Search results for: electric energy router (EER)
6693 Electrochemistry Analysis of Oxygen Reduction with Microalgal on Microbial Fuel Cell
Authors: Azri Yamina Mounia, Zitouni Dalila, Aziza Majda, Tou Insaf, Sadi Meriem
Abstract:
To confront the fossil fuel crisis and the consequences of global warning, many efforts were devoted to develop alternative electricity generation and attracted numerous researchers, especially in the microbial fuel cell field, because it allows generating electric energy and degrading multiple organics compounds at the same time. However, one of the main constraints on power generation is the slow rate of oxygen reduction at the cathode electrode. This paper describes the potential of algal biomass (Chlorella vulgaris) as photosynthetic cathodes, eliminating the need for a mechanical air supply and the use of often expensive noble metal cathode catalysts, thus improving the sustainability and cost-effectiveness of the MFC system. During polarizations, MFC power density using algal biomass was 0.4mW/m², whereas the MFC with mechanic aeration showed a value of 0.2mW/m². Chlorella vulgaris was chosen due to its fastest growing. C. vulgaris grown in BG11 medium in sterilized Erlenmeyer flask. C. vulgaris was used as a bio‐cathode. Anaerobic activated sludge from the plant of Beni‐Messous WWTP(Algiers) was used in an anodic compartment. A dual‐chamber reactor MFC was used as a reactor. The reactor has been fabricated in the laboratory using plastic jars. The cylindrical and rectangular jars were used as the anode and cathode chambers, respectively. The volume of anode and cathode chambers was 0.8 and 2L, respectively. The two chambers were connected with a proton exchange membrane (PEM). The plain graphite plates (5 x 2cm) were used as electrodes for both anode and cathode. The cyclic voltammetry analysis of oxygen reduction revealed that the cathode potential was proportional to the amount of oxygen available in the cathode surface electrode. In the case of algal aeration, the peak reduction value of -2.18A/m² was two times higher than in mechanical aeration -1.85A/m². The electricity production reached 70 mA/m² and was stimulated immediately by the oxygen produced by algae up to the value of 20 mg/L.Keywords: Chlorella vulgaris, cyclic voltammetry, microbial fuel cell, oxygen reduction
Procedia PDF Downloads 676692 Tehran Province Water and Wastewater Company Approach on Energy Efficiency by the Development of Renewable Energy to Achieving the Sustainable Development Legal Principle
Authors: Mohammad Parvaresh, Mahdi Babaee, Bahareh Arghand, Roushanak Fahimi Hanzaee, Davood Nourmohammadi
Abstract:
Today, the intelligent network of water and wastewater as one of the key steps in realizing the smart city in the world. Use of pressure relief valves in urban water networks in order to reduce the pressure is necessary in Tehran city. But use these pressure relief valves lead to waste water, more power consumption, and environmental pollution because Tehran Province Water and Wastewater Co. use a quarter of industry 's electricity. In this regard, Tehran Province Water and Wastewater Co. identified solutions to reduce direct and indirect costs in energy use in the process of production, transmission and distribution of water because this company has extensive facilities and high capacity to realize green economy and industry. The aim of this study is to analyze the new project in water and wastewater industry to reach sustainable development.Keywords: Tehran Province Water and Wastewater Company, water network efficiency, sustainable development, International Environmental Law
Procedia PDF Downloads 2986691 Multi-Objectives Genetic Algorithm for Optimizing Machining Process Parameters
Authors: Dylan Santos De Pinho, Nabil Ouerhani
Abstract:
Energy consumption of machine-tools is becoming critical for machine-tool builders and end-users because of economic, ecological and legislation-related reasons. Many machine-tool builders are seeking for solutions that allow the reduction of energy consumption of machine-tools while preserving the same productivity rate and the same quality of machined parts. In this paper, we present the first results of a project conducted jointly by academic and industrial partners to reduce the energy consumption of a Swiss-Type lathe. We employ genetic algorithms to find optimal machining parameters – the set of parameters that lead to the best trade-off between energy consumption, part quality and tool lifetime. Three main machining process parameters are considered in our optimization technique, namely depth of cut, spindle rotation speed and material feed rate. These machining process parameters have been identified as the most influential ones in the configuration of the Swiss-type machining process. A state-of-the-art multi-objective genetic algorithm has been used. The algorithm combines three fitness functions, which are objective functions that permit to evaluate a set of parameters against the three objectives: energy consumption, quality of the machined parts, and tool lifetime. In this paper, we focus on the investigation of the fitness function related to energy consumption. Four different energy consumption related fitness functions have been investigated and compared. The first fitness function refers to the Kienzle cutting force model. The second fitness function uses the Material Removal Rate (RMM) as an indicator of energy consumption. The two other fitness functions are non-deterministic, learning-based functions. One fitness function uses a simple Neural Network to learn the relation between the process parameters and the energy consumption from experimental data. Another fitness function uses Lasso regression to determine the same relation. The goal is, then, to find out which fitness functions predict best the energy consumption of a Swiss-Type machining process for the given set of machining process parameters. Once determined, these functions may be used for optimization purposes – determine the optimal machining process parameters leading to minimum energy consumption. The performance of the four fitness functions has been evaluated. The Tornos DT13 Swiss-Type Lathe has been used to carry out the experiments. A mechanical part including various Swiss-Type machining operations has been selected for the experiments. The evaluation process starts with generating a set of CNC (Computer Numerical Control) programs for machining the part at hand. Each CNC program considers a different set of machining process parameters. During the machining process, the power consumption of the spindle is measured. All collected data are assigned to the appropriate CNC program and thus to the set of machining process parameters. The evaluation approach consists in calculating the correlation between the normalized measured power consumption and the normalized power consumption prediction for each of the four fitness functions. The evaluation shows that the Lasso and Neural Network fitness functions have the highest correlation coefficient with 97%. The fitness function “Material Removal Rate” (MRR) has a correlation coefficient of 90%, whereas the Kienzle-based fitness function has a correlation coefficient of 80%.Keywords: adaptive machining, genetic algorithms, smart manufacturing, parameters optimization
Procedia PDF Downloads 1516690 Inverse Scattering of Two-Dimensional Objects Using an Enhancement Method
Authors: A.R. Eskandari, M.R. Eskandari
Abstract:
A 2D complete identification algorithm for dielectric and multiple objects immersed in air is presented. The employed technique consists of initially retrieving the shape and position of the scattering object using a linear sampling method and then determining the electric permittivity and conductivity of the scatterer using adjoint sensitivity analysis. This inversion algorithm results in high computational speed and efficiency, and it can be generalized for any scatterer structure. Also, this method is robust with respect to noise. The numerical results clearly show that this hybrid approach provides accurate reconstructions of various objects.Keywords: inverse scattering, microwave imaging, two-dimensional objects, Linear Sampling Method (LSM)
Procedia PDF Downloads 3906689 Nanoporous Activated Carbons for Fuel Cells and Supercapacitors
Authors: A. Volperts, G. Dobele, A. Zhurinsh, I. Kruusenberg, A. Plavniece, J. Locs
Abstract:
Nowadays energy consumption constantly increases and development of effective and cheap electrochemical sources of power, such as fuel cells and electrochemical capacitors, is topical. Due to their high specific power, charge and discharge rates, working lifetime supercapacitor based energy accumulation systems are more and more extensively being used in mobile and stationary devices. Lignocellulosic materials are widely used as precursors and account for around 45% of the total raw materials used for the manufacture of activated carbon which is the most suitable material for supercapacitors. First part of our research is devoted to study of influence of main stages of wood thermochemical activation parameters on activated carbons porous structure formation. It was found that the main factors governing the properties of carbon materials are specific surface area, volume and pore size distribution, particles dispersity, ash content and oxygen containing groups content. Influence of activated carbons attributes on capacitance and working properties of supercapacitor are demonstrated. The correlation between activated carbons porous structure indices and electrochemical specifications of supercapacitors with electrodes made from these materials has been determined. It is shown that if synthesized activated carbons are used in supercapacitors then high specific capacitances can be reached – more than 380 F/g in 4.9M sulfuric acid based electrolytes and more than 170 F/g in 1 M tetraethylammonium tetrafluoroborate in acetonitrile electrolyte. Power specifications and minimal price of H₂-O₂ fuel cells are limited by the expensive platinum-based catalysts. The main direction in development of non-platinum catalysts for the oxygen reduction is the study of cheap porous carbonaceous materials which can be obtained by the pyrolysis of polymers including renewable biomass. It is known that nitrogen atoms in carbon materials to a high degree determine properties of the doped activated carbons, such as high electrochemical stability, hardness, electric resistance, etc. The lack of sufficient knowledge on the doping of the carbon materials calls for the ongoing researches of properties and structure of modified carbon matrix. In the second part of this study, highly porous activated carbons were synthesized using alkali thermochemical activation from wood, cellulose and cellulose production residues – craft lignin and sewage sludge. Activated carbon samples were doped with dicyandiamide and melamine for the application as fuel cell cathodes. Conditions of nitrogen introduction (solvent, treatment temperature) and its content in the carbonaceous material, as well as porous structure characteristics, such as specific surface and pore size distribution, were studied. It was found that efficiency of doping reaction depends on the elemental oxygen content in the activated carbon. Relationships between nitrogen content, porous structure characteristics and electrodes electrochemical properties are demonstrated.Keywords: activated carbons, low-temperature fuel cells, nitrogen doping, porous structure, supercapacitors
Procedia PDF Downloads 1236688 Multifunctional Plasmonic Ag-TiO2 Nano-biocompoistes: Surface Enhanced Raman Scattering and Anti-microbial Properties
Authors: Jai Prakash, Promod Kumar, Chantel Swart, J. H. Neethling, A. Janse van Vuuren, H. C. Swart
Abstract:
Ag nanoparticles (NPs) have been used as functional nanomaterials due to their optical and antibacterial properties. Similarly, TiO2 photocatalysts have also been used as suitable nanomaterials for killing cancer cells, viruses and bacteria. Here, we report on multifunctional plasmonic Ag-TiO2 nano-biocomposite synthesized by the sol-gel technique and their optical, surface enhanced Raman scattering (SERS) and antibacterial activities. The as-prepared composites of Ag–TiO2 with different silver content and TiO2 nanopowder were characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersed X-ray analysis (EDX), UV-vis and Raman spectroscopy. The Ag NPs were found to be uniformly distributed and strongly attached to the TiO2 matrix. The novel optical response of the Ag-TiO2 nanocomposites is due to the strong electric field from the surface plasmon excitation of the Ag NPs. The Raman spectrum of Ag-TiO2 nanocomposite was found to be enhanced as compared to TiO2. The enhancement of the low frequency band is evident. This indicates the SERS effect of the TiO2 NPs in close vicinity of Ag NPs. In addition, nanocomposites showed enhancement in the SERS signals of methyl orange (MO) dye molecules with increasing Ag content. The localized electromagnetic field from the surface plasmon excitation of the Ag NPs was responsible for the SERS signals of the TiO2 NPs and MO molecules. The antimicrobial effect of the Ag–TiO2 nanocomposites with different silver content and TiO2 nanopowder were carried out against the bacterium Staphylococcus aureus. The Ag–TiO2 composites showed antibacterial activity towards S. aureus with increasing Ag content as compared to the TiO2 nanopowder. These results foresee promising applications of the functional plasmonic metal−semiconductor based nanobiocomposites for both chemical and biological samples.Keywords: metal-Semiconductor, nano-Biocomposites, anti-microbial activity, surface enhanced Raman scattering
Procedia PDF Downloads 2336687 Temperature Effect on Changing of Electrical Impedance and Permittivity of Ouargla (Algeria) Dunes Sand at Different Frequencies
Authors: Naamane Remita, Mohammed laïd Mechri, Nouredine Zekri, Smaïl Chihi
Abstract:
The goal of this study is the estimation real and imaginary components of both electrical impedance and permittivity z', z'' and ε', ε'' respectively, in Ouargla dunes sand at different temperatures and different frequencies, with alternating current (AC) equal to 1 volt, using the impedance spectroscopy (IS). This method is simple and non-destructive. the results can frequently be correlated with a number of physical properties, dielectric properties and the impacts of the composition on the electrical conductivity of solids. The experimental results revealed that the real part of impedance is higher at higher temperature in the lower frequency region and gradually decreases with increasing frequency. As for the high frequencies, all the values of the real part of the impedance were positive. But at low frequency the values of the imaginary part were positive at all temperatures except for 1200 degrees which were negative. As for the medium frequencies, the reactance values were negative at temperatures 25, 400, 200 and 600 degrees, and then became positive at the rest of the temperatures. At high frequencies of the order of MHz, the values of the imaginary part of the electrical impedance were in contrast to what we recorded for the middle frequencies. The results showed that the electrical permittivity decreases with increasing frequency, at low frequency we recorded permittivity values of 10+ 11, and at medium frequencies it was 10+ 07, while at high frequencies it was 10+ 02. The values of the real part of the electrical permittivity were taken large values at the temperatures of 200 and 600 degrees Celsius and at the lowest frequency, while the smallest value for the permittivity was recorded at the temperature of 400 degrees Celsius at the highest frequency. The results showed that there are large values of the imaginary part of the electrical permittivity at the lowest frequency and then it starts decreasing as the latter increases (the higher the frequency the lower the values of the imaginary part of the electrical permittivity). The character of electrical impedance variation indicated an opportunity to realize the polarization of Ouargla dunes sand and acquaintance if this compound consumes or produces energy. It’s also possible to know the satisfactory of equivalent electric circuit, whether it’s miles induction or capacitance.Keywords: electrical impedance, electrical permittivity, temperature, impedance spectroscopy, dunes sand ouargla
Procedia PDF Downloads 536686 Extended Strain Energy Density Criterion for Fracture Investigation of Orthotropic Materials
Authors: Mahdi Fakoor, Hannaneh Manafi Farid
Abstract:
In order to predict the fracture behavior of cracked orthotropic materials under mixed-mode loading, well-known minimum strain energy density (SED) criterion is extended. The crack is subjected along the fibers at plane strain conditions. Despite the complicities to solve the nonlinear equations which are requirements of SED criterion, SED criterion for anisotropic materials is derived. In the present research, fracture limit curve of SED criterion is depicted by a numerical solution, hence the direction of crack growth is figured out by derived criterion, MSED. The validated MSED demonstrates the improvement in prediction of fracture behavior of the materials. Also, damaged factor that plays a crucial role in the fracture behavior of quasi-brittle materials is derived from this criterion and proved its dependency on mechanical properties and direction of crack growth.Keywords: mixed-mode fracture, minimum strain energy density criterion, orthotropic materials, fracture limit curve, mode II critical stress intensity factor
Procedia PDF Downloads 1706685 Physico-Chemical Characteristics and Possibilities of Utilization of Elbasan Thermal Waters
Authors: Elvin Çomo, Edlira Tako, Albana Hasimi, Rrapo Ormeni, Olger Gjuzi, Mirela Ndrita
Abstract:
In Albania, only low enthalpy geothermal springs and wells are known, the temperatures of some of them are almost at the upper limits of low enthalpy, reaching over 60°C. These resources can be used to improve the country's energy balance, as well as for profitable economic purposes. The region of Elbasan has the greatest geothermal energy potential in Albania. This bass is one of the most popular and used in our country. This area is a surface with a number of sources, located in the form of a chain, in the sector between Llixha and Hidraj and constitutes a thermo-mineral basin with stable discharge and high temperature. The sources of Elbasan Springs, with the current average flow of thermo mineral water of 12-18 l/s and its temperature 55-65oC, have specific reserves of 39.6 GJ/m2 and potential power to install 2760 kW. For the assessment of physico-chemical parameters and heavy metals, water samples were taken at 5 monitoring stations throughout the year 2022. The levels of basic parameters were analyzed using ISO, EU and APHA 21-th edition standard methods. This study presents the current state of the physico-chemical parameters of this thermal basin, the evaluation of these parameters for curative activities and for industrial processes, as well as the integrated utilization of geothermal energy. Possibilities for using thermomineral waters for heating homes in the area around them or even further, depending on the flow from the source or geothermal well. Sensitization of Albanian investors, medical research and the community for the high economic and curative effectiveness, for the integral use of geothermal energy in this area and the development of the tourist sector. An analysis of the negative environmental impact from the use of thermal water is also provided.Keywords: geothermal energy, Llixha, physic-chemical parameters, thermal water
Procedia PDF Downloads 1486684 Controlling the Oxygen Vacancies in the Structure of Anode Materials for Improved Electrochemical Performance in Lithium-Ion Batteries
Authors: Moustafa M. S. Sanad
Abstract:
The worsening of energy supply crisis and the exacerbation of climate change by environmental pollution problems have become the greatest threat to human life. One of the ways to confront these problems is to rely on renewable energy and its storage systems. Nowadays, huge attention has been directed to the development of lithium-ion batteries (LIBs) as efficient tools for storing the clean energy produced by green sources like solar and wind energies. Accordingly, the demand for powerful electrode materials with excellent electrochemical characteristics has been progressively increased to meet fast and continuous growth in the market of energy storage systems. Therefore, the electronic and electrical properties of conversion anode materials for rechargeable lithium-ion batteries (LIBs) can be enhanced by introducing lattice defects and oxygen vacancies in the crystal structure. In this regard, the intended presentation will demonstrate new insights and effective ways for enhancing the electrical conductivity and improving the electrochemical performance of different anode materials such as MgFe₂O₄, CdFe₂O₄, Fe₃O₄, LiNbO₃ and Nb₂O₅. The changes in the physicochemical and morphological properties have been deeply investigated via structural and spectroscopic analyses (e.g., XRD, FESEM, HRTEM, and XPS). Moreover, the enhancement in the electrochemical properties of these anode materials will be discussed through Galvanostatic Cycling (GC), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) techniques.Keywords: structure modification, cationic substitution, non-stoichiometric synthesis, plasma treatment, lithium-ion batteries
Procedia PDF Downloads 676683 Buoyancy Effects in Pressure Retarded Osmosis with Extremely High Draw Solution Concentration
Authors: Ivonne Tshuma, Ralf Cord-Ruwisch, Wendell Ela
Abstract:
Water crisis is a world-wide problem because of population growth and climate change. Hence, desalination is a solution to water scarcity, which threatens the world. Reverse osmosis (RO) is the most used technique for desalination; unfortunately, this process, usually requires high-pressure requirement hence requires a lot of energy about 3 – 5.5 KWhr/m³ of electrical energy. The pressure requirements of RO can be alleviated by the use of PRO (pressure retarded osmosis) to drive the RO process. This paper proposes a process of utilizing the energy directly from PRO to drive an RO process. The paper mostly analyses the PRO process parameters such as cross-flow velocity, density, and buoyancy and how these have an effect on PRO hence ultimately the RO process. The experimental study of the PRO with various feed solution concentrations and cross-flow velocities at fixed applied pressure with different orientations of the PRO cell was performed. The study revealed that without cross-flow velocity, buoyancy effects were observed but not with cross-flow velocity.Keywords: cross-flow velocity, pressure retarded osmosis, density, buoyancy
Procedia PDF Downloads 1416682 The Role of Natural Gas in Reducing Carbon Emissions
Authors: Abdulrahman Nami Almutairi
Abstract:
In the face of escalating climate change concerns, the concept of smart cities emerges as a promising approach to mitigate carbon emissions and move towards carbon neutrality. This paper provides a comprehensive review of the role of Natural Gas in achieving carbon neutrality. Natural gas has often been seen as a transitional fuel in the context of reducing carbon emissions. Its main role stems from being cleaner than coal and oil when burned for electricity generation and industrial processes. The urgent need to address this global issue has prompted a global shift towards cleaner energy sources and sustainable practices. In this endeavor, natural gas has emerged as a pivotal player, hailed for its potential to mitigate carbon emissions, and facilitate the transition to a low-carbon economy. With its lower carbon intensity compared to conventional fossil fuels, natural gas presents itself as a promising alternative for meeting energy demands while reducing environmental impact. As the world stands at a critical juncture in the fight against climate change, exploring the potential of natural gas as a transitional fuel offers insights into pathways towards a more sustainable and resilient future. By critically evaluating its opportunities and challenges, we can harness the potential of natural gas as a transitional fuel while advancing towards a cleaner, more resilient energy system. Through collaborative efforts and informed decision-making, we can pave the way for a future where energy is not only abundant but also environmentally sustainable and socially equitable.Keywords: natural gas, clean fuel, carbon emissions, global warming, environmental protection
Procedia PDF Downloads 506681 Wind Energy Loss Phenomenon Over Volumized Building Envelope with Porous Air Portals
Authors: Ying-chang Yu, Yuan-lung Lo
Abstract:
More and more building envelopes consist of the construction of balconies, canopies, handrails, sun-shading, vertical planters or gardens, maintenance platforms, display devices, lightings, ornaments, and also the most commonly seen double skin system. These components form a uniform but three-dimensional disturbance structure and create a complex surface wind field in front of the actual watertight building interface. The distorted wind behavior would affect the façade performance and building ventilation. Comparing with sole windscreen walls, these three-dimensional structures perform like distributed air portal assembly, and each portal generates air turbulence and consume wind pressure and energy simultaneously. In this study, we attempted to compare the behavior of 2D porous windscreens without internal construction, porous tubular portal windscreens, porous tapered portal windscreens, and porous coned portal windscreens. The wind energy reduction phenomenon is then compared to the different distributed air portals. The experiments are conducted in a physical wind tunnel with 1:25 in scale to simulate the three-dimensional structure of a real building envelope. The experimental airflow was set up to smooth flow. The specimen is designed as a plane with a distributed tubular structure behind, and the control group uses different tubular shapes but the same fluid volume to observe the wind damping phenomenon of various geometries.Keywords: volumized building envelope, porous air portal, wind damping, wind tunnel test, wind energy loss
Procedia PDF Downloads 1396680 Diabetes Mellitus and Food Balance in the Kingdom of Saudi Arabia
Authors: Aljabryn Dalal Hamad
Abstract:
The present explanatory study concerns with the relation between Diabetes Mellitus and Food Balance in the Kingdom of Saudi Arabia during 2005-2010, using published data. Results illustrated that Saudi citizen daily protein consumption (DPC) during 2005-2007 (g/capita/day) is higher than the average global consumption level of protein with 15.27%, daily fat consumption (DFC) with 24.56% and daily energy consumption (DEC) with 16.93% and increases than recommended level by International Nutrition Organizations (INO) with 56% for protein, 60.49% for fat and 27.37% for energy. On the other hand, DPC per capita in Saudi Arabia decreased during the period 2008-2010 from 88.3 to 82.36 gram/ day. Moreover, DFC per capita in Saudi Arabia decreased during the period 2008-2010 from 3247.90 to 3176.43 Cal/capita/ day, and daily energy consumption (DEC) of Saudi citizen increases than world consumption with 16.93%, while increases with 27.37% than INO. Despite this, DPC, DFC and DEC per capita in Saudi Arabia still higher than world mean. On the other side, results illustrated that the number of diabetic patients in Saudi Arabia during the same period (2005-2010). The curve of diabetic patient’s number in Saudi Arabia during 2005-2010 is regular ascending with increasing level ranged between 7.10% in 2005 and 12.44% in 2010. It is essential to devise Saudi National programs to educate the public about the relation of food balances and diabetes so it could be avoided, and provide citizens with healthy dietary balances tables.Keywords: Diabetes mellitus, food balance, energy, fat, protein, Saudi Arabia
Procedia PDF Downloads 4646679 Numerical Analysis of Solar Cooling System
Authors: Nadia Allouache, Mohamed Belmedani
Abstract:
Energy source is a sustainable, totally inexhaustible and environmentally friendly alternative to the fossil fuels available. It is a renewable and economical energy that can be harnessed sustainably over the long term and thus stabilizes energy costs. Solar cooling technologies have been developed to decrease the augmentation electricity consumption for air conditioning and to displace the peak load during hot summer days. A numerical analysis of thermal and solar performances of an annular finned adsorber, which is the most important component of the adsorption solar refrigerating system, is considered in this work. Different adsorbent/adsorbate pairs, such as activated carbon AC35/methanol, activated carbon AC35/ethanol, and activated carbon BPL/Ammoniac, are undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular finned adsorber. The Wilson and Dubinin- Astakhov models of the solid-adsorbate equilibrium are used to calculate the adsorbed quantity. The porous medium and the fins are contained in the annular space, and the adsorber is heated by solar energy. Effects of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The AC35/methanol pair is the best pair compared to BPL/Ammoniac and AC35/ethanol pairs in terms of system performance. The system performances are sensitive to the fin geometry. For the considered data measured for clear type days of July 2023 in Algeria and Morocco, the performances of the cooling system are very significant in Algeria.Keywords: activated carbon AC35-methanol pair, activated carbon AC35-ethanol pair, activated carbon BPL-ammoniac pair, annular finned adsorber, performance coefficients, numerical analysis, solar cooling system
Procedia PDF Downloads 596678 Optimization of Floor Heating System in the Incompressible Turbulent Flow Using Constructal Theory
Authors: Karim Farahmandfar, Hamidolah Izadi, Mohammadreza Rezaei, Amin Ardali, Ebrahim Goshtasbi Rad, Khosro Jafarpoor
Abstract:
Statistics illustrates that the higher amount of annual energy consumption is related to surmounting the demand in buildings. Therefore, it is vital to economize the energy consumption and also find the solution with regard to this issue. One of the systems for the sake of heating the building is floor heating. As a matter of fact, floor heating performance is based on convection and radiation. Actually, in addition to creating a favorable heating condition, this method leads to energy saving. It is the goal of this article to outline the constructal theory and introduce the optimization method in branch networks for floor heating. There are several steps in order to gain this purpose. First of all, the pressure drop through the two points of the network is calculated. This pressure drop is as a function of pipes diameter and other parameters. After that, the amount of heat transfer is determined. Consequently, as a result of the combination of these two functions, the final function will be determined. It is necessary to mention that flow is laminar.Keywords: constructal theory, optimization, floor heating system, turbulent flow
Procedia PDF Downloads 3246677 Creating Renewable Energy Investment Portfolio in Turkey between 2018-2023: An Approach on Multi-Objective Linear Programming Method
Authors: Berker Bayazit, Gulgun Kayakutlu
Abstract:
The World Energy Outlook shows that energy markets will substantially change within a few forthcoming decades. First, determined action plans according to COP21 and aim of CO₂ emission reduction have already impact on policies of countries. Secondly, swiftly changed technological developments in the field of renewable energy will be influential upon medium and long-term energy generation and consumption behaviors of countries. Furthermore, share of electricity on global energy consumption is to be expected as high as 40 percent in 2040. Electrical vehicles, heat pumps, new electronical devices and digital improvements will be outstanding technologies and innovations will be the testimony of the market modifications. In order to meet highly increasing electricity demand caused by technologies, countries have to make new investments in the field of electricity production, transmission and distribution. Specifically, electricity generation mix becomes vital for both prevention of CO₂ emission and reduction of power prices. Majority of the research and development investments are made in the field of electricity generation. Hence, the prime source diversity and source planning of electricity generation are crucial for improving the wealth of citizen life. Approaches considering the CO₂ emission and total cost of generation, are necessary but not sufficient to evaluate and construct the product mix. On the other hand, employment and positive contribution to macroeconomic values are important factors that have to be taken into consideration. This study aims to constitute new investments in renewable energies (solar, wind, geothermal, biogas and hydropower) between 2018-2023 under 4 different goals. Therefore, a multi-objective programming model is proposed to optimize the goals of minimizing the CO₂ emission, investment amount and electricity sales price while maximizing the total employment and positive contribution to current deficit. In order to avoid the user preference among the goals, Dinkelbach’s algorithm and Guzel’s approach have been combined. The achievements are discussed with comparison to the current policies. Our study shows that new policies like huge capacity allotment might be discussible although obligation for local production is positive. The improvements in grid infrastructure and re-design support for the biogas and geothermal can be recommended.Keywords: energy generation policies, multi-objective linear programming, portfolio planning, renewable energy
Procedia PDF Downloads 2486676 Simulations to Predict Solar Energy Potential by ERA5 Application at North Africa
Authors: U. Ali Rahoma, Nabil Esawy, Fawzia Ibrahim Moursy, A. H. Hassan, Samy A. Khalil, Ashraf S. Khamees
Abstract:
The design of any solar energy conversion system requires the knowledge of solar radiation data obtained over a long period. Satellite data has been widely used to estimate solar energy where no ground observation of solar radiation is available, yet there are limitations on the temporal coverage of satellite data. Reanalysis is a “retrospective analysis” of the atmosphere parameters generated by assimilating observation data from various sources, including ground observation, satellites, ships, and aircraft observation with the output of NWP (Numerical Weather Prediction) models, to develop an exhaustive record of weather and climate parameters. The evaluation of the performance of reanalysis datasets (ERA-5) for North Africa against high-quality surface measured data was performed using statistical analysis. The estimation of global solar radiation (GSR) distribution over six different selected locations in North Africa during ten years from the period time 2011 to 2020. The root means square error (RMSE), mean bias error (MBE) and mean absolute error (MAE) of reanalysis data of solar radiation range from 0.079 to 0.222, 0.0145 to 0.198, and 0.055 to 0.178, respectively. The seasonal statistical analysis was performed to study seasonal variation of performance of datasets, which reveals the significant variation of errors in different seasons—the performance of the dataset changes by changing the temporal resolution of the data used for comparison. The monthly mean values of data show better performance, but the accuracy of data is compromised. The solar radiation data of ERA-5 is used for preliminary solar resource assessment and power estimation. The correlation coefficient (R2) varies from 0.93 to 99% for the different selected sites in North Africa in the present research. The goal of this research is to give a good representation for global solar radiation to help in solar energy application in all fields, and this can be done by using gridded data from European Centre for Medium-Range Weather Forecasts ECMWF and producing a new model to give a good result.Keywords: solar energy, solar radiation, ERA-5, potential energy
Procedia PDF Downloads 2166675 Effects of Position and Cut-Out Lengths on the Axial Crushing Behavior of Aluminum Tubes: Experimental and Simulation
Authors: B. Käfer, V. K. Bheemineni, H. Lammer, M. Kotnik, F. O. Riemelmoser
Abstract:
Axial compression tests are performed on circular tubes made of Aluminum EN AW 6060 (AlMgSi0.5 alloy) in T66 state. All the received tubes have the uniform outer diameter of 40mm and thickness of 1.5mm. Two different lengths 100mm and 200mm are used in the analysis. After performing compression tests on the uniform tube, important crashworthy parameters like peak force, average force, crush efficiency and energy absorption are measured. The present paper has given importance to increase the percentage of crush efficiency without decreasing the value energy absorption of a tube, so a circumferential notch was introduced on the top section of the tube. The effects of position and cut-out lengths of a circumferential notch on the crush efficiency are well explained with relative deformation modes and force-displacement curves. The numerical simulations were carried on the software tool ANSYS/LS-DYNA. It is seen that the numerical results are reasonably good in agreement with the experimental results.Keywords: crash box, Notch triggering, energy absorption, FEM simulation
Procedia PDF Downloads 4636674 Peak Shaving in Microgrids Using Hybrid Storage
Authors: Juraj Londák, Radoslav Vargic, Pavol Podhradský
Abstract:
In this contribution, we focus on the technical and economic aspects of using hybrid storage in microgrids for peak shaving. We perform a feasibility analysis of hybrid storage consisting of conventional supercapacitors and chemical batteries. We use multiple real-life consumption profiles from various industry-oriented microgrids. The primary purpose is to construct a digital twin model for reserved capacity simulation and prediction. The main objective is to find the equilibrium between technical innovations, acquisition costs and energy cost savingsKeywords: microgrid, peak shaving, energy storage, digital twin
Procedia PDF Downloads 1656673 Optimal Energy Consumption with Semiconductor Lamps
Authors: Pejman Hosseiniun, Rose Shayeghi, Alireza Farzaneh, Abolghasem Ghasempour
Abstract:
Using LED lamps as lighting resources with new technology in designing lighting systems has been studied in this article. In this respect a history of LED emergence, its different manufacturing methods and technologies were revised, then their structure, light production line, its application and benefits in lighting industry has been evaluated. Finally, there is a comparison between these lamps and ordinary lamps to assess light parameters as well as energy consumption using DIALux software. Considering the results of analogies LED lamps have lower consumption and more lighting yield, therefore they are more economically feasible. Color variety, longer usage lap (circa 10 years) and compatibility with DC voltages are other LED lamps perquisites.Keywords: LED, lighting efficiency, lighting intensity, luminance
Procedia PDF Downloads 5996672 The Public Policy of Energy Subsidies Reform in Egypt
Authors: Doaa Nounou
Abstract:
This research examines the public policy energy subsidies reform efforts in Egypt since 2014. Egypt’s widely used energy subsidies have been controversial since they were first introduced, as they inadequately target the poorest part of the population. Also, their effect on economic development and democratic transition became very challenging in recent years. This research argues that although subsidy reform is a highly politicalized issue in democratizing countries, there are still a number of pragmatic public policies that can be applied to make the subsidy system function more efficiently and at the same time decrease inequality which could facilitate a more orderly and peaceful transition to democracy. Therefore, this research attempts to study the role of the executive branch in reforming the subsidy programmes to support the poor and bring about structural changes to achieve social justice and economic growth. This research also attempts to analyze the role of the military and civil society in reforming the subsidy system. Moreover, it attempts to discuss the role of the state media in social mobilization to rationalize consumption and its contribution to subsidies reform.Keywords: subsidies, public policy, political economy, democratization, equality
Procedia PDF Downloads 2246671 1D PIC Simulation of Cold Plasma Electrostatic Waves beyond Wave-Breaking Limit
Authors: Prabal Singh Verma
Abstract:
Electrostatic Waves in plasma have emerged as a new source for the acceleration of charged particles. The accelerated particles have a wide range of applications, for example in cancer therapy to cutting and melting of hard materials. The maximum acceleration can only be achieved when the amplitude of the plasma wave stays below a critical limit known as wave-breaking amplitude. Beyond this limit amplitude of the wave diminishes dramatically as the coherent energy of the wave starts to convert into random kinetic energy. In this work, spatiotemporal evolution of non-relativistic electrostatic waves in a cold plasma has been studied in the wave-breaking regime using a 1D particle-in-cell simulation (PIC). It is found that plasma gets heated after the wave-breaking but a fraction of initial energy always remains with the remnant wave in the form of Bernstein-Greene-Kruskal (BGK) mode in warm plasma. Another interesting finding of this work is that the frequency of the resultant BGK wave is found be below electron plasma frequency which decreases with increasing initial amplitude and the acceleration mechanism after the wave-breaking is also found to be different from the previous work. In order to explain the results observed in the numerical experiments, a simplified theoretical model is constructed which exhibits a good agreement with the simulation. In conclusion, it is shown in this work that electrostatic waves get shower after the wave-breaking and a fraction of initial coherent energy always remains with remnant wave. These investigations have direct relevance in wakefield acceleration experiments.Keywords: nonlinear plasma waves, longitudinal, wave-breaking, wake-field acceleration
Procedia PDF Downloads 3886670 Energy Complementary in Colombia: Imputation of Dataset
Authors: Felipe Villegas-Velasquez, Harold Pantoja-Villota, Sergio Holguin-Cardona, Alejandro Osorio-Botero, Brayan Candamil-Arango
Abstract:
Colombian electricity comes mainly from hydric resources, affected by environmental variations such as the El Niño phenomenon. That is why incorporating other types of resources is necessary to provide electricity constantly. This research seeks to fill the wind speed and global solar irradiance dataset for two years with the highest amount of information. A further result is the characterization of the data by region that led to infer which errors occurred and offered the incomplete dataset.Keywords: energy, wind speed, global solar irradiance, Colombia, imputation
Procedia PDF Downloads 1516669 Improved Mutual Inductance of Rogowski Coil Using Hexagonal Core
Authors: S. Al-Sowayan
Abstract:
Rogowski coils are increasingly used for measurement of AC and transient electric currents. Mostly used Rogowski coils now are with circular or rectangular cores. In order to increase the sensitivity of the measurement of Rogowski coil and perform smooth wire winding, this paper studies the effect of increasing the mutual inductance in order to increase the coil sensitivity by presenting the calculation and simulation of a Rogowski coil with equilateral hexagonal shaped core and comparing the resulted mutual inductance with commonly used core shapes.Keywords: Rogowski coil, mutual inductance, magnetic flux density, communication engineering
Procedia PDF Downloads 3736668 Influence of Temperature on Properties of MOSFETs
Authors: Azizi Cherifa, O. Benzaoui
Abstract:
The thermal aspects in the design of power circuits often deserve as much attention as pure electric components aspects as the operating temperature has a direct influence on their static and dynamic characteristics. MOSFET is fundamental in the circuits, it is the most widely used device in the current production of semiconductor components using their honorable performance. The aim of this contribution is devoted to the effect of the temperature on the properties of MOSFETs. The study enables us to calculate the drain current as function of bias in both linear and saturated modes. The effect of temperature is evaluated using a numerical simulation, using the laws of mobility and saturation velocity of carriers as a function of temperature.Keywords: temperature, MOSFET, mobility, transistor
Procedia PDF Downloads 3496667 A Green Hydrogen Route for Electromobility in Brazil and Its Impact in Climate Change
Authors: Milena França Marques
Abstract:
Due to the climate crisis, several countries such as Brazil began to look for energy alternatives, finding green hydrogen as a possible solution. In addition to not emitting polluting gasses, it also has a large energy capacity, being an excellent alternative for the transport sector, the third sector that emits the most Greenhouse Gases (GHG) in Brazil. Therefore, this work aims to suggest a route for using green hydrogen, through the analysis of plans implemented in other countries, the Brazilian situation, and its difficulties in the development of hydrogen and electromobility, aiming to understand how its value chain works, as well as how to make the Brazilian fleet more efficient and decarbonize. As a result, 68 structuring measures were suggested for the first 5 axes of the National Hydrogen Program (PNH2) using the Three-Year Plan as a basis. Categorizations of measures were also made, definitions of those responsible for their development and implementation, as well as deadlines for them to be met. It is concluded that the study has the potential to promote national energy-environmental mobility transition planning realistically, capable of developing hydrogen and electromobility in Brazil, in addition to contributing to achieving the goals established by its Nationally Determined Contribution (NDC).Keywords: climate change, electromobility, hydrogen, roadmap
Procedia PDF Downloads 626666 Analysis of Generated Biogas from Anaerobic Digestion of Piggery Dung
Authors: Babatope Alabadan, Adeyinka Adesanya, I. E. Afangideh
Abstract:
The use of energy is paramount to human existence. Every activity globally revolves round it. Over the years, different sources of energy (petroleum fuels predominantly) have been utilized. Animal waste treatment on the farm is a phenomenon that has called for rapt research attention. Generated wastes on farm pollute the environment in diverse ways. Waste-to-bioenergy treatments can provide livestock operators with multiple value-added, renewable energy products. The objective of this work is to generate methane (CH4) gas from the anaerobic digestion of piggery dung. A retention time of 15 and 30 days and a mesophilic temperature range were selected. The generated biogas composition was methane (CH4), carbondioxide (CO2), hydrogen sulphide (H2S) and ammonia (NH3) using gas chromatography method. At 15 days retention time, 60% of (CH4) was collected while CO2 and traces of H2S and NH3 accounted for 40%. At 30 days retention time, 75% of CH4, 20% of CO2 was collected while traces of H2S and NH3 amounted to 5%. For on and off farm uses, biogas can be upgraded to biomethane by removing the CO2, NH3 and H2S. This product (CH4) can meet heating and power needs or serve as transportation fuelsKeywords: anaerobic digestion, biogas, methane, piggery dung
Procedia PDF Downloads 3506665 Case Study: The Analysis of Maturity of West Buru Basin and the Potential Development of Geothermal in West Buru Island
Authors: Kefi Rahmadio, Filipus Armando Ginting, Richard Nainggolan
Abstract:
This research shows the formation of the West Buru Basin and the potential utilization of this West Buru Basin as a geothermal potential. The research area is West Buru Island which is part of the West Buru Basin. The island is located in Maluku Province, with its capital city named Namlea. The island is divided into 10 districts, namely District Kepalamadan, Airbuaya District, Wapelau District, Namlea District, Waeapo District, Batabual District, Namrole District, Waesama District, Leksula District, and Ambalau District. The formation in this basin is Permian-Quarter. They start from the Formation Ghegan, Dalan Formation, Mefa Formation, Kuma Formation, Waeken Formation, Wakatin Formation, Ftau Formation and Leko Formation. These formations are composing this West Buru Basin. Determination of prospect area in the geothermal area with preliminary investigation stage through observation of manifestation, topographic shape and structure are found around prospect area. This is done because there is no data of earth that support the determination of prospect area more accurately. In Waepo area, electric power generated based on field observation and structural analysis, geothermal area of Waeapo was approximately 6 km², with reference to the SNI 'Classification of Geothermal Potential' (No.03-5012-1999), an area of 1 km² is assumed to be 12.5 MWe. The speculative potential of this area is (Q) = 6 x 12.5 MWe = 75 MWe. In the Bata Bual area, the geothermal prospect projected 4 km², the speculative potential of the Bata Bual area is worth (Q) = 4 x 12.5 MWe = 50 MWe. In Kepala Madan area, based on the estimation of manifestation area, there is a wide area of prospect in Kepala Madan area about 4 km². The geothermal energy potential of the speculative level in Kepala Madan district is (Q) = 4 x 12.5 MWe = 50 MWe. These three areas are the largest geothermal potential on the island of West Buru. From the above research, it can be concluded that there is potential in West Buru Island. Further exploration is needed to find greater potential. Therefore, researchers want to explain the geothermal potential contained in the West Buru Basin, within the scope of West Buru Island. This potential can be utilized for the community of West Buru Island.Keywords: West Buru basin, West Buru island, potential, Waepo, Bata Bual, Kepala Madan
Procedia PDF Downloads 2316664 Improving Alkaline Water Electrolysis by Using an Asymmetrical Electrode Cell Design
Authors: Gabriel Wosiak, Felipe Staciaki, Eryka Nobrega, Ernesto Pereira
Abstract:
Hydrogen is an energy carrier with potential applications in various industries. Alkaline electrolysis is a commonly used method for hydrogen production; however, its energy cost remains relatively high compared to other methods. This is due in part to interfacial pH changes that occur during the electrolysis process. Interfacial pH changes refer to the changes in pH that occur at the interface between the cathode electrode and the electrolyte solution. These changes are caused by the electrochemical reactions at both electrodes, which consume or produces hydroxide ions (OH-) from the electrolyte solution. This results in an important change in the local pH at the electrode surface, which can have several impacts on the energy consumption and durability of electrolysers. One impact of interfacial pH changes is an increase in the overpotential required for hydrogen production. Overpotential is the difference between the theoretical potential required for a reaction to occur and the actual potential that is applied to the electrodes. In the case of water electrolysis, the overpotential is caused by a number of factors, including the mass transport of reactants and products to and from the electrodes, the kinetics of the electrochemical reactions, and the interfacial pH. An increase in the interfacial pH at the anode surface in alkaline conditions can lead to an increase in the overpotential for hydrogen production. This is because the lower local pH makes it more difficult for the hydroxide ions to be oxidized. As a result, there is an increase in the required energy to the process occur. In addition to increasing the overpotential, interfacial pH changes can also lead to the degradation of the electrodes. This is because the lower pH can make the electrode more susceptible to corrosion. As a result, the electrodes may need to be replaced more frequently, which can increase the overall cost of water electrolysis. The method presented in the paper addresses the issue of interfacial pH changes by using a cell design with a different cell design, introducing the electrode asymmetry. This design helps to mitigate the pH gradient at the anode/electrolyte interface, which reduces the overpotential and improves the energy efficiency of the electrolyser. The method was tested using a multivariate approach in both laboratory and industrial current density conditions and validated the results with numerical simulations. The results demonstrated a clear improvement (11.6%) in energy efficiency, providing an important contribution to the field of sustainable energy production. The findings of the paper have important implications for the development of cost-effective and sustainable hydrogen production methods. By mitigating interfacial pH changes, it is possible to improve the energy efficiency of alkaline electrolysis and make it a more competitive option for hydrogen production.Keywords: electrolyser, interfacial pH, numerical simulation, optimization, asymmetric cell
Procedia PDF Downloads 74