Search results for: time-lapse imaging data
23434 A Method to Estimate Wheat Yield Using Landsat Data
Authors: Zama Mahmood
Abstract:
The increasing demand of food management, monitoring of the crop growth and forecasting its yield well before harvest is very important. These days, yield assessment together with monitoring of crop development and its growth are being identified with the help of satellite and remote sensing images. Studies using remote sensing data along with field survey validation reported high correlation between vegetation indices and yield. With the development of remote sensing technique, the detection of crop and its mechanism using remote sensing data on regional or global scales have become popular topics in remote sensing applications. Punjab, specially the southern Punjab region is extremely favourable for wheat production. But measuring the exact amount of wheat production is a tedious job for the farmers and workers using traditional ground based measurements. However, remote sensing can provide the most real time information. In this study, using the Normalized Differentiate Vegetation Index (NDVI) indicator developed from Landsat satellite images, the yield of wheat has been estimated during the season of 2013-2014 for the agricultural area around Bahawalpur. The average yield of the wheat was found 35 kg/acre by analysing field survey data. The field survey data is in fair agreement with the NDVI values extracted from Landsat images. A correlation between wheat production (ton) and number of wheat pixels has also been calculated which is in proportional pattern with each other. Also a strong correlation between the NDVI and wheat area was found (R2=0.71) which represents the effectiveness of the remote sensing tools for crop monitoring and production estimation.Keywords: landsat, NDVI, remote sensing, satellite images, yield
Procedia PDF Downloads 33223433 Data Centers’ Temperature Profile Simulation Optimized by Finite Elements and Discretization Methods
Authors: José Alberto García Fernández, Zhimin Du, Xinqiao Jin
Abstract:
Nowadays, data center industry faces strong challenges for increasing the speed and data processing capacities while at the same time is trying to keep their devices a suitable working temperature without penalizing that capacity. Consequently, the cooling systems of this kind of facilities use a large amount of energy to dissipate the heat generated inside the servers, and developing new cooling techniques or perfecting those already existing would be a great advance in this type of industry. The installation of a temperature sensor matrix distributed in the structure of each server would provide the necessary information for collecting the required data for obtaining a temperature profile instantly inside them. However, the number of temperature probes required to obtain the temperature profiles with sufficient accuracy is very high and expensive. Therefore, other less intrusive techniques are employed where each point that characterizes the server temperature profile is obtained by solving differential equations through simulation methods, simplifying data collection techniques but increasing the time to obtain results. In order to reduce these calculation times, complicated and slow computational fluid dynamics simulations are replaced by simpler and faster finite element method simulations which solve the Burgers‘ equations by backward, forward and central discretization techniques after simplifying the energy and enthalpy conservation differential equations. The discretization methods employed for solving the first and second order derivatives of the obtained Burgers‘ equation after these simplifications are the key for obtaining results with greater or lesser accuracy regardless of the characteristic truncation error.Keywords: Burgers' equations, CFD simulation, data center, discretization methods, FEM simulation, temperature profile
Procedia PDF Downloads 16723432 Potential of Detailed Environmental Data, Produced by Information and Communication Technology Tools, for Better Consideration of Microclimatology Issues in Urban Planning to Promote Active Mobility
Authors: Živa Ravnikar, Alfonso Bahillo Martinez, Barbara Goličnik Marušić
Abstract:
Climate change mitigation has been formally adopted and announced by countries over the globe, where cities are targeting carbon neutrality through various more or less successful, systematic, and fragmentary actions. The article is based on the fact that environmental conditions affect human comfort and the usage of space. Urban planning can, with its sustainable solutions, not only support climate mitigation in terms of a planet reduction of global warming but as well enabling natural processes that in the immediate vicinity produce environmental conditions that encourage people to walk or cycle. However, the article draws attention to the importance of integrating climate consideration into urban planning, where detailed environmental data play a key role, enabling urban planners to improve or monitor environmental conditions on cycle paths. In a practical aspect, this paper tests a particular ICT tool, a prototype used for environmental data. Data gathering was performed along the cycling lanes in Ljubljana (Slovenia), where the main objective was to assess the tool's data applicable value within the planning of comfortable cycling lanes. The results suggest that such transportable devices for in-situ measurements can help a researcher interpret detailed environmental information, characterized by fine granularity and precise data spatial and temporal resolution. Data can be interpreted within human comfort zones, where graphical representation is in the form of a map, enabling the link of the environmental conditions with a spatial context. The paper also provides preliminary results in terms of the potential of such tools for identifying the correlations between environmental conditions and different spatial settings, which can help urban planners to prioritize interventions in places. The paper contributes to multidisciplinary approaches as it demonstrates the usefulness of such fine-grained data for better consideration of microclimatology in urban planning, which is a prerequisite for creating climate-comfortable cycling lanes promoting active mobility.Keywords: information and communication technology tools, urban planning, human comfort, microclimate, cycling lanes
Procedia PDF Downloads 13423431 Image Ranking to Assist Object Labeling for Training Detection Models
Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman
Abstract:
Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.Keywords: computer vision, deep learning, object detection, semiconductor
Procedia PDF Downloads 13423430 From Text to Data: Sentiment Analysis of Presidential Election Political Forums
Authors: Sergio V Davalos, Alison L. Watkins
Abstract:
User generated content (UGC) such as website post has data associated with it: time of the post, gender, location, type of device, and number of words. The text entered in user generated content (UGC) can provide a valuable dimension for analysis. In this research, each user post is treated as a collection of terms (words). In addition to the number of words per post, the frequency of each term is determined by post and by the sum of occurrences in all posts. This research focuses on one specific aspect of UGC: sentiment. Sentiment analysis (SA) was applied to the content (user posts) of two sets of political forums related to the US presidential elections for 2012 and 2016. Sentiment analysis results in deriving data from the text. This enables the subsequent application of data analytic methods. The SASA (SAIL/SAI Sentiment Analyzer) model was used for sentiment analysis. The application of SASA resulted with a sentiment score for each post. Based on the sentiment scores for the posts there are significant differences between the content and sentiment of the two sets for the 2012 and 2016 presidential election forums. In the 2012 forums, 38% of the forums started with positive sentiment and 16% with negative sentiment. In the 2016 forums, 29% started with positive sentiment and 15% with negative sentiment. There also were changes in sentiment over time. For both elections as the election got closer, the cumulative sentiment score became negative. The candidate who won each election was in the more posts than the losing candidates. In the case of Trump, there were more negative posts than Clinton’s highest number of posts which were positive. KNIME topic modeling was used to derive topics from the posts. There were also changes in topics and keyword emphasis over time. Initially, the political parties were the most referenced and as the election got closer the emphasis changed to the candidates. The performance of the SASA method proved to predict sentiment better than four other methods in Sentibench. The research resulted in deriving sentiment data from text. In combination with other data, the sentiment data provided insight and discovery about user sentiment in the US presidential elections for 2012 and 2016.Keywords: sentiment analysis, text mining, user generated content, US presidential elections
Procedia PDF Downloads 19023429 CVOIP-FRU: Comprehensive VoIP Forensics Report Utility
Authors: Alejandro Villegas, Cihan Varol
Abstract:
Voice over Internet Protocol (VoIP) products is an emerging technology that can contain forensically important information for a criminal activity. Without having the user name and passwords, this forensically important information can still be gathered by the investigators. Although there are a few VoIP forensic investigative applications available in the literature, most of them are particularly designed to collect evidence from the Skype product. Therefore, in order to assist law enforcement with collecting forensically important information from variety of Betamax VoIP tools, CVOIP-FRU framework is developed. CVOIP-FRU provides a data gathering solution that retrieves usernames, contact lists, as well as call and SMS logs from Betamax VoIP products. It is a scripting utility that searches for data within the registry, logs and the user roaming profiles in Windows and Mac OSX operating systems. Subsequently, it parses the output into readable text and html formats. One superior way of CVOIP-FRU compared to the other applications that due to intelligent data filtering capabilities and cross platform scripting back end of CVOIP-FRU, it is expandable to include other VoIP solutions as well. Overall, this paper reveals the exploratory analysis performed in order to find the key data paths and locations, the development stages of the framework, and the empirical testing and quality assurance of CVOIP-FRU.Keywords: betamax, digital forensics, report utility, VoIP, VoIPBuster, VoIPWise
Procedia PDF Downloads 29623428 Ion Thruster Grid Lifetime Assessment Based on Its Structural Failure
Authors: Juan Li, Jiawen Qiu, Yuchuan Chu, Tianping Zhang, Wei Meng, Yanhui Jia, Xiaohui Liu
Abstract:
This article developed an ion thruster optic system sputter erosion depth numerical 3D model by IFE-PIC (Immersed Finite Element-Particle-in-Cell) and Mont Carlo method, and calculated the downstream surface sputter erosion rate of accelerator grid; Compared with LIPS-200 life test data, the results of the numerical model are in reasonable agreement with the measured data. Finally, we predict the lifetime of the 20cm diameter ion thruster via the erosion data obtained with the model. The ultimate result demonstrates that under normal operating condition, the erosion rate of the grooves wears on the downstream surface of the accelerator grid is 34.6μm⁄1000h, which means the conservative lifetime until structural failure occurring on the accelerator grid is 11500 hours.Keywords: ion thruster, accelerator gird, sputter erosion, lifetime assessment
Procedia PDF Downloads 56123427 Nutrient Foramina of the Lunate Bone of the Hand – an Anatomical Study
Authors: P.J. Jiji, B.V. Murlimanju, Latha V. Prabhu, Mangala M. Pai
Abstract:
Background: The lunate bone dislocation can lead to the compression of the median nerve and subsequent carpal tunnel syndrome. The dislocation can interrupt the vasculature and would cause avascular necrosis. The objective of the present study was to study the morphology and number of the nutrient foramina in the cadaveric dried lunate bones of the Indian population. Methods: The present study included 28 lunate bones (13 right sided and 15 left sided) which were obtained from the gross anatomy laboratory of our institution. The bones were macroscopically observed for the nutrient foramina and the data was collected with respect to their number. The tabulation of the data and analysis were done. Results: All of our specimens (100%) exhibited the nutrient foramina over the non-articular surfaces. The foramina were observed only over the palmar and dorsal surfaces of the lunate bones. The foramen ranged between 2 and 10. The foramina were more in number over the dorsal surface (average number 3.3) in comparison to the palmar surface (average number 2.4). Conclusion: We believe that the present study has provided important data about the nutrient foramina of the lunate bones. The data is enlightening to the orthopedic surgeon and would help in the hand surgeries. The morphological knowledge of the vasculature, their foramina of entry and their number is required to understand the concepts in the lunatomalacia and Kienbock’s disease.Keywords: avascular necrosis, foramen, lunate, nutrient
Procedia PDF Downloads 24323426 Prognostic Impact of Pre-transplant Ferritinemia: A Survival Analysis Among Allograft Patients
Authors: Mekni Sabrine, Nouira Mariem
Abstract:
Background and aim: Allogeneic hematopoietic stem cell transplantation is a curative treatment for several hematological diseases; however, it has a non-negligible morbidity and mortality depending on several prognostic factors, including pre-transplant hyperferritinemia. The aim of our study was to estimate the impact of hyperferritinemia on survivals and on the occurrence of post-transplant complications. Methods: It was a longitudinal study conducted over 8 years and including all patients who had a first allograft. The impact of pretransplant hyperferritinemia (ferritinemia ≥1500) on survivals was studied using the Kaplan Meier method and the COX model for uni- and multivariate analysis. The Khi-deux test and binary logistic regression were used to study the association between pretransplant ferritinemia and post-transplant complications. Results: One hundred forty patients were included with an average age of 26.6 years and a sex ratio (M/F)=1.4. Hyperferritinemia was found in 33% of patients. It had no significant impact on either overall survival (p=0.9) or event -free survival (p=0.6). In multivariate analysis, only the type of disease was independently associated with overall survival (p=0.04) and event-free survival (p=0.002). For post-allograft complications: The occurrence of early documented infections was independently associated with pretransplant hyperferritinemia (p=0.02) and the presence of acute graft versus host disease( GVHD) (p<10-3). The occurrence of acute GVHD was associated with early documented infection (p=0.002) and Cytomegalovirus reactivation (p<10-3). The occurrence of chronic GVHD was associated with the presence of Cytomegalovirus reactivation (p=0.006) and graft source (p=0.009). Conclusion: Our study showed the significant impact of pre-transplant hyperferritinemia on the occurrence of early infections but not on survivals. Early and more accurate assessment iron overload by other tests such as liver magnetic resonance imaging with initiation of chelating treatment could prevent the occurrence of such complications after transplantation.Keywords: allogeneic, transplants, ferritin, survival
Procedia PDF Downloads 6423425 Big Data Applications for the Transport Sector
Authors: Antonella Falanga, Armando Cartenì
Abstract:
Today, an unprecedented amount of data coming from several sources, including mobile devices, sensors, tracking systems, and online platforms, characterizes our lives. The term “big data” not only refers to the quantity of data but also to the variety and speed of data generation. These data hold valuable insights that, when extracted and analyzed, facilitate informed decision-making. The 4Vs of big data - velocity, volume, variety, and value - highlight essential aspects, showcasing the rapid generation, vast quantities, diverse sources, and potential value addition of these kinds of data. This surge of information has revolutionized many sectors, such as business for improving decision-making processes, healthcare for clinical record analysis and medical research, education for enhancing teaching methodologies, agriculture for optimizing crop management, finance for risk assessment and fraud detection, media and entertainment for personalized content recommendations, emergency for a real-time response during crisis/events, and also mobility for the urban planning and for the design/management of public and private transport services. Big data's pervasive impact enhances societal aspects, elevating the quality of life, service efficiency, and problem-solving capacities. However, during this transformative era, new challenges arise, including data quality, privacy, data security, cybersecurity, interoperability, the need for advanced infrastructures, and staff training. Within the transportation sector (the one investigated in this research), applications span planning, designing, and managing systems and mobility services. Among the most common big data applications within the transport sector are, for example, real-time traffic monitoring, bus/freight vehicle route optimization, vehicle maintenance, road safety and all the autonomous and connected vehicles applications. Benefits include a reduction in travel times, road accidents and pollutant emissions. Within these issues, the proper transport demand estimation is crucial for sustainable transportation planning. Evaluating the impact of sustainable mobility policies starts with a quantitative analysis of travel demand. Achieving transportation decarbonization goals hinges on precise estimations of demand for individual transport modes. Emerging technologies, offering substantial big data at lower costs than traditional methods, play a pivotal role in this context. Starting from these considerations, this study explores the usefulness impact of big data within transport demand estimation. This research focuses on leveraging (big) data collected during the COVID-19 pandemic to estimate the evolution of the mobility demand in Italy. Estimation results reveal in the post-COVID-19 era, more than 96 million national daily trips, about 2.6 trips per capita, with a mobile population of more than 37.6 million Italian travelers per day. Overall, this research allows us to conclude that big data better enhances rational decision-making for mobility demand estimation, which is imperative for adeptly planning and allocating investments in transportation infrastructures and services.Keywords: big data, cloud computing, decision-making, mobility demand, transportation
Procedia PDF Downloads 6123424 Bacterial Interactions of Upper Respiratory Tract Microbiota
Authors: Sarah Almuhayya, Andrew Mcbain, Gavin Humphreys
Abstract:
Background. The microbiome of the upper respiratory tract (URT) has received less research attention than other body sites. This study aims to investigate the microbial ecology of the human URT with a focus on the antagonism between the corynebacteria and staphylococci. Methods. Mucosal swabs were collected from the anterior nares and nasal turbinates of 20 healthy adult subjects. Genomic DNA amplification targeting the (V4) of the 16Sr RNA gene was conducted and analyzed using QIIME. Nasal swab isolates were cultured and identified using near full-length sequencing of the 16S rRNA gene. Isolates identified as corynebacteria or staphylococci were typed using (rep-PCR). Antagonism was determined using an agar-based inhibition assay. Results. Four major bacterial phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) were identified from all volunteers. The typing of cultured staphylococci and corynebacteria suggested that intra-individual strain diversity was limited. Analysis of generated nasal microbiota profiles suggested an inverse correlation in terms of relative abundance between staphylococci and corynebacteria. Despite the apparent antagonism between these genera, it was limited when investigated on agar. Of 1000 pairwise interactions, observable zones of inhibition were only reported between a single strain of C.pseudodiphtheriticum and S.aureus. Imaging under EM revealed this effect to be bactericidal with clear lytic effects on staphylococcal cell morphology. Conclusion. Nasal microbiota is complex, but culturable staphylococci and corynebacteria were limited in terms of clone type. Analysis of generated nasal microbiota profiles suggested an inverse correlation in terms of relative abundance between these genera suggesting an antagonism or competition between these taxonomic groups.Keywords: nasal, microbiota, S.aureus, microbioal interaction
Procedia PDF Downloads 11323423 Structural Analysis of Polymer Thin Films at Single Macromolecule Level
Authors: Hiroyuki Aoki, Toru Asada, Tomomi Tanii
Abstract:
The properties of a spin-cast film of a polymer material are different from those in the bulk material because the polymer chains are frozen in an un-equilibrium state due to the rapid evaporation of the solvent. However, there has been little information on the un-equilibrated conformation and dynamics in a spin-cast film at the single chain level. The real-space observation of individual chains would provide direct information to discuss the morphology and dynamics of single polymer chains. The recent development of super-resolution fluorescence microscopy methods allows the conformational analysis of single polymer chain. In the current study, the conformation of a polymer chain in a spin-cast film by the super-resolution microscopy. Poly(methyl methacrylate) (PMMA) with the molecular weight of 2.2 x 10^6 was spin-cast onto a glass substrate from toluene and chloroform. For the super-resolution fluorescence imaging, a small amount of the PMMA labeled by rhodamine spiroamide dye was added. The radius of gyration (Rg) was evaluated from the super-resolution fluorescence image of each PMMA chain. The mean-square-root of Rg was 48.7 and 54.0 nm in the spin-cast films prepared from the toluene and chloroform solutions, respectively. On the other hand, the chain dimension in a bulk state (a thermally annealed 10- μm-thick sample) was observed to be 43.1 nm. This indicates that the PMMA chain in the spin-cast film takes an expanded conformation compared to the unperturbed chain and that the chain dimension is dependent on the solvent quality. In a good solvent, the PMMA chain has an expanded conformation by the excluded volume effect. The polymer chain is frozen before the relaxation from an un-equilibrated expanded conformation to an unperturbed one by the rapid solvent evaporation.Keywords: chain conformation, polymer thin film, spin-coating, super-resolution optical microscopy
Procedia PDF Downloads 28523422 Brain Stem Posterior Reversible Encephalopathy Syndrome in Nephrotic Syndrome
Authors: S. H. Jang
Abstract:
Posterior reversible encephalopathy syndrome (PRES) is characterized by acute neurologic symptoms (visual loss, headache, altered mentality and seizures) and by typical imaging findings (bilateral subcortical and cortical edema with predominatly posterior distribution). Nephrotic syndrome is a syndrome comprising signs of proteinuria, hypoalbuminemia, and edema. It is well known that hypertension predispose patient with nephrotic syndrome to PRES. A 45-year old male was referred for suddenly developed vertigo, disequilibrium. He had previous history of nephrotic syndrome. His medical history included diabetes controlled with medication. He was hospitalized because of generalized edema a few days ago. His vital signs were stable. On neurologic examination, his mental state was alert. Horizontal nystagmus to right side on return to primary position was observed. He showed good grade motor weakness and ataxia in right upper and lower limbs without other sensory abnormality. Brain MRI showed increased signal intensity in FLAIR image, decreased signal intensity in T1 image and focal enhanced lesion in T1 contrast image at whole midbrain, pons and cerebellar peduncle symmetrically, which was compatible with vasogenic edema. Laboratory findings showed severe proteinuria and hypoalbuminemia. He was given intravenous dexamethasone and diuretics to reduce vasogenic edema and raise the intra-vascular osmotic pressure. Nystagmus, motor weakness and limb ataxia improved gradually over 2 weeks; He recovered without any neurologic symptom and sign. Follow-up MRI showed decreased vasogenic edema fairly. We report a case of brain stem PRES in normotensive, nephrotic syndrome patient.Keywords: posterior reversible encephalopathy syndrome, MRI, nephrotic syndrome, vasogenic brain edema
Procedia PDF Downloads 27423421 ISME: Integrated Style Motion Editor for 3D Humanoid Character
Authors: Ismahafezi Ismail, Mohd Shahrizal Sunar
Abstract:
The motion of a realistic 3D humanoid character is very important especially for the industries developing computer animations and games. However, this type of motion is seen with a very complex dimensional data as well as body position, orientation, and joint rotation. Integrated Style Motion Editor (ISME), on the other hand, is a method used to alter the 3D humanoid motion capture data utilised in computer animation and games development. Therefore, this study was carried out with the purpose of demonstrating a method that is able to manipulate and deform different motion styles by integrating Key Pose Deformation Technique and Trajectory Control Technique. This motion editing method allows the user to generate new motions from the original motion capture data using a simple interface control. Unlike the previous method, our method produces a realistic humanoid motion style in real time.Keywords: computer animation, humanoid motion, motion capture, motion editing
Procedia PDF Downloads 38123420 Effect of Traffic Volume and Its Composition on Vehicular Speed under Mixed Traffic Conditions: A Kriging Based Approach
Authors: Subhadip Biswas, Shivendra Maurya, Satish Chandra, Indrajit Ghosh
Abstract:
Use of speed prediction models sometimes appears as a feasible alternative to laborious field measurement particularly, in case when field data cannot fulfill designer’s requirements. However, developing speed models is a challenging task specifically in the context of developing countries like India where vehicles with diverse static and dynamic characteristics use the same right of way without any segregation. Here the traffic composition plays a significant role in determining the vehicular speed. The present research was carried out to examine the effects of traffic volume and its composition on vehicular speed under mixed traffic conditions. Classified traffic volume and speed data were collected from different geometrically identical six lane divided arterials in New Delhi. Based on these field data, speed prediction models were developed for individual vehicle category adopting Kriging approximation technique, an alternative for commonly used regression. These models are validated with the data set kept aside earlier for validation purpose. The predicted speeds showed a great deal of agreement with the observed values and also the model outperforms all other existing speed models. Finally, the proposed models were utilized to evaluate the effect of traffic volume and its composition on speed.Keywords: speed, Kriging, arterial, traffic volume
Procedia PDF Downloads 35123419 AI Software Algorithms for Drivers Monitoring within Vehicles Traffic - SiaMOTO
Authors: Ioan Corneliu Salisteanu, Valentin Dogaru Ulieru, Mihaita Nicolae Ardeleanu, Alin Pohoata, Bogdan Salisteanu, Stefan Broscareanu
Abstract:
Creating a personalized statistic for an individual within the population using IT systems, based on the searches and intercepted spheres of interest they manifest, is just one 'atom' of the artificial intelligence analysis network. However, having the ability to generate statistics based on individual data intercepted from large demographic areas leads to reasoning like that issued by a human mind with global strategic ambitions. The DiaMOTO device is a technical sensory system that allows the interception of car events caused by a driver, positioning them in time and space. The device's connection to the vehicle allows the creation of a source of data whose analysis can create psychological, behavioural profiles of the drivers involved. The SiaMOTO system collects data from many vehicles equipped with DiaMOTO, driven by many different drivers with a unique fingerprint in their approach to driving. In this paper, we aimed to explain the software infrastructure of the SiaMOTO system, a system designed to monitor and improve driver driving behaviour, as well as the criteria and algorithms underlying the intelligent analysis process.Keywords: artificial intelligence, data processing, driver behaviour, driver monitoring, SiaMOTO
Procedia PDF Downloads 8623418 Impact of Transitioning to Renewable Energy Sources on Key Performance Indicators and Artificial Intelligence Modules of Data Center
Authors: Ahmed Hossam ElMolla, Mohamed Hatem Saleh, Hamza Mostafa, Lara Mamdouh, Yassin Wael
Abstract:
Artificial intelligence (AI) is reshaping industries, and its potential to revolutionize renewable energy and data center operations is immense. By harnessing AI's capabilities, we can optimize energy consumption, predict fluctuations in renewable energy generation, and improve the efficiency of data center infrastructure. This convergence of technologies promises a future where energy is managed more intelligently, sustainably, and cost-effectively. The integration of AI into renewable energy systems unlocks a wealth of opportunities. Machine learning algorithms can analyze vast amounts of data to forecast weather patterns, solar irradiance, and wind speeds, enabling more accurate energy production planning. AI-powered systems can optimize energy storage and grid management, ensuring a stable power supply even during intermittent renewable generation. Moreover, AI can identify maintenance needs for renewable energy infrastructure, preventing costly breakdowns and maximizing system lifespan. Data centers, which consume substantial amounts of energy, are prime candidates for AI-driven optimization. AI can analyze energy consumption patterns, identify inefficiencies, and recommend adjustments to cooling systems, server utilization, and power distribution. Predictive maintenance using AI can prevent equipment failures, reducing energy waste and downtime. Additionally, AI can optimize data placement and retrieval, minimizing energy consumption associated with data transfer. As AI transforms renewable energy and data center operations, modified Key Performance Indicators (KPIs) will emerge. Traditional metrics like energy efficiency and cost-per-megawatt-hour will continue to be relevant, but additional KPIs focused on AI's impact will be essential. These might include AI-driven cost savings, predictive accuracy of energy generation and consumption, and the reduction of carbon emissions attributed to AI-optimized operations. By tracking these KPIs, organizations can measure the success of their AI initiatives and identify areas for improvement. Ultimately, the synergy between AI, renewable energy, and data centers holds the potential to create a more sustainable and resilient future. By embracing these technologies, we can build smarter, greener, and more efficient systems that benefit both the environment and the economy.Keywords: data center, artificial intelligence, renewable energy, energy efficiency, sustainability, optimization, predictive analytics, energy consumption, energy storage, grid management, data center optimization, key performance indicators, carbon emissions, resiliency
Procedia PDF Downloads 3123417 dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling
Authors: Yanling Li, Linying Ji, Zita Oravecz, Timothy R. Brick, Michael D. Hunter, Sy-Miin Chow
Abstract:
Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.Keywords: dynamic modeling, missing data, mobility, multiple imputation
Procedia PDF Downloads 16223416 Evaluation of a Data Fusion Algorithm for Detecting and Locating a Radioactive Source through Monte Carlo N-Particle Code Simulation and Experimental Measurement
Authors: Hadi Ardiny, Amir Mohammad Beigzadeh
Abstract:
Through the utilization of a combination of various sensors and data fusion methods, the detection of potential nuclear threats can be significantly enhanced by extracting more information from different data. In this research, an experimental and modeling approach was employed to track a radioactive source by combining a surveillance camera and a radiation detector (NaI). To run this experiment, three mobile robots were utilized, with one of them equipped with a radioactive source. An algorithm was developed in identifying the contaminated robot through correlation between camera images and camera data. The computer vision method extracts the movements of all robots in the XY plane coordinate system, and the detector system records the gamma-ray count. The position of the robots and the corresponding count of the moving source were modeled using the MCNPX simulation code while considering the experimental geometry. The results demonstrated a high level of accuracy in finding and locating the target in both the simulation model and experimental measurement. The modeling techniques prove to be valuable in designing different scenarios and intelligent systems before initiating any experiments.Keywords: nuclear threats, radiation detector, MCNPX simulation, modeling techniques, intelligent systems
Procedia PDF Downloads 12223415 Young Female’s Heart Was Bitten by Unknown Ghost (Isolated Cardiac Sarcoidosis): A Case Report
Authors: Heru Al Amin
Abstract:
Sarcoidosis is a granulomatous inflammatory disorder of unclear etiology that can affect multiple different organ systems. Isolated cardiac sarcoidosis is a very rare condition that causes lethal arrhythmia and heart failure. A definite diagnosis of cardiac sarcoidosis remains challenging. The use of multimodality imaging plays a pivotal role in the diagnosis of this entity. Case summary: In this report, we discuss a case of a 50-year-old woman who presented with recurrent palpitation, dizziness, vertigo and presyncope. Electrocardiogram revealed variable heart blocks, including first-degree AV block, second-degree AV block, high-degree AV block, complete AV block, trifascicular block and sometimes supraventricular arrhythmia. Twenty-four hours of Holter monitoring show atrial bigeminy, first-degree AV block and trifascicular block. Transthoracic echocardiography showed Thinning of basal anteroseptal and inferred septum with LV dilatation with reduction of Global Longitudinal Strain. A dual-chamber pacemaker was implanted. CT Coronary angiogram showed no coronary artery disease. Cardiac magnetic resonance revealed basal anteroseptal and inferior septum thinning with focal edema with LGE suggestive of sarcoidosis. Computed tomography of the chest showed no lymphadenopathy or pulmonary infiltration. 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) of the whole body showed. We started steroids and followed up with the patient. Conclusion: This case serves to highlight the challenges in identifying and managing isolated CS in a young patient with recurrent syncope with variable heart block. Early, even late initiation of steroids can improve arrhythmia as well as left ventricular function.Keywords: cardiac sarcoidosis, conduction abnormality, syncope, cardiac MRI
Procedia PDF Downloads 8823414 Monodisperse Quaternary Cobalt Chromium Ferrite Nanoparticles Synthesised from a Single Source Precursor
Authors: Khadijat O. Abdulwahab, Mohammad A. Malik, Paul O’Brien, Grigore A. Timco, Floriana Tuna
Abstract:
The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe2O4 (M = Fe, Co, Mn, Ni, Zn etc.) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Herein, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O2CtBu)6(HO2CtBu)3] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO4) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at its boiling point (260°C). The effect of concentration on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained at both concentrations were matched with cubic iron cobalt chromium ferrite (FeCoCrO4). TEM showed that a more monodispersed spherical ferrite nanoparticles of average diameter 4.0 ± 0.4 nm were obtained at higher precursor concentration. Magnetic measurements revealed that all the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP), Electron Probe Microanalysis (EPMA), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).Keywords: quaternary ferrite nanoparticles, single source precursor, monodisperse, cobalt chromium ferrite, colloidal, hot injection thermolysis
Procedia PDF Downloads 27123413 Macrocephaly-Cutis Marmorata Telangiectatica Congenita Associated with Epilepsy: Case Report
Authors: Atitallah Sofien, Bouyahia Olfa, Krifi Farah, Missaoui Nada, Ben Rabeh Rania, Yahyaoui Salem, Mazigh Sonia, Boukthir Samir
Abstract:
Introduction: Cutis marmorata telangiectatica congenita (CMTC) is a rare cutaneous vascular malformation. It most often appears at birth or during the first days of life. Its origin is still unknown. It associates a livedo with telangiectasias of diffuse or segmental topography. In rare cases, it can be associated with neurological disorders such as macrocephaly and, less frequently, with epilepsy. Methodology: We report a case of an infant with Macrocephaly- Cutis marmorata telangiectatica congenita syndrome associated with epilepsy. Results: This is the case of a one month and 15 days old female infant from a non-consanguineous marriage, admitted for a status epilepticus in the context of apyrexia. Infectious and metabolic causes had been eliminated. Physical examination had shown non-infiltrated and reticular livedoid erythematous patches affecting the left upper limb and atrophic on the back of the left hand. Cerebral magnetic resonance imaging (MRI) showed thin layers of bifrontal, temporal, and left parietal hygromas associated with the widening of the bifrontal subarachnoid spaces. The electroencephalogram showed a well-organized sleep tracing with a single right occipital paroxysmal abnormality. Antiepileptic treatment has been administered with good clinical evolution and regression of the skin lesion and a control electroencephalogram without abnormality. Conclusion: This observation illustrates an association of CMTC with both macrocephaly and epilepsy. This pathology, which is relatively benign and has a good prognosis, generally does not require treatment. However, a detailed examination must be carried out, and a follow-up plan must be put in place for each patient presenting with CMTC, given the risk of association with other abnormalities, which can be potentially serious.Keywords: cutis marmorata telangiectatica congenita, macrocephaly, epilepsy, children
Procedia PDF Downloads 5823412 Annual Water Level Simulation Using Support Vector Machine
Authors: Maryam Khalilzadeh Poshtegal, Seyed Ahmad Mirbagheri, Mojtaba Noury
Abstract:
In this paper, by application of the input yearly data of rainfall, temperature and flow to the Urmia Lake, the simulation of water level fluctuation were applied by means of three models. According to the climate change investigation the fluctuation of lakes water level are of high interest. This study investigate data-driven models, support vector machines (SVM), SVM method which is a new regression procedure in water resources are applied to the yearly level data of Lake Urmia that is the biggest and the hyper saline lake in Iran. The evaluated lake levels are found to be in good correlation with the observed values. The results of SVM simulation show better accuracy and implementation. The mean square errors, mean absolute relative errors and determination coefficient statistics are used as comparison criteria.Keywords: simulation, water level fluctuation, urmia lake, support vector machine
Procedia PDF Downloads 36523411 Upside Down Words as Initial Clinical Presentation of an Underlying Acute Ischemic Stroke
Authors: Ramuel Spirituel Mattathiah A. San Juan, Neil Ambasing
Abstract:
Background: Reversal of vision metamorphopsia is a transient form of metamorphopsia described as an upside-down alteration of the visual field in the coronal plane. Patients would describe objects, such as cups, upside down, but the tea would not spill, and people would walk on their heads. It is extremely rare as a stable finding, lasting days or weeks. We report a case wherein this type of metamorphopsia occurred only in written words and lasted for six months. Objective: To the best of our knowledge, we report the first rare occurrence of reversal of vision metamorphopsia described as inverted words as the sole initial presentation of an underlying stroke. Case Presentation: We report a 59-year-old male with poorly controlled hypertension and diabetes mellitus who presented with a 3-day history of difficulty reading, described as the words were turned upside down as if the words were inverted horizontally then with the progression of deficits such as right homonymous hemianopia and achromatopsia, prosopagnosia. Cranial magnetic resonance imaging (MRI) revealed an acute infarct on the left posterior cerebral artery territory. Follow-up after six months revealed improvement of the visual field cut but with the persistence of the higher cortical function deficits. Conclusion: We report the first rare occurrence of metamorphopsia described as purely inverted words as the sole initial presentation of an underlying stroke. The differential diagnoses of a patient presenting with text reversal metamorphopsia should include stroke in the occipitotemporal areas. It further expands the landscape of metamorphopsias due to its exclusivity to written words and prolonged duration. Knowing these clinical features will help identify the lesion locus and improve subsequent stroke care, especially in time-bound management like intravenous thrombolysis.Keywords: rare presentation, text reversal metamorphopsia, ischemic stroke, stroke
Procedia PDF Downloads 5723410 Dynamic Mode Decomposition and Wake Flow Modelling of a Wind Turbine
Authors: Nor Mazlin Zahari, Lian Gan, Xuerui Mao
Abstract:
The power production in wind farms and the mechanical loads on the turbines are strongly impacted by the wake of the wind turbine. Thus, there is a need for understanding and modelling the turbine wake dynamic in the wind farm and the layout optimization. Having a good wake model is important in predicting plant performance and understanding fatigue loads. In this paper, the Dynamic Mode Decomposition (DMD) was applied to the simulation data generated by a Direct Numerical Simulation (DNS) of flow around a turbine, perturbed by upstream inflow noise. This technique is useful in analyzing the wake flow, to predict its future states and to reflect flow dynamics associated with the coherent structures behind wind turbine wake flow. DMD was employed to describe the dynamic of the flow around turbine from the DNS data. Since the DNS data comes with the unstructured meshes and non-uniform grid, the interpolation of each occurring within each element in the data to obtain an evenly spaced mesh was performed before the DMD was applied. DMD analyses were able to tell us characteristics of the travelling waves behind the turbine, e.g. the dominant helical flow structures and the corresponding frequencies. As the result, the dominant frequency will be detected, and the associated spatial structure will be identified. The dynamic mode which represented the coherent structure will be presented.Keywords: coherent structure, Direct Numerical Simulation (DNS), dominant frequency, Dynamic Mode Decomposition (DMD)
Procedia PDF Downloads 34223409 Three-Dimensional Measurement and Analysis of Facial Nerve Recess
Authors: Kang Shuo-Shuo, Li Jian-Nan, Yang Shiming
Abstract:
Purpose: The three-dimensional anatomical structure of the facial nerve recess and its relationship were measured by high-resolution temporal bone CT to provide imaging reference for cochlear implant operation. Materials and Methods: By analyzing the high-resolution CT of 160 cases (320 pleural ears) of the temporal bone, the following parameters were measured at the axial window niche level: 1. The distance between the facial nerve and chordae tympani nerve d1; 2. Distance between the facial nerve and circular window niche d2; 3. The relative Angle between the facial nerve and the circular window niche a; 4. Distance between the middle point of the face recess and the circular window niche d3; 5. The relative angle between the middle point of the face recess and the circular window niche b. Factors that might influence the anatomy of the facial recess were recorded, including the patient's sex, age, and anatomical variation (e.g., vestibular duct dilation, mastoid gas type, mothoid sinus advancement, jugular bulbar elevation, etc.), and the correlation between these factors and the measured facial recess parameters was analyzed. Result: The mean value of face-drum distance d1 is (3.92 ± 0.26) mm, the mean value of face-niche distance d2 is (5.95 ± 0.62) mm, the mean value of face-niche Angle a is (94.61 ± 9.04) °, and the mean value of fossa - niche distance d3 is (6.46 ± 0.63) mm. The average fossa-niche Angle b was (113.47 ± 7.83) °. Gender, age, and anterior sigmoid sinus were the three factors affecting the width of the opposite recess d1, the Angle of the opposite nerve relative to the circular window niche a, and the Angle of the facial recess relative to the circular window niche b. Conclusion: High-resolution temporal bone CT before cochlear implantation can show the important anatomical relationship of the facial nerve recess, and the measurement results have clinical reference value for the operation of cochlear implantation.Keywords: cochlear implantation, recess of facial nerve, temporal bone CT, three-dimensional measurement
Procedia PDF Downloads 1423408 Case Report and Literature Review of Opalski Syndrome: A Rare Brainstem Stroke
Authors: Ramuel Spirituel Mattathiah A. San Juan, Neil Ambasing
Abstract:
Background: In lateral medullary strokes, hemiparesis doesn't typically manifest due to the distinct vascular supply to the corticospinal tract located within the medulla's tegmentum. Hemiparesis resulting from a medullary infarct would likely be attributable to a medial medullary stroke characterized by contralateral hemiparesis since the corticospinal tract fibers at this level have yet to cross over. This paper reports a unique case of a lateral medullary stroke variant that presented with ipsilateral hemiparesis. Objective: There have only been 23 other cases of reported Opalski syndrome, making this only the 24th and 25th case reported worldwide. Case Presentation: A 53-year-old male was admitted with slurring of speech with gait instability, numbness on the right face, Horner’s syndrome, and 4/5 motor strength on the right extremities. Hyperreflexia was noted on the right, together with a Babinski’s sign. Cranial magnetic resonance imaging (MRI) showed an infarct on the right dorsolateral medulla. A 48-year-old male was admitted complaining of dizziness, ataxic gait, veering to the left during ambulation, left facial numbness, left hemiplegia, crossed sensory disturbance, and right limb ataxia. MRI revealed an acute left lateral medullary infarction. Conclusion: A rare type of lateral medullary infarction, the Opalski Syndrome, is a weakness ipsilateral to the lesion of the infarct. The lesion involves the ipsilateral corticospinal tract below the pyramidal decussation. The considerable diversity in the posterior brain circulation serves as a contributing factor to the clinical observation of incomplete textbook syndromes, underscoring the significance of the neurological clinical approach and a solid foundation in neuroanatomy.Keywords: Opalski syndrome, rare stroke, stroke, Wallenberg's syndrome
Procedia PDF Downloads 7423407 Graph-Oriented Summary for Optimized Resource Description Framework Graphs Streams Processing
Authors: Amadou Fall Dia, Maurras Ulbricht Togbe, Aliou Boly, Zakia Kazi Aoul, Elisabeth Metais
Abstract:
Existing RDF (Resource Description Framework) Stream Processing (RSP) systems allow continuous processing of RDF data issued from different application domains such as weather station measuring phenomena, geolocation, IoT applications, drinking water distribution management, and so on. However, processing window phase often expires before finishing the entire session and RSP systems immediately delete data streams after each processed window. Such mechanism does not allow optimized exploitation of the RDF data streams as the most relevant and pertinent information of the data is often not used in a due time and almost impossible to be exploited for further analyzes. It should be better to keep the most informative part of data within streams while minimizing the memory storage space. In this work, we propose an RDF graph summarization system based on an explicit and implicit expressed needs through three main approaches: (1) an approach for user queries (SPARQL) in order to extract their needs and group them into a more global query, (2) an extension of the closeness centrality measure issued from Social Network Analysis (SNA) to determine the most informative parts of the graph and (3) an RDF graph summarization technique combining extracted user query needs and the extended centrality measure. Experiments and evaluations show efficient results in terms of memory space storage and the most expected approximate query results on summarized graphs compared to the source ones.Keywords: centrality measures, RDF graphs summary, RDF graphs stream, SPARQL query
Procedia PDF Downloads 20123406 Assessing the Impact of Climate Change on Pulses Production in Khyber Pakhtunkhwa, Pakistan
Authors: Khuram Nawaz Sadozai, Rizwan Ahmad, Munawar Raza Kazmi, Awais Habib
Abstract:
Climate change and crop production are intrinsically associated with each other. Therefore, this research study is designed to assess the impact of climate change on pulses production in Southern districts of Khyber Pakhtunkhwa (KP) Province of Pakistan. Two pulses (i.e. chickpea and mung bean) were selected for this research study with respect to climate change. Climatic variables such as temperature, humidity and precipitation along with pulses production and area under cultivation of pulses were encompassed as the major variables of this study. Secondary data of climatic variables and crop variables for the period of thirty four years (1986-2020) were obtained from Pakistan Metrological Department and Agriculture Statistics of KP respectively. Panel data set of chickpea and mung bean crops was estimated separately. The analysis validate that both data sets were a balanced panel data. The Hausman specification test was run separately for both the panel data sets whose findings had suggested the fixed effect model can be deemed as an appropriate model for chickpea panel data, however random effect model was appropriate for estimation of the panel data of mung bean. Major findings confirm that maximum temperature is statistically significant for the chickpea yield. This implies if maximum temperature increases by 1 0C, it can enhance the chickpea yield by 0.0463 units. However, the impact of precipitation was reported insignificant. Furthermore, the humidity was statistically significant and has a positive association with chickpea yield. In case of mung bean the minimum temperature was significantly contributing in the yield of mung bean. This study concludes that temperature and humidity can significantly contribute to enhance the pulses yield. It is recommended that capacity building of pulses growers may be made to adapt the climate change strategies. Moreover, government may ensure the availability of climate change resistant varieties of pulses to encourage the pulses cultivation.Keywords: climate change, pulses productivity, agriculture, Pakistan
Procedia PDF Downloads 4223405 Prostatic Cyst in Suprapubic Ultrasound Examination
Authors: Angelis P. Barlampas, Ghita Bianca-Andreea
Abstract:
A case of a prostatic midline cyst is presented, which was found during a routine general ultrasound examination in an otherwise healthy young man. The incidence of prostatic cysts discovered in suprapubic ultrasound examination has constantly been rising over the previous decades. Despite the fact that the majority of them are benign, a significant amount is related to symptoms, such as pain, dysuria, infertility, and even cancer. The wide use of ultrasound examination and the increasing availability of high-resolution ultrasound systems have rendered new diagnostic challenges. Once upon a time a suprapubic ultrasound was only useful for measuring only the size and the dimensions of the prostatic gland. It did not have the ability to analyze and resolve structures such as cystic or solid nodules. The current machine equipment has managed to depict the imaging characteristics of lesions with high acuity that compares of an intrarectal ultrasound. But the last one is a specialized examination, which demands expertise and good knowledge. Maybe the time has come for the general radiologist and, especially the one who uses suprapubic ultrasound, to pay more attention to the examination of the prostate gland and to take advantage of the superb abilities and the high resolution of the new ultrasound systems. That is exactly, what this case is emphasizing. The incidental discovery of prostatic cysts, and the relatively little available literature about managing them turns them into an interesting theme for exploring and studying. The prostatic cysts are further divided into midline and paramidline cysts, with the first being usually utricle cysts. A more precise categorization is as follows: A midline cystic lesion usually regards a Mullerian duct cyst, a prostatic utricle cyst, an ejaculatory duct cyst, a prostatic cystadenoma, a ductus deferens cyst, and a TURP. On the other hand, a lateral cystic lesion usually refers to a cystic degeneration of benign prostatic hyperplasia, a prostatic retention cyst, a seminal vesicle cyst, diverticular prostatitis, a prostatic abscess, cavitatory prostatitis from chronic prostatitis, a parasitic prostatic cyst, a cystic prostatic carcinoma, e.t.c.Keywords: prostatic cyst, radiology, benign prostatic lesions, prostatic cancer, suprapubic prostatic ultrasound
Procedia PDF Downloads 56