Search results for: coping mechanism
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3643

Search results for: coping mechanism

1033 Hepatic Regenerative Capacity after Acetaminophen-Induced Liver Injury in Mouse Model

Authors: N. F. Hamid, A. Kipar, J. Stewart, D. J. Antoine, B. K. Park, D. P. Williams

Abstract:

Acetaminophen (APAP) is a widely used analgesic that is safe at therapeutic doses. The mouse model of APAP has been extensively used for studies on pathogenesis and intervention of drug induced liver injury based on the CytP450 mediated formation of N-acetyl-p-benzo-quinoneimine and, more recently, as model for mechanism based biomarkers. Delay of the fasted CD1 mice to rebound to the basal level of hepatic GSH compare to fed mice is reported in this study. Histologically, 15 hours fasted mice prior to APAP treatment leading to overall more intense cell loss with no evidence of apoptosis as compared to non-fasted mice, where the apoptotic cells were clearly seen on cleaved caspase-3 immunostaining. After 15 hours post APAP administration, hepatocytes underwent stage of recovery with evidence of mitotic figures in fed mice and return to completely no histological difference to control at 24 hours. On the contrary, the evidence of ongoing cells damage and inflammatory cells infiltration are still present on fasted mice until the end of the study. To further measure the regenerative capacity of the hepatocytes, the inflammatory mediators of cytokines that involved in the progression or regression of the toxicity like TNF-α and IL-6 in liver and spleen using RT-qPCR were also included. Yet, quantification of proliferating cell nuclear antigen (PCNA) has demonstrated the time for hepatic regenerative in fasted is longer than that to fed mice. Together, these data would probably confirm that fasting prior to APAP treatment does not only modulate liver injury, but could have further effects to delay subsequent regeneration of the hepatocytes.

Keywords: acetaminophen, liver, proliferating cell nuclear antigen, regeneration, apoptosis

Procedia PDF Downloads 436
1032 Efficiency of a Molecularly Imprinted Polymer for Selective Removal of Chlorpyrifos from Water Samples

Authors: Oya A. Urucu, Aslı B. Çiğil, Hatice Birtane, Ece K. Yetimoğlu, Memet Vezir Kahraman

Abstract:

Chlorpyrifos is an organophosphorus pesticide which can be found in environmental water samples. The efficiency and reuse of a molecularly imprinted polymer (chlorpyrifos - MIP) were investigated for the selective removal of chlorpyrifos residues. MIP was prepared with UV curing thiol-ene polymerization technology by using multifunctional thiol and ene monomers. The thiol-ene curing reaction is a radical induced process, however unlike other photoinitiated polymerization processes, this polymerization process is a free-radical reaction that proceeds by a step-growth mechanism, involving two main steps; a free-radical addition followed by a chain transfer reaction. It assures a very rapidly formation of a uniform crosslinked network with low shrinkage, reduced oxygen inhibition during curing and excellent adhesion. In this study, thiol-ene based UV-curable polymeric materials were prepared by mixing pentaerythritol tetrakis(3-mercaptopropionate), glyoxal bis diallyl acetal, polyethylene glycol diacrylate (PEGDA) and photoinitiator. Chlorpyrifos was added at a definite ratio to the prepared formulation. Chemical structure and thermal properties were characterized by FTIR and thermogravimetric analysis (TGA), respectively. The pesticide analysis was performed by gas chromatography-mass spectrometry (GC-MS). The influences of some analytical parameters such as pH, sample volume, amounts of analyte concentration were studied for the quantitative recoveries of the analyte. The proposed MIP method was applied to the determination of chlorpyrifos in river and tap water samples. The use of the MIP provided a selective and easy solution for removing chlorpyrifos from the water.

Keywords: molecularly imprinted polymers, selective removal, thilol-ene, uv-curable polymer

Procedia PDF Downloads 302
1031 From the Sharing Economy to Social Manufacturing: Analyzing Collaborative Service Networks in the Manufacturing Domain

Authors: Babak Mohajeri

Abstract:

In recent years, the conventional business model of ownership has been changed towards accessibility in a variety of markets. Two trends can be observed in the evolution of this rental-like business model. Firstly, the technological development that enables the emergence of new business models. These new business models increasingly become agile and flexible. For example Spotify, an online music stream company provides consumers access to over millions of music tracks, conveniently through the smartphone, tablet or computer. Similarly, Car2Go, the car sharing company accesses its members with flexible and nearby sharing cars. The second trend is the increasing communication and connections via social networks. This trend enables a shift to peer-to-peer accessibility based business models. Conventionally, companies provide access for their customers to own companies products or services. In peer-to-peer model, nonetheless, companies facilitate access and connection across their customers to use other customers owned property or skills, competencies or services .The is so-called the sharing economy business model. The aim of this study is to investigate into a new and emerging type of the sharing economy model in which role of customers and service providers may dramatically change. This new model is called Collaborative Service Networks. We propose a mechanism for Collaborative Service Networks business model. Uber and Airbnb, two successful growing companies, have been selected for our case studies and their business models are analyzed. Finally, we study the emergence of the collaborative service networks in the manufacturing domain. Our finding results to a new manufacturing paradigm called social manufacturing.

Keywords: sharing economy, collaborative service networks, social manufacturing, manufacturing development

Procedia PDF Downloads 319
1030 Supports for Student Learning Program: Exploring the Educational Terrain of Newcomer and Refugee Students in Canada

Authors: Edward Shizha, Edward Makwarimba

Abstract:

This literature review explores current research on the educational strengths and barriers of newcomer and refugee youth in Canada. Canada’s shift in immigration policy in the past three decades, from Europe to Asian and African countries as source continents of recent immigrants to Canada, has tremendously increased the ethnic, linguistic, cultural and religious diversity of the population, including that of students in its education system. Over 18% of the country’s population was born in another country, of which 70% are visible minorities. There has been an increase in admitted immigrants and refugees, with a total of 226,203 between July 2020 and June 2021. Newcomer parents and their children in all major destination countries, including Canada, face tremendous challenges, including racism and discrimination, lack of English language skills, poverty, income inequality, unemployment, and underemployment. They face additional challenges, including discrimination against those who cannot speak the official languages, English or French. The severity of the challenges depends on several intersectional factors, including immigrant status (asylum seeker, refugee, or immigrant), age, gender, level of education and others. Through the lens of intersectionality as an explanatory perspective, this literature review examines the educational attainment and outcomes of newcomer and refugee youth in Canada in order to understand their educational needs, educational barriers and strengths. Newcomer youths’ experiences are shaped by numerous intersectional and interconnected sociocultural, sociopolitical, and socioeconomic factors—including gender, migration status, racialized status, ethnicity, socioeconomic class, sexual minority status, age, race—that produce and perpetuate their disadvantage. According to research, immigrants and refugees from visible minority ethnic backgrounds experience exclusions more than newcomers from other backgrounds and groups from the mainstream population. For many immigrant parents, migration provides financial and educational opportunities for their children. Yet, when attending school, newcomer and refugee youth face unique challenges related to racism and discrimination, negative attitudes and stereotypes from teachers and other school authorities, language learning and proficiency, differing levels of acculturation, and different cultural views of the role of parents in relation to teachers and school, and unfamiliarity with the social or school context in Canada. Recognizing discrepancies in educational attainment of newcomer and refugee youth based on their race and immigrant status, the paper develops insights into existing research and data gaps related to educational strengths and challenges for visible minority newcomer youth in Canada. The paper concludes that the educational successes or failures of the newcomer and refugee youth and their settlement and integration into the school system in Canada may depend on where their families settle, the attitudes of the host community and the school officials (teachers, guidance counsellors and school administrators) after-school support programs and their own set of coping mechanisms. Conceivably a unique approach to after-school programming should provide learning supports and opportunities that consider newcomer and refugee youth’s needs, experiences, backgrounds and circumstances. This support is likely to translate into significant academic and psychological well-being of newcomer students.

Keywords: deficit discourse, discrimination, educational outcomes, newcomer and refugee youth, racism, strength-based approach, whiteness

Procedia PDF Downloads 67
1029 Numerical and Experimental Investigation of Fracture Mechanism in Paintings on Wood

Authors: Mohammad Jamalabadi, Noemi Zabari, Lukasz Bratasz

Abstract:

Panel paintings -complex multi-layer structures consisting of wood support and a paint layer composed of a preparatory layer of gesso, paints, and varnishes- are among the category of cultural objects most vulnerable to relative humidity fluctuations and frequently found in museum collections. The current environmental specifications in museums have been derived using the criterion of crack initiation in an undamaged, usually new gesso layer laid on wood. In reality, historical paintings exhibit complex crack patterns called craquelures. The present paper analyses the structural response of a paint layer with a virtual network of rectangular cracks under environmental loadings using a three-dimensional model of a panel painting. Two modes of loading are considered -one induced by one-dimensional moisture response of wood support, termed the tangential loading, and the other isotropic induced by drying shrinkage of the gesso layer. The superposition of the two modes is also analysed. The modelling showed that minimum distances between cracks parallel to the wood grain depended on the gesso stiffness under the tangential loading. In spite of a non-zero Poisson’s ratio, gesso cracks perpendicular to the wood grain could not be generated by the moisture response of wood support. The isotropic drying shrinkage of gesso produced cracks that were almost evenly spaced in both directions. The modelling results were cross-checked with crack patterns obtained on a mock-up of a panel painting exposed to a number of extreme environmental variations in an environmental chamber.

Keywords: fracture saturation, surface cracking, paintings on wood, wood panels

Procedia PDF Downloads 268
1028 Alterations of Molecular Characteristics of Polyethylene under the Influence of External Effects

Authors: Vigen Barkhudaryan

Abstract:

The influence of external effects (γ-, UV–radiations, high temperature) in presence of air oxygen on structural transformations of low-density polyethylene (LDPE) have been investigated dependent on the polymers’ thickness, the intensity and the dose of external actions. The methods of viscosimetry, light scattering, turbidimetry and gelation measuring were used for this purpose. The comparison of influence of external effects on LDPE shows, that the destruction and cross-linking processes of macromolecules proceed simultaneously with all kinds of external effects. A remarkable growth of average molecular mass of LDPE along with the irradiation doses and heat treatment exposure growth was established. It was linear for the mass average molecular mass and at the initial doses is mainly the result of the increase of the macromolecular branching. As a result, the macromolecular hydrodynamic volumes have been changed, and therefore the dependence of viscosity average molecular mass on the doses was going through the minimum at initial doses. A significant change of molecular mass, sizes and shape of macromolecules of LDPE occurs under the influence of external effects. The influence is limited only by diffusion of oxygen during -irradiation and heat treatment. At UV–irradiation the influence is limited both by diffusion of oxygen and penetration of radiation. Consequently, the molecular transformations are deeper and evident in case of -irradiation, as soon as the polymer is transformed in a whole volume. It was also established, that the mechanism of molecular transformations in polymers from the surface layer distinctly differs from those of the sample deeper layer. A comparison of the results of these investigations allows us to conclude, that the mechanisms of influence of investigated external effects on polyethylene are similar.

Keywords: cross-linking, destruction, high temperature, LDPE, γ-radiations, UV-radiations

Procedia PDF Downloads 318
1027 The Application of a Neural Network in the Reworking of Accu-Chek to Wrist Bands to Monitor Blood Glucose in the Human Body

Authors: J. K Adedeji, O. H Olowomofe, C. O Alo, S.T Ijatuyi

Abstract:

The issue of high blood sugar level, the effects of which might end up as diabetes mellitus, is now becoming a rampant cardiovascular disorder in our community. In recent times, a lack of awareness among most people makes this disease a silent killer. The situation calls for urgency, hence the need to design a device that serves as a monitoring tool such as a wrist watch to give an alert of the danger a head of time to those living with high blood glucose, as well as to introduce a mechanism for checks and balances. The neural network architecture assumed 8-15-10 configuration with eight neurons at the input stage including a bias, 15 neurons at the hidden layer at the processing stage, and 10 neurons at the output stage indicating likely symptoms cases. The inputs are formed using the exclusive OR (XOR), with the expectation of getting an XOR output as the threshold value for diabetic symptom cases. The neural algorithm is coded in Java language with 1000 epoch runs to bring the errors into the barest minimum. The internal circuitry of the device comprises the compatible hardware requirement that matches the nature of each of the input neurons. The light emitting diodes (LED) of red, green, and yellow colors are used as the output for the neural network to show pattern recognition for severe cases, pre-hypertensive cases and normal without the traces of diabetes mellitus. The research concluded that neural network is an efficient Accu-Chek design tool for the proper monitoring of high glucose levels than the conventional methods of carrying out blood test.

Keywords: Accu-Check, diabetes, neural network, pattern recognition

Procedia PDF Downloads 147
1026 The Plight of the Rohingyas: Design Guidelines to Accommodate Displaced People in Bangladesh

Authors: Nazia Roushan, Maria Kipti

Abstract:

The sensitive issue of a large-scale entry of Rohingya refugees to Bangladesh has arisen again since August of 2017. Incited by ethnic and religious conflict, the Rohingyas—an ethnic group concentrated in the north-west state of Rakhine in Myanmar—have been fleeing to what is now Bangladesh from as early as the late 1700s in four main exoduses. This long-standing persecution has recently escalated, and accommodating the recent wave of exodus has been especially challenging due to the sheer volume of a million refugees concentrated in refugee camps in two small administrative units (upazilas) in the south-east of the country: the host area. This drastic change in the host area’s social fabric is putting a lot of strain on the country’s economic, demographic and environmental stability, and security. Although Bangladesh’s long-term experience with disaster management has enabled it to respond rapidly to the crisis, the government is failing to cope with this enormous problem and has taken insufficient steps towards improving the living conditions to inhibit the inflow of more refugees. On top of that, the absence of a comprehensive national refugee policy, and the density of the structures of the camps are constricting the upgrading of the shelters to international standards. As of December 2016, the combined number of internally displaced persons (IDPs) due to conflict and violence (stock), and new displacements due to disasters (flow) in Bangladesh had exceeded 1 million. These numbers have increased dramatically in the last few months. Moreover, by 2050, Bangladesh will have as much as 25 million climate refugees just from its coastal districts. To enhance the resilience of the vulnerable, it is crucial to methodically factorize further interventions between Disaster Risk Reduction for Resilience (DRR) and the concept of Building Back Better (BBB) in the rehabilitation-reconstruction period. Considering these points, this paper provides a palette of options for design guidelines related to the living spaces and infrastructures for refugees. This will encourage the development of national standards for refugee camps, and the national and local level rehabilitation-reconstruction practices. Unhygienic living conditions, vulnerability, and the general lack of control over life are pervasive throughout the camps. This paper, therefore, proposes site-specific strategic and physical planning and design for shelters for refugees in Bangladesh that will lead to sustainable living environments through the following: a) site survey of existing two registered and one makeshift unregistered refugee camps to document and study their physical conditions, b) questionnaires and semi-structured focus group discussions carried out among the refugees and stakeholders to understand what the lived experiences and needs are; and c) combining the findings with international minimum standards for shelter and settlement from International Federation of Red Cross and Red Crescent (IFRC), Médecins Sans Frontières (MSF), United Nations High Commissioner for Refugees (UNHCR). These proposals include temporary shelter solutions that balance between lived spaces and regimented, repetitive plans using readily available and cheap materials, erosion control and slope stabilization strategies, and most importantly, coping mechanisms for the refugees to be self-reliant and resilient.

Keywords: architecture, Bangladesh, refugee camp, resilience, Rohingya

Procedia PDF Downloads 237
1025 Association of Antibiotics Resistance with Efflux Pumps Genes among Multidrug-Resistant Klebsiella pneumonia Recovered from Hospital Waste Water Effluents in Eastern Cape, South Africa

Authors: Okafor Joan, Nwodo Uchechukwu

Abstract:

Klebsiella pneumoniae (K. pneumoniae) is a significant pathogen responsible for opportunistic and nosocomial infection. One of the most significant antibiotic resistance mechanisms in K. pneumoniae isolates is efflux pumps. Our current study identified efflux genes (AcrAB, OqxAB, MacAB, and TolC) and regulatory genes (RamR and RarA) in multidrug-resistant (MDR) K. pneumoniae isolated from hospital effluents and investigated their relationship with antibiotic resistance. The sum of 145 K. pneumoniae isolates was established by PCR and screened for antibiotic susceptibility. PCR detected efflux pump genes, and their link with antibiotic resistance was statistically examined. However, 120 (83%) of the confirmed isolated were multidrug-resistant, with the largest percentage of resistance to ampicillin (88.3%) and the weakest rate of resistance to imipenem (5.5%). Resistance to the other antibiotics ranged from 11% to 76.6%. Molecular distribution tests show that AcrA, AcrB, MacA, oqxB oqxA, TolC, MacB were detected in 96.7%, 85%, 76.7%, 70.8%, 55.8%, 39.1%, and 29.1% respectively. However, 14.3% of the isolates harboured all seven genes screened. Efflux pump system AcrAB (83.2%) was the most commonly detected in K. pneumonia isolated across all the antibiotics class-tested. In addition, the frequencies of RamR and RarA were 46.2% and 31.4%, respectively. AcrAB and OqxAB efflux pump genes were significantly associated with fluoroquinolone, beta-lactam, carbapenem, and tetracycline resistance (p<0.05). The high rate of efflux genes in this study demonstrated that this resistance mechanism is the dominant way in K. pneumoniae isolates. Appropriate treatment must be used to reduce and tackle the burden of resistant Klebsiella pneumonia in hospital wastewater effluents.

Keywords: Klebsiella pneumonia, efflux pumps, regulatory genes, multidrug-resistant, hospital, PCR

Procedia PDF Downloads 85
1024 Effects of Substrate Roughness on E-Cadherin Junction of Oral Keratinocytes

Authors: Sungpyo Kim, Changseok Oh, Ga-Young Lee, Hyun-Man Kim

Abstract:

Intercellular junction of keratinocytes is crucial for epithelia to build an epithelial barrier. Junctional epithelium (JE) seals the interfaces between tooth and gingival tissue. Keratinocytes of JE attach to surfaces roughened by abrasion or erosion with aging. Thus behavior of oral keratinocytes on the rough substrates may help understand the epithelial seal of JE of which major intercellular junction is E-cadherin junction (ECJ). The present study investigated the influence of various substrate roughnesses on the development of ECJ between normal human gingival epithelial keratinocytes, HOK-16B cells. HOK-16B cells were slow in the development of ECJ on the rough substrates compared to on the smooth substrates. Furthermore, oral keratinocytes on the substrates of higher roughnesses were delayed in the development of E-cadherin junction than on the substrates of lower roughnesses. Delayed development of E-cadherin junction on the rough substrates was ascribed to the impaired spreading of cells and its higher JNK activity. Cells on the smooth substrates rapidly spread wide cytoplasmic extensions around cells. However, cells on the rough substrates slowly extended narrow cytoplasmic extensions of which number was limited due to the substrate irregularity. As these cytoplasmic extensions formed ECJ when met with the extensions of neighboring cells, thus, the present study demonstrated that a limited chance of contacts between cytoplasmic extensions due to the limited number of cytoplasmic extensions and slow development of cytoplasmic extensions brought about a delayed development of ECJ in oral keratinocytes on the rougher substrates. Sealing between cells was not complete because only part of cell membrane contributes to the formation of intercellular junction between cells on the substrates of higher roughnesses. Interestingly, inhibition of JNK activity promoted the development of ECJ on the rough substrates, of which mechanism remains to be studied further.

Keywords: substrate roughness, E-cadherin junction, oral keratinocyte, cell spreading, JNK

Procedia PDF Downloads 383
1023 The Effects of Orientation on Energy and Plasticity of Metallic Crystalline-Amorphous Interface

Authors: Ehsan Alishahi, Chuang Deng

Abstract:

Commercial applications of bulk metallic glasses (BMGs) were restricted due to the sudden brittle failure mode which was the main drawback in these new class of materials. Therefore, crystalline-amorphous (C-A) composites were introduced as a toughening strategy in BMGs. In spite of numerous researches in the area of metallic C-A composites, the fundamental structure-property relation in these composites that are not exactly known yet. In this study, it is aimed to investigate the fundamental properties of crystalline-amorphous interface in a model system of Cu/CuZr by using molecular dynamics simulations. Several parameters including interface energy and mechanical properties were investigated by means of atomic models and employing Embedded Atom Method (EAM) potential function. It is found that the crystalline-amorphous interfacial energy weakly depends on the orientation of the crystalline layer, which is in stark contrast to that in a regular crystalline grain boundary. Additionally, the results showed that the interface controls the yielding of the crystalline-amorphous composites during uniaxial tension either by serving as sources for dislocation nucleation in the crystalline layer or triggering local shear transformation zones in amorphous layer. The critical resolved shear stress required to nucleate the first dislocation is also found to strongly depend on the crystalline orientation. Furthermore, it is found that the interaction between dislocations and shear localization at the crystalline-amorphous interface oriented in different directions can lead to a change in the deformation mode. For instance, while the dislocation and shear banding are aligned to each other in {0 0 1} interface plane, the misorientation angle between these failure mechanisms causing more homogeneous deformation in {1 1 0} and {1 1 1} crystalline-amorphous interfaces. These results should help clarify the failure mechanism of crystalline-amorphous composites under various loading conditions.

Keywords: crystalline-amorphous, composites, orientation, plasticity

Procedia PDF Downloads 293
1022 Hole Characteristics of Percussion and Single Pulse Laser-Incised Radiata Pine and the Effects of Wood Anatomy on Laser-Incision

Authors: Subhasisa Nath, David Waugh, Graham Ormondroyd, Morwenna Spear, Andy Pitman, Paul Mason

Abstract:

Wood is one of the most sustainable and environmentally favourable materials and is chemically treated in timber industries to maximise durability. To increase the chemical preservative uptake and retention by the wood, current limiting incision technologies are commonly used. This work reports the effects of single pulse CO2 laser-incision and frequency tripled Nd:YAG percussion laser-incision on the characteristics of laser-incised holes in the Radiata Pine. The laser-incision studies were based on changing laser wavelengths, energies and focal planes to conclude on an optimised combination for the laser-incision of Radiata Pine. The laser pulse duration had a dominant effect over laser power in controlling hole aspect ratio in CO2 laser-incision. A maximum depth of ~ 30 mm was measured with a laser power output of 170 W and a pulse duration of 80 ms. However, increased laser power led to increased carbonisation of holes. The carbonisation effect was reduced during laser-incision in the ultra-violet (UV) regime. Deposition of a foamy phase on the laser-incised hole wall was evident irrespective of laser radiation wavelength and energy. A maximum hole depth of ~20 mm was measured in the percussion laser-incision in the UV regime (355 nm) with a pulse energy of 320 mJ. The radial and tangential faces had a significant effect on laser-incision efficiency for all laser wavelengths. The laser-incised hole shapes and circularities were affected by the wood anatomy (earlywoods and latewoods in the structure). Subsequently, the mechanism of laser-incision is proposed by analysing the internal structure of laser-incised holes.

Keywords: CO2 Laser, Nd: YAG laser, incision, drilling, wood, hole characteristics

Procedia PDF Downloads 242
1021 Nietzsche's 'Will to Power' as a Potentially Irrational-Rational Psychopathology: How and Why Amor Fati May Prove to Be Its 'Horse Whisperer'

Authors: Nikolai David Blaskow

Abstract:

Nietzsche's scholarship in the main has never quite resolved its deeply divided, at times self-contradictory responses to what Friedrich Nietzsche might have actually meant by his notion of the 'will to power'. Yet, in the context of the current global pandemic and climate change crisis, never has there been a more urgent need to investigate and resolve that contradiction. This paper argues for the 'will to power' as being a potentially irrational-rational psychopathology, one that can properly be understood only by means of Nietzsche's agonistic insights into another psychopathology—that of ressentiment. The argument also makes a case for the contention that amor fati (Nietzsche’s positive affirmation of life) may prove to be ressentiment's cure. In addition, as an integral part of the case’s methodology, the lens defined as the Mimetic and Scapegoat theory of Rene Girard (1923-2015) is brought to bear on resolving the contradiction. Ressentiment and Mimetic Theory will prove to be key players in the investigation, in as much as they expose the reasons for a modernity in crisis. The major finding of this study is that when the explanatory power of the two theories is applied, an understanding of the dynamics of the crisis in which we find ourselves emerges. The keys to that insight will include: (1) how these two psychopathologies closely resemble the contemporary neurologically defined 'borderline conditions' and their implications for culture (2) how identity politics stifle exemplary leadership, and so create toxic cultures (3) a critical assessment of Achille Mbembe's (2019) re-working of Frantz Fanon's 'ethics of the passerby' and its resonances with Nietzsche's amor fati.

Keywords: agon, amor fati, borderline conditions, ethics of the passer by, exemplary leadership, identity politics, mimesis, ressentiment, scapegoat mechanism

Procedia PDF Downloads 253
1020 Role of Cellulose Fibers in Tuning the Microstructure and Crystallographic Phase of α-Fe₂O₃ and α-FeOOH Nanoparticles

Authors: Indu Chauhan, Bhupendra S. Butola, Paritosh Mohanty

Abstract:

It is very well known that properties of material changes as their size approach to nanoscale level due to the high surface area to volume ratio. However, in last few decades, a tenet ‘structure dictates function’ is quickly being adopted by researchers working with nanomaterials. The design and exploitation of nanoparticles with tailored shape and size has become one of the primary goals of materials science researchers to expose the properties of nanostructures. To date, various methods, including soft/hard template/surfactant assisted route hydrothermal reaction, seed mediated growth method, capping molecule-assisted synthesis, polyol process, etc. have been adopted to synthesize the nanostructures with controlled size and shape and monodispersity. However controlling the shape and size of nanoparticles is an ultimate challenge of modern material research. In particular, many efforts have been devoted to rational and skillful control of hierarchical and complex nanostructures. Thus in our research work, role of cellulose in manipulating the nanostructures has been discussed. Nanoparticles of α-Fe₂O₃ (diameter ca. 15 to 130 nm) were immobilized on the cellulose fiber surface by a single step in situ hydrothermal method. However, nanoflakes of α-FeOOH having thickness ca. ~25 nm and length ca. ~250 nm were obtained by the same method in absence of cellulose fibers. A possible nucleation and growth mechanism of the formation of nanostructures on cellulose fibers have been proposed. The covalent bond formation between the cellulose fibers and nanostructures has been discussed with supporting evidence from the spectroscopic and other analytical studies such as Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The role of cellulose in manipulating the nanostructures has been discussed.

Keywords: cellulose fibers, α-Fe₂O₃, α-FeOOH, hydrothermal, nanoflakes, nanoparticles

Procedia PDF Downloads 152
1019 Sun-Light Driven Photocatalytic Degradation of Tetracycline Antibiotics Employing Hydrothermally Synthesized sno₂/mnv₂o₆ Heterojunction

Authors: Sandeep Kaushal

Abstract:

Tetracycline (TC) is a widespread antibiotic that is utilised in a multitude of countries, particularly China, India, and the United States of America, due to its low cost and potency in boosting livestock production. Unfortunately, certain antibiotics can be hazardous to living beings due to metal complexation and aggregation, which can lead to teratogenicity and carcinogenicity. Heterojunction photocatalysts are promising for the effective removal of pollutants like antibiotics. Herein, a simple, economical, and pollution-less hydrothermal technique was used to construct SnO₂/MnV₂O₆heterojunction with varying amounts of tin dioxide (SO₂). Various sophisticated techniques like XRD, FTIR, XPS, FESEM, HRTEM, and PLand Raman spectroscopy demonstrated the successful synthesis of SnO₂/MnV₂O₆ heterojunction photocatalysts.BET surface area analysis revealed that the as-synthesized heterojunction has a favorable surface area and surface properties for efficacious degradation of tetracycline. Under the direct sunlight exposure, the SnO₂/MnV₂O₆ heterojunction possessed superior photodegradation activity toward TC than the pristine SnO₂ and MnV2O6owing to their excellent adsorption abilities suitable band positions, large surface areas along with the effective charge-transfer ability of the heterojunction. The SnO₂/MnV₂O₆ heterojunction possessed extraordinary efficiency for the photocatalytic degradation of TC antibiotic (98% in 60 min) with an apparent rate constant of 0.092 min–1. In the degradation experiments, photocatalytic activities of as-synthesized heterojunction were studied by varying different factors such as time contact, catalyst dose, and solution pH. The role of reactive species in antibiotics was validated by radical scavenging studies, which indicated that.OH, radical has a critical role in photocatalytic degradation. Moreover, liquid chromatography-mass spectrometry (LC-MS) investigations were employed to anticipate a plausible mechanism for TC degradation.

Keywords: photocatalytic degradation, tetracycline, heterojunction, LC-MS

Procedia PDF Downloads 107
1018 Electrocatalysts for Lithium-Sulfur Energy Storage Systems

Authors: Mirko Ante, Şeniz Sörgel, Andreas Bund

Abstract:

Li-S- (Lithium-Sulfur-) battery systems provide very high specific gravimetric energy (2600 Wh/kg) and volumetric energy density (2800Wh/l). Hence, Li-S batteries are one of the key technologies for both the upcoming electromobility and stationary applications. Furthermore, the Li-S battery system is potentially cheap and environmentally benign. However, the technical implementation suffers from cycling stability, low charge and discharge rates and incomplete understanding of the complex polysulfide reaction mechanism. The aim of this work is to develop an effective electrocatalyst for the polysulfide reactions so that the electrode kinetics of the sulfur half-cell will be improved. Accordingly, the overvoltage will be decreased, and the efficiency of the cell will be increased. An enhanced electroactive surface additionally improves the charge and discharge rates. To reach this goal, functionalized electrocatalytic coatings are investigated to accelerate the kinetics of the polysulfide reactions. In order to determine a suitable electrocatalyst, apparent exchange current densities of a variety of materials (Ni, Co, Pt, Cr, Al, Cu, ITO, stainless steel) have been evaluated in a polysulfide containing electrolyte by potentiodynamic measurements and a Butler-Volmer fit including diffusion limitation. The samples have been examined by Scanning Electron Microscopy (SEM) after the potentiodynamic measurements. Up to now, our work shows that cobalt is a promising material with good electrocatalytic properties for the polysulfide reactions and good chemical stability in the system. Furthermore, an electrodeposition from a modified Watt’s nickel electrolyte with a sulfur source seems to provide an autocatalytic effect, but the electrocatalytic behavior decreases after several cycles of the current-potential-curve.

Keywords: electrocatalyst, energy storage, lithium sulfur battery, sulfur electrode materials

Procedia PDF Downloads 369
1017 Fabrication and Characterization Analysis of La-Sr-Co-Fe-O Perovskite Hollow Fiber Catalyst for Oxygen Removal in Landfill Gas

Authors: Seong Woon Lee, Soo Min Lim, Sung Sik Jeong, Jung Hoon Park

Abstract:

The atmospheric concentration of greenhouse gas (GHG, Green House Gas) is increasing continuously as a result of the combustion of fossil fuels and industrial development. In response to this trend, many researches have been conducted on the reduction of GHG. Landfill gas (LFG, Land Fill Gas) is one of largest sources of GHG emissions containing the methane (CH₄) as a major constituent and can be considered renewable energy sources as well. In order to use LFG by connecting to the city pipe network, it required a process for removing impurities. In particular, oxygen must be removed because it can cause corrosion of pipes and engines. In this study, methane oxidation was used to eliminate oxygen from LFG and perovskite-type ceramic catalysts of La-Sr-Co-Fe-O composition was selected as a catalyst. Hollow fiber catalysts (HFC, Hollow Fiber Catalysts) have attracted attention as a new concept alternative because they have high specific surface area and mechanical strength compared to other types of catalysts. HFC was prepared by a phase-inversion/sintering technique using commercial La-Sr-Co-Fe-O powder. In order to measure the catalysts' activity, simulated LFG was used for feed gas and complete oxidation reaction of methane was confirmed. Pore structure of the HFC was confirmed by SEM image and perovskite structure of single phase was analyzed by XRD. In addition, TPR analysis was performed to verify the oxygen adsorption mechanism of the HFC. Acknowledgement—The project is supported by the ‘Global Top Environment R&D Program’ in the ‘R&D Center for reduction of Non-CO₂ Greenhouse gases’ (Development and demonstration of oxygen removal technology of landfill gas) funded by Korea Ministry of Environment (ME).

Keywords: complete oxidation, greenhouse gas, hollow fiber catalyst, land fill gas, oxygen removal, perovskite catalyst

Procedia PDF Downloads 117
1016 Chitosan Stabilized Oil-in-Water Pickering Emulsion Optimized for Food-Grade Application

Authors: Ankit Patil, Tushar D. Deshpande, Yogesh M. Nimdeo

Abstract:

Pickering emulsions (PE) were developed in response to increased demand for organic, eco-friendly, and biocompatible products. These emulsions are usually stabilized by solid particles. In this research, we created chitosan-based sunflower oil-in-water (O/W) PE without the need for a surfactant. In our work, we employed chitosan, a biopolymer derived from chitin, as a stabilizer. This decision was influenced by chitosan's biocompatibility and biodegradability, as well as its anti-inflammatory and antibacterial capabilities. It also has other functional properties, such as antioxidant activity, a probiotic delivery mechanism, and the ability to encapsulate bioactive compounds. The purpose of this study was to govern key parameters that can be changed to obtain stable PE, such as the concentration of chitosan (0.3-0.5 wt.%), the concentration of oil (0.8-1 vol%), the pH of the emulsion (3-7) manipulated by the addition of 1M HCl/ 4M NaOH, and the amount of electrolyte (NaCl-0-300mM) added to increase or decrease ionic strength. A careful combination of these properties resulted in the production of the most stable and optimal PE. Particle size study found that emulsions with pH 6, 0.4% chitosan, and 300 mM salts were exceptionally stable, with droplet size 886 nm, PI of 0.1702, and zeta potential of 32.753.83 mV. It is fair to infer that when ionic strength rises, particle size, zeta potential, and PI value decrease. A lower PI value suggests that emulsion nanoparticles are more homogeneous. The addition of sodium chloride increases the ionic strength of the emulsion, facilitating the formation of more compact and ordered particle layers. These findings provide light on the creation of stimulus-responsive chitosan-based PE capable of encapsulating bioactive materials, functioning as antioxidants, and serving as food-grade emulsifiers.

Keywords: pickering emulsion, biocompatibility, eco-friendly, chitosan

Procedia PDF Downloads 239
1015 Analyzing the Impact of Knowledge Sharing on Product Innovation: A Moderated Mediation Framework of Employees Creativity and Top Management Support

Authors: Aqsa Akbar, Sadaf Ehsan, Suheera Khalid Sheikh

Abstract:

Purpose: In the today’s competitive world, situational dynamism presents complex challenges for organizations to pursue production innovation. Calling for dire need to remain sustainable, the research aims to examine the interlinking mechanism of knowledge sharing and product innovation relationship. For this, a moderated mediation framework is developed in which employees’ creativity and top management support are suggested as viable factors affecting the knowledge sharing and product innovation relationship. Design/Methodology/Approaches A survey-based quantitative research design is selected for data collection via self-administered questionnaires from employees of Pakistan’s E-commerce organizations. Almost, 350 questionnaires were circulated and 285 were received back through a cross-sectional method. Data analysis is performed on SPSS 22.0 and AMOS. Finding The outcomes suggest that knowledge sharing is critical for companies undergoing product innovation. In addition, findings disclose that employees’ creativity partially mediates the relationship between knowledge sharing and product innovation. Furthermore, the moderation impact of top management support also substantiated the proposed hypothesis. Results are discussed in the light of the literature review, followed by the study’s limitations and future directions. Originality/Value The study donates significance towards the development of better understanding of how knowledge sharing is vital for product innovation. It adds on to the literature by highlighting mechanisms responsible for successful product innovation. Moreover, the study offers practical insights to Pakistan’s E-commerce industry and suggests about how to develop capabilities for product innovation.

Keywords: employees creativity, knowledge sharing, product innovation, top management support

Procedia PDF Downloads 88
1014 Evaluation of Efficiency of Naturally Available Disinfectants and Filter Media in Conventional Gravity Filters

Authors: Abhinav Mane, Kedar Karvande, Shubham Patel, Abhayraj Lodha

Abstract:

Gravity filters are one of the most commonly used, economically viable and moderately efficient water purification systems. Their efficiency is mainly based on the type of filter media installed and its location within the filter mass. Several researchers provide valuable input in decision of the type of filter media. However, the choice is mainly restricted to the chemical combinations of different substances. This makes it very much dependent on the factory made filter media, and no cheap alternatives could be found and used. This paper presents the use of disinfectants and filter medias either available naturally or could be prepared using natural resources in conventional mechanism of gravity filter. A small scale laboratory investigation was made with variation in filter media thickness and its location from the top surface of the filter. A rigid steel frame based custom fabricated test setup was used to facilitate placement of filter media at different height within the filter mass. Finely grinded sun dried Neem (Azadirachta indica) extracts and porous burnt clay pads were used as two distinct filter media and placed in isolation as well as in combination with each other. Ground water available in Marathwada region of Maharashtra, India which mainly consists of harmful materials like Arsenic, Chlorides, Iron, Magnesium and Manganese, etc. was treated in the filters fabricated in the present study. The evaluation was made mainly in terms of the input/output water quality assessment through laboratory tests. The present paper should give a cheap and eco-friendly solution to prepare gravity filter at the merit of household skills and availability.

Keywords: fliter media, gravity filters, natural disinfectants, porous clay pads

Procedia PDF Downloads 258
1013 A Preliminary Study of the Reconstruction of Urban Residential Public Space in the Context of the “Top-down” Construction Model in China: Based on Research of TianZiFang District in Shanghai and Residential Space in Hangzhou

Authors: Wang Qiaowei, Gao Yujiang

Abstract:

With the economic growth and rapid urbanization after the reform and openness, some of China's fast-growing cities have demolished former dwellings and built modern residential quarters. The blind, incomplete reference to western modern cities and the one-off construction lacking feedback mechanism have intensified such phenomenon, causing the citizen gradually expanded their living scale with the popularization of car traffic, and the peer-to-peer lifestyle gradually settled. The construction of large-scale commercial centers has caused obstacles to small business around the residential areas, leading to space for residents' interaction has been compressed. At the same time, the advocated Central Business District (CBD) model even leads to the unsatisfactory reconstruction of many historical blocks such as the Hangzhou Southern Song Dynasty Imperial Street. However, the popularity of historical spaces such as Wuzhen and Hongcun also indicates the collective memory and needs of the street space for Chinese residents. The evolution of Shanghai TianZiFang also proves the importance of the motivation of space participants in space construction in the context of the “top-down” construction model in China. In fact, there are frequent occurrences of “reconstruction”, which may redefine the space, in various residential areas. If these activities can be selectively controlled and encouraged, it will be beneficial to activate the public space as well as the residents’ intercourse, so that the traditional Chinese street space can be reconstructed in the context of modern cities.

Keywords: rapid urbanization, traditional street space, space re-construction, bottom-up design

Procedia PDF Downloads 116
1012 Possible Mechanism of DM2 Development in OSA Patients Mediated via Rev-Erb-Alpha and NPAS2 Proteins

Authors: Filip Franciszek Karuga, Szymon Turkiewicz, Marta Ditmer, Marcin Sochal, Piotr Białasiewicz, Agata Gabryelska

Abstract:

Circadian rhythm, an internal coordinator of physiological processes is composed of a set of semi-autonomous clocks. Clocks are regulated through the expression of circadian clock genes which form feedback loops, creating an oscillator. The primary loop consists of activators: CLOCK, BMAL1 and repressors: CRY, PER. CLOCK can be substituted by the Neuronal PAS Domain Protein 2 (NPAS2). Orphan nuclear receptor (REV-ERB-α) is a component of the secondary major loop, modulating the expression of BMAL1. Circadian clocks might be disrupted by the obstructive sleep apnea (OSA), which has also been associated with type II diabetes mellitus (DM2). Interestingly, studies suggest that dysregulation of NPAS2 and REV-ERB-α might contribute to the pathophysiology of DM2 as well. The goal of our study was to examine the role of NPAS2 and REV-ERB-α in DM2 in OSA patients. After examination of the clinical data, all participants underwent polysomnography (PSG) to assess their apnea-hypopnea index (AHI). Based on the acquired data participants were assigned to one of 3 groups: OSA (AHI>30, no DM2; n=17 for NPAS2 and 34 for REV-ERB-α), DM2 (AHI>30 + DM2; n=7 for NPAS2 and 15 for REV-ERB-α) and control group (AHI<5, no DM2; n=16 for NPAS2 and 31 for REV-ERB-α). ELISA immunoassay was performed to assess the serum protein level of REV-ERB-α and NPAS2. The only statistically significant difference between groups was observed in NPAS2 protein level (p=0.037). Post-hoc analysis showed significant differences between the OSA and the control group (p=0.017). AHI and NPAS2 level was significantly correlated (r=-0.478, p=0.002) in all groups. A significant correlation was observed between the REV-ERB-α level and sleep efficiency (r=0.617, p=0.005) as well as sleep maintenance efficiency (r=0.645, p=0.003) in the OSA group. We conclude, that NPAS2 is associated with OSA severity and might contribute to metabolic sequelae of this disease. REV-ERB-α on the other hand can influence sleep continuity and efficiency.

Keywords: OSA, diabetes mellitus, endocrinology, chronobiology

Procedia PDF Downloads 155
1011 Excited State Structural Dynamics of Retinal Isomerization Revealed by a Femtosecond X-Ray Laser

Authors: Przemyslaw Nogly, Tobias Weinert, Daniel James, Sergio Carbajo, Dmitry Ozerov, Antonia Furrer, Dardan Gashi, Veniamin Borin, Petr Skopintsev, Kathrin Jaeger, Karol Nass, Petra Bath, Robert Bosman, Jason Koglin, Matthew Seaberg, Thomas Lane, Demet Kekilli, Steffen Brünle, Tomoyuki Tanaka, Wenting Wu, Christopher Milne, Thomas A. White, Anton Barty, Uwe Weierstall, Valerie Panneels, Eriko Nango, So Iwata, Mark Hunter, Igor Schapiro, Gebhard Schertler, Richard Neutze, Jörg Standfuss

Abstract:

Ultrafast isomerization of retinal is the primary step in a range of photoresponsive biological functions including vision in humans and ion-transport across bacterial membranes. We studied the sub-picosecond structural dynamics of retinal isomerization in the light-driven proton pump bacteriorhodopsin using an X-ray laser. Twenty snapshots with near-atomic spatial and temporal resolution in the femtosecond regime show how the excited all-trans retinal samples conformational states within the protein binding pocket prior to passing through a highly-twisted geometry and emerging in the 13-cis conformation. The aspartic acid residues and functional water molecules in proximity of the retinal Schiff base respond collectively to formation and decay of the initial excited state and retinal isomerization. These observations reveal how the protein scaffold guides this remarkably efficient photochemical reaction.

Keywords: bacteriorhodopsin, free-electron laser, retinal isomerization mechanism, time-resolved crystallography

Procedia PDF Downloads 251
1010 Optimized Weight Selection of Control Data Based on Quotient Space of Multi-Geometric Features

Authors: Bo Wang

Abstract:

The geometric processing of multi-source remote sensing data using control data of different scale and different accuracy is an important research direction of multi-platform system for earth observation. In the existing block bundle adjustment methods, as the controlling information in the adjustment system, the approach using single observation scale and precision is unable to screen out the control information and to give reasonable and effective corresponding weights, which reduces the convergence and adjustment reliability of the results. Referring to the relevant theory and technology of quotient space, in this project, several subjects are researched. Multi-layer quotient space of multi-geometric features is constructed to describe and filter control data. Normalized granularity merging mechanism of multi-layer control information is studied and based on the normalized scale factor, the strategy to optimize the weight selection of control data which is less relevant to the adjustment system can be realized. At the same time, geometric positioning experiment is conducted using multi-source remote sensing data, aerial images, and multiclass control data to verify the theoretical research results. This research is expected to break through the cliché of the single scale and single accuracy control data in the adjustment process and expand the theory and technology of photogrammetry. Thus the problem to process multi-source remote sensing data will be solved both theoretically and practically.

Keywords: multi-source image geometric process, high precision geometric positioning, quotient space of multi-geometric features, optimized weight selection

Procedia PDF Downloads 286
1009 Computational Fluid Dynamics Simulation on Heat Transfer of Hot Air Bubble Injection into Water Column

Authors: Jae-Yeong Choi, Gyu-Mok Jeon, Jong-Chun Park, Yong-Jin Cho, Seok-Tae Yoon

Abstract:

When air flow is injected into water, bubbles are formed in various types inside the water pool along with the air flow rate. The bubbles are floated in equilibrium with forces such as buoyancy, surface tension and shear force. Single bubble generated at low flow rate maintains shape, but bubbles with high flow rate break up to make mixing and turbulence. In addition to this phenomenon, as the hot air bubbles are injected into the water, heat affects the interface of phases. Therefore, the main scope of the present work reveals how to proceed heat transfer between water and hot air bubbles injected into water. In the present study, a series of CFD simulation for the heat transfer of hot bubbles injected through a nozzle near the bottom in a cylindrical water column are performed using a commercial CFD software, STAR-CCM+. The governing equations for incompressible and viscous flow are the continuous and the RaNS (Reynolds- averaged Navier-Stokes) equations and discretized by the FVM (Finite Volume Method) manner. For solving multi-phase flow, the Eulerian multiphase model is employed and the interface is defined by VOF (Volume-of-Fluid) technique. As a turbulence model, the SST k-w model considering the buoyancy effects is introduced. For spatial differencing the 3th-order MUSCL scheme is adopted and the 2nd-order implicit scheme for time integration. As the results, the dynamic behavior of the rising hot bubbles with the flow rate injected and regarding heat transfer mechanism are discussed based on the simulation results.

Keywords: heat transfer, hot bubble injection, eulerian multiphase model, flow rate, CFD (Computational Fluid Dynamics)

Procedia PDF Downloads 155
1008 Albendazole Ameliorates Inflammatory Response in a Rat Model of Acute Mesenteric Ischemia Reperfusion Injury

Authors: Kamyar Moradi

Abstract:

Background: Acute mesenteric ischemia is known as a life-threatening condition. Re-establishment of blood flow in this condition can lead to mesenteric ischemia reperfusion (MIR) injury, which is accompanied by inflammatory response. Still, clear blueprint of inflammatory mechanism underlying MIR injury has not been provided. Interestingly, Albendazole has exhibited notable effects on inflammation and cytokine production. In this study, we aimed to evaluate outcomes of MIR injury following pretreatment with Albendazole with respect to assessment of mesenteric inflammation and ischemia threshold. Methods: Male rats were randomly divided into sham operated, vehicle treated, Albendazole 100 mg/kg, and Albendazole 200 mg/kg groups. MIR injury was induced by occlusion of superior mesenteric artery for 30 minutes followed by 120 minutes of reperfusion. Samples were utilized for assessment of epithelial survival and villous height. Immunohistochemistry study revealed intestinal expression of TNF-α and HIF-1-α. Gene expression of NF-κB/TLR4/TNF-α/IL-6 was measured using RTPCR. Also, protein levels of inflammatory cytokines in serum and intestine were assessed by ELISA method. Results: Histopathological study demonstrated that pretreatment with Albendazole could ameliorate decline in villous height and epithelial survival following MIR injury. Also, systemic inflammation was suppressed after administration of Albendazole. Analysis of possible participating inflammatory pathway could demonstrate that intestinal expression of NF-κB/TLR4/TNF-α/IL-6 is significantly attenuated in treated groups. Eventually, IHC study illustrated concordant decline in mesenteric expression of HIF-1-α/TNF-α. Conclusion: Single dose pretreatment with Albendazole could ameliorate inflammatory response and enhance ischemia threshold following induction of MIR injury. Still, more studies would clarify existing causality in this phenomenon.

Keywords: albendazole, ischemia reperfusion injury, inflammation, mesenteric ischemia

Procedia PDF Downloads 169
1007 Does Clinical Guidelines Affect Healthcare Quality and Populational Health: Quebec Colorectal Cancer Screening Program

Authors: Nizar Ghali, Bernard Fortin, Guy Lacroix

Abstract:

In Quebec, colonoscopies volumes have continued to rise in recent years in the absence of effective monitoring mechanism for the appropriateness and the quality of these exams. In 2010, November, Quebec Government introduced the colorectal cancer-screening program in the objective to control for volume and cost imperfection. This program is based on clinical standards and was initiated for first group of institutions. One year later, Government adds financial incentives for participants institutions. In this analysis, we want to assess for the causal effect of the two components of this program: clinical pathways and financial incentives. Especially we assess for the reform effect on healthcare quality and population health in the context that medical remuneration is not directly dependent on this additional funding offered by the program. We have data on admissions episodes and deaths for 8 years. We use multistate model analog to difference in difference approach to estimate reform effect on the transition probability between different states for each patient. Our results show that the reform reduced length of stay without deterioration in hospital mortality or readmission rate. In the other hand, the program contributed to decrease the hospitalization rate and a less invasive treatment approach for colorectal surgeries. This is a sign of healthcare quality and population health improvement. We demonstrate in this analysis that physicians’ behavior can be affected by both clinical standards and financial incentives even if offered to facilities.

Keywords: multi-state and multi-episode transition model, healthcare quality, length of stay, transition probability, difference in difference

Procedia PDF Downloads 214
1006 The Effect of Four-Week Resistance Exercise along with Milk Consumption on NT-proBNP and Plasma Troponin I

Authors: Rostam Abdi, Ahmad Abdi, Zahra Vahedi Langrodi

Abstract:

The aim of this study is to investigate four-week resistance exercise and milk supplement on NT-proBNP and plasma troponin I of male students. Concerning the methodology of the study, 21 senior high school students of Ardebil city were selected. The selected subjects were randomly shared in three groups of control, exercise- water and exercise- milk. The exercise program includes resistance exercise for a big muscle group. The subjects of control group rested during the study and did not participate in any training. The subjects of exercise- water experimental group immediately received 400 cc water after exercise and exercise- milk group immediately received 400 cc low fat milk. Control-water groups consumed the same amount of water. 48 hours before and after the last exercise session, the blood sample of the subjects were taken for measuring the variables. NT-proBNP and Troponin I concentrations were measured by ELISA. For data analysis, one-way variance analysis test, correlated t-test and Bonferroni post hoc test were used. The significant difference of p ≤ 0.05 was accepted. Resistance training along with milk consumption leads to increase of plasma NT-proBNP, however; this increase has not reached the significant level. Furthermore, meaningful increase was observed in plasma NT–proBNP in exercise group between pretest and posttest values. Furthermore, no meaningful difference was observed between groups in terms of Troponin I after milk consumption. It seems that endurance exercises lead to change in the structure of heart muscle and is along with an increase of NT-proBNP. Furthermore, there is the possibility that milk consumption can lead to release of heart troponin I. The mechanism through which protein supplements have been put on heart troponin I is unknown and requires more research.

Keywords: resistance exercise, milk, NT-proBNP, Troponin I

Procedia PDF Downloads 262
1005 Plasma Spraying of 316 Stainless Steel on Aluminum and Investigation of Coat/Substrate Interface

Authors: P. Abachi, T. W. Coyle, P. S. Musavi Gharavi

Abstract:

By applying coating onto a structural component, the corrosion and/or wear resistance requirements of the surface can be fulfilled. Since the layer adhesion of the coating influences the mechanical integrity of the coat/substrate interface during the service time, it should be examined accurately. At the present work, the tensile bonding strength of the 316 stainless steel plasma sprayed coating on aluminum substrate was determined by using tensile adhesion test, TAT, specimen. The interfacial fracture toughness was specified using four-point bend specimen containing a saw notch and modified chevron-notched short-bar (SB) specimen. The coating microstructure and fractured specimen surface were examined by using scanning electron- and optical-microscopy. The investigation of coated surface after tensile adhesion test indicates that the failure mechanism is mostly cohesive and rarely adhesive type. The calculated value of critical strain energy release rate proposes relatively good interface status. It seems that four-point bending test offers a potentially more sensitive means for evaluation of mechanical integrity of coating/substrate interfaces than is possible with the tensile test. The fracture toughness value reported for the modified chevron-notched short-bar specimen testing cannot be taken as absolute value because its calculation is based on the minimum stress intensity coefficient value which has been suggested for the fracture toughness determination of homogeneous parts in the ASTM E1304-97 standard. 

Keywords: bonding strength, four-point bend test, interfacial fracture toughness, modified chevron-notched short-bar specimen, plasma sprayed coating, tensile adhesion test

Procedia PDF Downloads 261
1004 Supplementation of Annatto (Bixa orellana)-Derived δ-Tocotrienol Produced High Number of Morula through Increased Expression of 3-Phosphoinositide-Dependent Protein Kinase-1 (PDK1) in Mice

Authors: S. M. M. Syairah, M. H. Rajikin, A. R. Sharaniza

Abstract:

Several embryonic cellular mechanism including cell cycle, growth and apoptosis are regulated by phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway. The goal of present study is to determine the effects of annatto (Bixa orellana)-derived δ-tocotrienol (δ-TCT) on the regulations of PI3K/Akt genes in murine morula. Twenty four 6-8 week old (23-25g) female balb/c mice were randomly divided into four groups (G1-G4; n=6). Those groups were subjected to the following treatments for 7 consecutive days: G1 (control) received tocopherol stripped corn oil, G2 was given 60 mg/kg/day of δ-TCT mixture (contains 90% delta & 10% gamma isomers), G3 was given 60 mg/kg/day of pure δ-TCT (>98% purity) and G4 received 60 mg/kg/day α-TOC. On Day 8, females were superovulated with 5 IU Pregnant Mare’s Serum Gonadotropin (PMSG) for 48 hours followed with 5 IU human Chorionic Gonadotropin (hCG) before mated with males at the ratio of 1:1. Females were sacrificed by cervical dislocation for embryo collection 48 hours post-coitum. About fifty morula from each group were used in the gene expression analyses using Affymetrix QuantiGene Plex 2.0 Assay. Present data showed a significant increase (p<0.05) in the average number (mean + SEM) of morula produced in G2 (26.0 + 0.45), G3 (23.0 + 0.63) and G4 (25.0 + 0.73) compared to control group (G1 – 16.0 + 0.63). This is parallel with the high expression of PDK1 gene with increase of 2.75-fold (G2), 3.07-fold (G3) and 3.59-fold (G4) compared to G1 (1.78-fold). From the present data, it can be concluded that supplementation with δ-TCT(s) and α-TOC induced high expression of PDK1 in G2-G4 which enhanced the PI3K/Akt signaling activity, resulting in the increased number of morula.

Keywords: delta-tocotrienol, embryonic development, nicotine, vitamin E

Procedia PDF Downloads 428