored the knowledge and beliefs of parents in Saudi Arabia about children with ADHD. The Knowledge about Attention Deficit Disorder Questionnaire (KADD-Q) was administered to a sample of parents, followed by interviews with a subset of the total respondents. The results indicated that the parents knew more about the characteristics of ADHD than they knew about its related causes and treatment. Overall, the findings indicated that these parents had some knowledge about general characteristics of ADHD, but they had little understanding of causes and possible interventions. These results suggest an important need for more formal parents training regarding all aspects of ADHD in school age children.

Keywords: attention deficit hyperactivity disorder, childhood disorders, school-aged children, difficulties in academic, social interaction

Procedia PDF Downloads 115
1908 A Fully Interpretable Deep Reinforcement Learning-Based Motion Control for Legged Robots

Authors: Haodong Huang, Zida Zhao, Shilong Sun, Chiyao Li, Wenfu Xu

Abstract:

The control methods for legged robots based on deep reinforcement learning have seen widespread application; however, the inherent black-box nature of neural networks presents challenges in understanding the decision-making motives of the robots. To address this issue, we propose a fully interpretable deep reinforcement learning training method to elucidate the underlying principles of legged robot motion. We incorporate the dynamics of legged robots into the policy, where observations serve as inputs and actions as outputs of the dynamics model. By embedding the dynamics equations within the multi-layer perceptron (MLP) computation process and making the parameters trainable, we enhance interpretability. Additionally, Bayesian optimization is introduced to train these parameters. We validate the proposed fully interpretable motion control algorithm on a legged robot, opening new research avenues for motion control and learning algorithms for legged robots within the deep learning framework.

Keywords: deep reinforcement learning, interpretation, motion control, legged robots

Procedia PDF Downloads 26