Search results for: ordinary differential equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3447

Search results for: ordinary differential equations

867 Characterisation of Fractions Extracted from Sorghum Byproducts

Authors: Prima Luna, Afroditi Chatzifragkou, Dimitris Charalampopoulos

Abstract:

Sorghum byproducts, namely bran, stalk, and panicle are examples of lignocellulosic biomass. These raw materials contain large amounts of polysaccharides, in particular hemicelluloses, celluloses, and lignins, which if efficiently extracted, can be utilised for the development of a range of added value products with potential applications in agriculture and food packaging sectors. The aim of this study was to characterise fractions extracted from sorghum bran and stalk with regards to their physicochemical properties that could determine their applicability as food-packaging materials. A sequential alkaline extraction was applied for the isolation of cellulosic, hemicellulosic and lignin fractions from sorghum stalk and bran. Lignin content, phenolic content and antioxidant capacity were also investigated in the case of the lignin fraction. Thermal analysis using differential scanning calorimetry (DSC) and X-Ray Diffraction (XRD) revealed that the glass transition temperature (Tg) of cellulose fraction of the stalk was ~78.33 oC at amorphous state (~65%) and water content of ~5%. In terms of hemicellulose, the Tg value of stalk was slightly lower compared to bran at amorphous state (~54%) and had less water content (~2%). It is evident that hemicelluloses generally showed a lower thermal stability compared to cellulose, probably due to their lack of crystallinity. Additionally, bran had higher arabinose-to-xylose ratio (0.82) than the stalk, a fact that indicated its low crystallinity. Furthermore, lignin fraction had Tg value of ~93 oC at amorphous state (~11%). Stalk-derived lignin fraction contained more phenolic compounds (mainly consisting of p-coumaric and ferulic acid) and had higher lignin content and antioxidant capacity compared to bran-derived lignin fraction.

Keywords: alkaline extraction, bran, cellulose, hemicellulose, lignin, stalk

Procedia PDF Downloads 299
866 Electrochemical Detection of the Chemotherapy Agent Methotrexate in vitro from Physiological Fluids Using Functionalized Carbon Nanotube past Electrodes

Authors: Shekher Kummari, V. Sunil Kumar, K. Vengatajalabathy Gobi

Abstract:

A simple, cost-effective, reusable and reagent-free electrochemical biosensor is developed with functionalized multiwall carbon nanotube paste electrode (f-CNTPE) for the sensitive and selective determination of the important chemotherapeutic drug methotrexate (MTX), which is widely used for the treatment of various cancer and autoimmune diseases. The electrochemical response of the fabricated electrode towards the detection of MTX is examined by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). CV studies have shown that f-CNTPE electrode system exhibited an excellent electrocatalytic activity towards the oxidation of MTX in phosphate buffer (0.2 M) compared with a conventional carbon paste electrode (CPE). The oxidation peak current is enhanced by nearly two times in magnitude. Applying the DPV method under optimized conditions, a linear calibration plot is achieved over a wide range of concentration from 4.0×10⁻⁷ M to 5.5×10⁻⁶ M with the detection limit 1.6×10⁻⁷ M. further, by applying the SWV method a parabolic calibration plot was achieved starting from a very low concentration of 1.0×10⁻⁸ M, and the sensor could detect as low as 2.9×10⁻⁹ M MTX in 10 s and 10 nM were detected in steady state current-time analysis. The f-CNTPE shows very good selectivity towards the specific recognition of MTX in the presence of important biological interference. The electrochemical biosensor detects MTX in-vitro directly from pharmaceutical sample, undiluted urine and human blood serum samples at a concentration range 5.0×10⁻⁷ M with good recovery limits.

Keywords: amperometry, electrochemical detection, human blood serum, methotrexate, MWCNT, SWV

Procedia PDF Downloads 309
865 Genome-Wide Expression Profiling of Cicer arietinum Heavy Metal Toxicity

Authors: B. S. Yadav, A. Mani, S. Srivastava

Abstract:

Chickpea (Cicer arietinum L.) is an annual, self-pollinating, diploid (2n = 2x = 16) pulse crop that ranks second in world legume production after common bean (Phaseolus vulgaris). ICC 4958 flowers approximately 39 days after sowing under peninsular Indian conditions and the crop matures in less than 90 days in rained environments. The estimated collective yield losses due to abiotic stresses (6.4 million t) have been significantly higher than for biotic stresses (4.8 million t). Most legumes are known to be salt sensitive, and therefore, it is becoming increasingly important to produce cultivars tolerant to high-salinity in addition to other abiotic and biotic stresses for sustainable chickpea production. Our aim was to identify the genes that are involved in the defence mechanism against heavy metal toxicity in chickpea and establish the biological network of heavy metal toxicity in chickpea. ICC4958 variety of chick pea was taken and grown in normal condition and 150µM concentration of different heavy metal salt like CdCl₂, K₂Cr2O₇, NaAsO₂. At 15th day leave samples were collected and stored in RNA Later solution microarray was performed for checking out differential gene expression pattern. Our studies revealed that 111 common genes that involved in defense mechanism were up regulated and 41 genes were commonly down regulated during treatment of 150µM concentration of CdCl₂, K₂Cr₂O₇, and NaAsO₂. Biological network study shows that the genes which are differentially expressed are highly connected and having high betweenness and centrality.

Keywords: abiotic stress, biological network, chickpea, microarray

Procedia PDF Downloads 197
864 Thermal and Geometric Effects on Nonlinear Response of Incompressible Hyperelastic Cylindrical Shells

Authors: Morteza Shayan Arani, Mohammadamin Esmailzadehazimi, Mohammadreza Moeini, Mohammad Toorani, Aouni A. Lakis

Abstract:

This paper investigates the nonlinear response of thin, incompressible, hyperelastic cylindrical shells in the presence of a time-varying temperature field while considering initial geometric imperfections. The governing equations of motion are derived using an improved Donnell's shallow shell theory. The hyperelastic material is modeled using the Mooney-Rivlin model with two parameters, incorporating temperature-dependent terms. The Lagrangian method is applied to obtain the equation of motion. The resulting governing equation is addressed through the Lindstedt-Poincaré and Multiple Scale methods. The linear and nonlinear models presented in this study are verified against existing open literature, demonstrating the accuracy and reliability of the presented model. The study focuses on understanding the influence of temperature variations and geometrical imperfections on the natural frequency and amplitude-frequency response of the systems. Notably, the investigation reveals the coexistence of hardening and softening peaks in the amplitude-frequency response, which vary in magnitude depending on these parameters. Additionally, resonance peaks exhibit changes as a result of temperature and geometric imperfections.

Keywords: hyperelastic material, cylindrical shell, geometrical nonlinearity, material naolinearity, initial geometric imperfection, temperature gradient, hardening and softening

Procedia PDF Downloads 72
863 Role of Finance in Firm Innovation and Growth: Evidence from African Countries

Authors: Gebrehiwot H., Giorgis Bahita

Abstract:

Firms in Africa experience less financial market in comparison to other emerging and developed countries, thus lagging behind the rest of the world in terms of innovation and growth. Though there are different factors to be considered, underdeveloped financial systems take the lion's share in hindering firm innovation and growth in Africa. Insufficient capacity to innovate is one of the problems facing African businesses. Moreover, a critical challenge faced by firms in Africa is access to finance and the inability of financially constrained firms to grow. Only little is known about how different sources of finance affect firm innovation and growth in Africa, specifically the formal and informal finance effect on firm innovation and growth. This study's aim is to address this gap by using formal and informal finance for working capital and fixed capital and its role in firm innovation and firm growth using firm-level data from the World Bank enterprise survey 2006-2019 with a total of 5661 sample firms from 14 countries based on available data on the selected variables. Additionally, this study examines factors for accessing credit from a formal financial institution. The logit model is used to examine the effect of finance on a firm’s innovation and factors to access formal finance, while the Ordinary List Square (OLS) regression mode is used to investigate the effect of finance on firm growth. 2SLS instrumental variables are used to address the possible endogeneity problem in firm growth and finance-innovation relationships. A result from the logistic regression indicates that both formal and informal finance used for working capital and investment in fixed capital was found to have a significant positive association with product and process innovation. In the case of finance and growth, finding show that positive association of both formal and informal financing to working capital and new investment in fixed capital though the informal has positive relations to firm growth as measured by sale growth but no significant association as measured by employment growth. Formal finance shows more magnitude of effect on innovation and growth when firms use formal finance to finance investment in fixed capital, while informal finance show less compared to formal finance and this confirms previous studies as informal is mainly used for working capital in underdeveloped economies like Africa. The factors that determine credit access: Age, firm size, managerial experience, exporting, gender, and foreign ownership are found to have significant determinant factors in accessing credit from formal and informal sources among the selected sample countries.

Keywords: formal finance, informal finance, innovation, growth

Procedia PDF Downloads 76
862 Evaluation of Simple, Effective and Affordable Processing Methods to Reduce Phytates in the Legume Seeds Used for Feed Formulations

Authors: N. A. Masevhe, M. Nemukula, S. S. Gololo, K. G. Kgosana

Abstract:

Background and Study Significance: Legume seeds are important in agriculture as they are used for feed formulations due to their nutrient-dense, low-cost, and easy accessibility. Although they are important sources of energy, proteins, carbohydrates, vitamins, and minerals, they contain abundant quantities of anti-nutritive factors that reduce the bioavailability of nutrients, digestibility of proteins, and mineral absorption in livestock. However, the removal of these factors is too costly as it requires expensive state-of-the-art techniques such as high pressure and thermal processing. Basic Methodologies: The aim of the study was to investigate cost-effective methods that can be used to reduce the inherent phytates as putative antinutrients in the legume seeds. The seeds of Arachis hypogaea, Pisum sativum and Vigna radiata L. were subjected to the single processing methods viz raw seeds plus dehulling (R+D), soaking plus dehulling (S+D), ordinary cooking plus dehulling (C+D), infusion plus dehulling (I+D), autoclave plus dehulling (A+D), microwave plus dehulling (M+D) and five combined methods (S+I+D; S+A+D; I+M+D; S+C+D; S+M+D). All the processed seeds were dried, ground into powder, extracted, and analyzed on a microplate reader to determine the percentage of phytates per dry mass of the legume seeds. Phytic acid was used as a positive control, and one-way ANOVA was used to determine the significant differences between the means of the processing methods at a threshold of 0.05. Major Findings: The results of the processing methods showed the percentage yield ranges of 39.1-96%, 67.4-88.8%, and 70.2-93.8% for V. radiata, A. hypogaea and P. sativum, respectively. Though the raw seeds contained the highest contents of phytates that ranged between 0.508 and 0.527%, as expected, the R+D resulted in a slightly lower phytate percentage range of 0.469-0.485%, while other processing methods resulted in phytate contents that were below 0.35%. The M+D and S+M+D methods showed low phytate percentage ranges of 0.276-0.296% and 0.272-0.294%, respectively, where the lowest percentage yield was determined in S+M+D of P. sativum. Furthermore, these results were found to be significantly different (p<0.05). Though phytates cause micronutrient deficits as they chelate important minerals such as calcium, zinc, iron, and magnesium, their reduction may enhance nutrient bioavailability since they cannot be digested by the ruminants. Concluding Statement: Despite the nutritive aspects of the processed legume seeds, which are still in progress, the M+D and S+M+D methods, which significantly reduced the phytates in the investigated legume seeds, may be recommended to the local farmers and feed-producing industries so as to enhance animal health and production at an affordable cost.

Keywords: anti-nutritive factors, extraction, legume seeds, phytate

Procedia PDF Downloads 28
861 Performance Comparison of Microcontroller-Based Optimum Controller for Fruit Drying System

Authors: Umar Salisu

Abstract:

This research presents the development of a hot air tomatoes drying system. To provide a more efficient and continuous temperature control, microcontroller-based optimal controller was developed. The system is based on a power control principle to achieve smooth power variations depending on a feedback temperature signal of the process. An LM35 temperature sensor and LM399 differential comparator were used to measure the temperature. The mathematical model of the system was developed and the optimal controller was designed and simulated and compared with the PID controller transient response. A controlled environment suitable for fruit drying is developed within a closed chamber and is a three step process. First, the infrared light is used internally to preheated the fruit to speedily remove the water content inside the fruit for fast drying. Second, hot air of a specified temperature is blown inside the chamber to maintain the humidity below a specified level and exhaust the humid air of the chamber. Third, the microcontroller disconnects the power to the chamber after the moisture content of the fruits is removed to minimal. Experiments were conducted with 1kg of fresh tomatoes at three different temperatures (40, 50 and 60 °C) at constant relative humidity of 30%RH. The results obtained indicate that the system is significantly reducing the drying time without affecting the quality of the fruits. In the context of temperature control, the results obtained showed that the response of the optimal controller has zero overshoot whereas the PID controller response overshoots to about 30% of the set-point. Another performance metric used is the rising time; the optimal controller rose without any delay while the PID controller delayed for more than 50s. It can be argued that the optimal controller performance is preferable than that of the PID controller since it does not overshoot and it starts in good time.

Keywords: drying, microcontroller, optimum controller, PID controller

Procedia PDF Downloads 301
860 Assessing the Influence of Station Density on Geostatistical Prediction of Groundwater Levels in a Semi-arid Watershed of Karnataka

Authors: Sakshi Dhumale, Madhushree C., Amba Shetty

Abstract:

The effect of station density on the geostatistical prediction of groundwater levels is of critical importance to ensure accurate and reliable predictions. Monitoring station density directly impacts the accuracy and reliability of geostatistical predictions by influencing the model's ability to capture localized variations and small-scale features in groundwater levels. This is particularly crucial in regions with complex hydrogeological conditions and significant spatial heterogeneity. Insufficient station density can result in larger prediction uncertainties, as the model may struggle to adequately represent the spatial variability and correlation patterns of the data. On the other hand, an optimal distribution of monitoring stations enables effective coverage of the study area and captures the spatial variability of groundwater levels more comprehensively. In this study, we investigate the effect of station density on the predictive performance of groundwater levels using the geostatistical technique of Ordinary Kriging. The research utilizes groundwater level data collected from 121 observation wells within the semi-arid Berambadi watershed, gathered over a six-year period (2010-2015) from the Indian Institute of Science (IISc), Bengaluru. The dataset is partitioned into seven subsets representing varying sampling densities, ranging from 15% (12 wells) to 100% (121 wells) of the total well network. The results obtained from different monitoring networks are compared against the existing groundwater monitoring network established by the Central Ground Water Board (CGWB). The findings of this study demonstrate that higher station densities significantly enhance the accuracy of geostatistical predictions for groundwater levels. The increased number of monitoring stations enables improved interpolation accuracy and captures finer-scale variations in groundwater levels. These results shed light on the relationship between station density and the geostatistical prediction of groundwater levels, emphasizing the importance of appropriate station densities to ensure accurate and reliable predictions. The insights gained from this study have practical implications for designing and optimizing monitoring networks, facilitating effective groundwater level assessments, and enabling sustainable management of groundwater resources.

Keywords: station density, geostatistical prediction, groundwater levels, monitoring networks, interpolation accuracy, spatial variability

Procedia PDF Downloads 58
859 Enhancement of 2, 4-Dichlorophenoxyacetic Acid Solubility via Solid Dispersion Technique

Authors: Tamer M. Shehata, Heba S. Elsewedy, Mashel Al Dosary, Alaa Elshehry, Mohamed A. Khedr, Maged E. Mohamed

Abstract:

Objective: 2,4-Dichlorophenoxy acetic acid (2,4-D) is a well-known herbicide widely used as a weed killer. Recently, 2,4-D was rediscovered as a new anti-inflammatory agent through in silico as well as in-vivo experiments. However, poor solubility of 2,4-D could represent a problems during pharmaceutical development in addition to lower bioavailability. Solid dispersion (SD) refers to a group of solid products consisting of at least two different components, usually a hydrophobic drug and hydrophilic matrix. It is well known technique for enhancing drug solubility. Therefore, selecting SD as a tool for enhancing 2,4-D could be of great interest to the formulator. Method: In our project, several polymers were investigated (such as PEG, HPMC, citric acid and others) in addition to drug polymer ratios and its effect on solubility. Evaluation of drug polymer interaction was investigated through both Fourier Transform Infrared (FTIR) and Differential Scanning Calorimetry (DSC). Finally, in-vivo evaluation was performed for the best selected preparation through inflammatory response of rat induce hind paw. Results: Results indicated that, citric acid 2,4-D and in ratio of 0.75 : 1 showed modified the dissolution profile of the drug. The FTIR resltes indicated no significant chemical interaction, however DSC showed shifting of the drug melting point. Finally, Carragenan induced rat hind paw edema showed significant reduction of the drug solid dispersion in comparison to the pure drug, indicating rapid and complete absorption of the drug in solid dispersion form. Conclusion: Solid dispersion technology can be utilized efficiently to enhance the solubility of 2,4-D.

Keywords: solid dispersion, 2, 4-D solubility, carragenan induced edema

Procedia PDF Downloads 453
858 lncRNA Gene Expression Profiling Analysis by TCGA RNA-Seq Data of Breast Cancer

Authors: Xiaoping Su, Gabriel G. Malouf

Abstract:

Introduction: Breast cancer is a heterogeneous disease that can be classified in 4 subgroups using transcriptional profiling. The role of lncRNA expression in human breast cancer biology, prognosis, and molecular classification remains unknown. Methods and results: Using an integrative comprehensive analysis of lncRNA, mRNA and DNA methylation in 900 breast cancer patients from The Cancer Genome Atlas (TCGA) project, we unraveled the molecular portraits of 1,700 expressed lncRNA. Some of those lncRNAs (i.e, HOTAIR) are previously reported and others are novel (i.e, HOTAIRM1, MAPT-AS1). The lncRNA classification correlated well with the PAM50 classification for basal-like, Her-2 enriched and luminal B subgroups, in contrast to the luminal A subgroup which behaved differently. Importantly, estrogen receptor (ESR1) expression was associated with distinct lncRNA networks in lncRNA clusters III and IV. Gene set enrichment analysis for cis- and trans-acting lncRNA showed enrichment for breast cancer signatures driven by breast cancer master regulators. Almost two third of those lncRNA were marked by enhancer chromatin modifications (i.e., H3K27ac), suggesting that lncRNA expression may result in increased activity of neighboring genes. Differential analysis of gene expression profiling data showed that lncRNA HOTAIRM1 was significantly down-regulated in basal-like subtype, and DNA methylation profiling data showed that lncRNA HOTAIRM1 was highly methylated in basal-like subtype. Thus, our integrative analysis of gene expression and DNA methylation strongly suggested that lncRNA HOTAIRM1 should be a tumor suppressor in basal-like subtype. Conclusion and significance: Our study depicts the first lncRNA molecular portrait of breast cancer and shows that lncRNA HOTAIRM1 might be a novel tumor suppressor.

Keywords: lncRNA profiling, breast cancer, HOTAIRM1, tumor suppressor

Procedia PDF Downloads 105
857 Physiological Normoxia and Cellular Adhesion of Diffuse Large B-Cell Lymphoma Primary Cells: Real-Time PCR and Immunohistochemistry Study

Authors: Kamila Duś-Szachniewicz, Kinga M. Walaszek, Paweł Skiba, Paweł Kołodziej, Piotr Ziółkowski

Abstract:

Cell adhesion is of fundamental importance in the cell communication, signaling, and motility, and its dysfunction occurs prevalently during cancer progression. The knowledge of the molecular and cellular processes involved in abnormalities in cancer cells adhesion has greatly increased, and it has been focused mainly on cellular adhesion molecules (CAMs) and tumor microenvironment. Unfortunately, most of the data regarding CAMs expression relates to study on cells maintained in standard oxygen condition of 21%, while the emerging evidence suggests that culturing cells in ambient air is far from physiological. In fact, oxygen in human tissues ranges from 1 to 11%. The aim of this study was to compare the effects of physiological lymph node normoxia (5% O2), and hyperoxia (21% O2) on the expression of cellular adhesion molecules of primary diffuse large B-cell lymphoma cells (DLBCL) isolated from 10 lymphoma patients. Quantitative RT-PCR and immunohistochemistry were used to confirm the differential expression of several CAMs, including ICAM, CD83, CD81, CD44, depending on the level of oxygen. Our findings also suggest that DLBCL cells maintained at ambient O2 (21%) exhibit reduced growth rate and migration ability compared to the cells growing in normoxia conditions. Taking into account all the observations, we emphasize the need to identify the optimal human cell culture conditions mimicking the physiological aspects of tumor growth and differentiation.

Keywords: adhesion molecules, diffuse large B-cell lymphoma, physiological normoxia, quantitative RT-PCR

Procedia PDF Downloads 278
856 Investigation of Mangrove Area Effects on Hydrodynamic Conditions of a Tidal Dominant Strait Near the Strait of Hormuz

Authors: Maryam Hajibaba, Mohsen Soltanpour, Mehrnoosh Abbasian, S. Abbas Haghshenas

Abstract:

This paper aims to evaluate the main role of mangroves forests on the unique hydrodynamic characteristics of the Khuran Strait (KS) in the Persian Gulf. Investigation of hydrodynamic conditions of KS is vital to predict and estimate sedimentation and erosion all over the protected areas north of Qeshm Island. KS (or Tang-e-Khuran) is located between Qeshm Island and the Iranian mother land and has a minimum width of approximately two kilometers. Hydrodynamics of the strait is dominated by strong tidal currents of up to 2 m/s. The bathymetry of the area is dynamic and complicated as 1) strong currents do exist in the area which lead to seemingly sand dune movements in the middle and southern parts of the strait, and 2) existence a vast area with mangrove coverage next to the narrowest part of the strait. This is why ordinary modeling schemes with normal mesh resolutions are not capable for high accuracy estimations of current fields in the KS. A comprehensive set of measurements were carried out with several components, to investigate the hydrodynamics and morpho-dynamics of the study area, including 1) vertical current profiling at six stations, 2) directional wave measurements at four stations, 3) water level measurements at six stations, 4) wind measurements at one station, and 5) sediment grab sampling at 100 locations. Additionally, a set of periodic hydrographic surveys was included in the program. The numerical simulation was carried out by using Delft3D – Flow Module. Model calibration was done by comparing water levels and depth averaged velocity of currents against available observational data. The results clearly indicate that observed data and simulations only fit together if a realistic perspective of the mangrove area is well captured by the model bathymetry data. Generating unstructured grid by using RGFGRID and QUICKIN, the flow model was driven with water level time-series at open boundaries. Adopting the available field data, the key role of mangrove area on the hydrodynamics of the study area can be studied. The results show that including the accurate geometry of the mangrove area and consideration of its sponge-like behavior are the key aspects through which a realistic current field can be simulated in the KS.

Keywords: Khuran Strait, Persian Gulf, tide, current, Delft3D

Procedia PDF Downloads 210
855 Development of Precise Ephemeris Generation Module for Thaichote Satellite Operations

Authors: Manop Aorpimai, Ponthep Navakitkanok

Abstract:

In this paper, the development of the ephemeris generation module used for the Thaichote satellite operations is presented. It is a vital part of the flight dynamics system, which comprises, the orbit determination, orbit propagation, event prediction and station-keeping maneuver modules. In the generation of the spacecraft ephemeris data, the estimated orbital state vector from the orbit determination module is used as an initial condition. The equations of motion are then integrated forward in time to predict the satellite states. The higher geopotential harmonics, as well as other disturbing forces, are taken into account to resemble the environment in low-earth orbit. Using a highly accurate numerical integrator based on the Burlish-Stoer algorithm the ephemeris data can be generated for long-term predictions, by using a relatively small computation burden and short calculation time. Some events occurring during the prediction course that are related to the mission operations, such as the satellite’s rise/set viewed from the ground station, Earth and Moon eclipses, the drift in ground track as well as the drift in the local solar time of the orbital plane are all detected and reported. When combined with other modules to form a flight dynamics system, this application is aimed to be applied for the Thaichote satellite and successive Thailand’s Earth-observation missions.

Keywords: flight dynamics system, orbit propagation, satellite ephemeris, Thailand’s Earth Observation Satellite

Procedia PDF Downloads 377
854 First Formaldehyde Retrieval Using the Raw Data Obtained from Pandora in Seoul: Investigation of the Temporal Characteristics and Comparison with Ozone Monitoring Instrument Measurement

Authors: H. Lee, J. Park

Abstract:

In this present study, for the first time, we retrieved the Formaldehyde (HCHO) Vertical Column Density (HCHOVCD) using Pandora instruments in Seoul, a megacity in northeast Asia, for the period between 2012 and 2014 and investigated the temporal characteristics of HCHOVCD. HCHO Slant Column Density (HCHOSCD) was obtained using the Differential Optical Absorption Spectroscopy (DOAS) method. HCHOSCD was converted to HCHOVCD using geometric Air Mass Factor (AMFG) as Pandora is the direct-sun measurement. The HCHOVCDs is low at 12:00 Local Time (LT) and is high in the morning (10:00 LT) and late afternoon (16:00 LT) except for winter. The maximum (minimum) values of Pandora HCHOVCD are 2.68×1016 (1.63×10¹⁶), 3.19×10¹⁶ (2.23×10¹⁶), 2.00×10¹⁶ (1.26×10¹⁶), and 1.63×10¹⁶ (0.82×10¹⁶) molecules cm⁻² in spring, summer, autumn, and winter, respectively. In terms of seasonal variations, HCHOVCD was high in summer and low in winter which implies that photo-oxidation plays an important role in HCHO production in Seoul. In comparison with the Ozone Monitoring Instrument (OMI) measurements, the HCHOVCDs from the OMI are lower than those from Pandora. The correlation coefficient (R) between monthly HCHOVCDs values from Pandora and OMI is 0.61, with slop of 0.35. Furthermore, to understand HCHO mixing ratio within Planetary Boundary Layer (PBL) in Seoul, we converted Pandora HCHOVCDs to HCHO mixing ratio in the PBL using several meteorological input data from the Atmospheric InfraRed Sounder (AIRS). Seasonal HCHO mixing ratio in PBL converted from Pandora (OMI) HCHOVCDs are estimated to be 6.57 (5.17), 7.08 (6.68), 7.60 (4.70), and 5.00 (4.76) ppbv in spring, summer, autumn, and winter, respectively.

Keywords: formaldehyde, OMI, Pandora, remote sensing

Procedia PDF Downloads 150
853 Allometric Models for Biomass Estimation in Savanna Woodland Area, Niger State, Nigeria

Authors: Abdullahi Jibrin, Aishetu Abdulkadir

Abstract:

The development of allometric models is crucial to accurate forest biomass/carbon stock assessment. The aim of this study was to develop a set of biomass prediction models that will enable the determination of total tree aboveground biomass for savannah woodland area in Niger State, Nigeria. Based on the data collected through biometric measurements of 1816 trees and destructive sampling of 36 trees, five species specific and one site specific models were developed. The sample size was distributed equally between the five most dominant species in the study site (Vitellaria paradoxa, Irvingia gabonensis, Parkia biglobosa, Anogeissus leiocarpus, Pterocarpus erinaceous). Firstly, the equations were developed for five individual species. Secondly these five species were mixed and were used to develop an allometric equation of mixed species. Overall, there was a strong positive relationship between total tree biomass and the stem diameter. The coefficient of determination (R2 values) ranging from 0.93 to 0.99 P < 0.001 were realised for the models; with considerable low standard error of the estimates (SEE) which confirms that the total tree above ground biomass has a significant relationship with the dbh. The F-test value for the biomass prediction models were also significant at p < 0.001 which indicates that the biomass prediction models are valid. This study recommends that for improved biomass estimates in the study site, the site specific biomass models should preferably be used instead of using generic models.

Keywords: allometriy, biomass, carbon stock , model, regression equation, woodland, inventory

Procedia PDF Downloads 448
852 Development of Gully Erosion Prediction Model in Sokoto State, Nigeria, using Remote Sensing and Geographical Information System Techniques

Authors: Nathaniel Bayode Eniolorunda, Murtala Abubakar Gada, Sheikh Danjuma Abubakar

Abstract:

The challenge of erosion in the study area is persistent, suggesting the need for a better understanding of the mechanisms that drive it. Thus, the study evolved a predictive erosion model (RUSLE_Sok), deploying Remote Sensing (RS) and Geographical Information System (GIS) tools. The nature and pattern of the factors of erosion were characterized, while soil losses were quantified. Factors’ impacts were also measured, and the morphometry of gullies was described. Data on the five factors of RUSLE and distances to settlements, rivers and roads (K, R, LS, P, C, DS DRd and DRv) were combined and processed following standard RS and GIS algorithms. Harmonized World Soil Data (HWSD), Shuttle Radar Topographical Mission (SRTM) image, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Sentinel-2 image accessed and processed within the Google Earth Engine, road network and settlements were the data combined and calibrated into the factors for erosion modeling. A gully morphometric study was conducted at some purposively selected sites. Factors of soil erosion showed low, moderate, to high patterns. Soil losses ranged from 0 to 32.81 tons/ha/year, classified into low (97.6%), moderate (0.2%), severe (1.1%) and very severe (1.05%) forms. The multiple regression analysis shows that factors statistically significantly predicted soil loss, F (8, 153) = 55.663, p < .0005. Except for the C-Factor with a negative coefficient, all other factors were positive, with contributions in the order of LS>C>R>P>DRv>K>DS>DRd. Gullies are generally from less than 100m to about 3km in length. Average minimum and maximum depths at gully heads are 0.6 and 1.2m, while those at mid-stream are 1 and 1.9m, respectively. The minimum downstream depth is 1.3m, while that for the maximum is 4.7m. Deeper gullies exist in proximity to rivers. With minimum and maximum gully elevation values ranging between 229 and 338m and an average slope of about 3.2%, the study area is relatively flat. The study concluded that major erosion influencers in the study area are topography and vegetation cover and that the RUSLE_Sok well predicted soil loss more effectively than ordinary RUSLE. The adoption of conservation measures such as tree planting and contour ploughing on sloppy farmlands was recommended.

Keywords: RUSLE_Sok, Sokoto, google earth engine, sentinel-2, erosion

Procedia PDF Downloads 75
851 A Fast Calculation Approach for Position Identification in a Distance Space

Authors: Dawei Cai, Yuya Tokuda

Abstract:

The market of localization based service (LBS) is expanding. The acquisition of physical location is the fundamental basis for LBS. GPS, the de facto standard for outdoor localization, does not work well in indoor environment due to the blocking of signals by walls and ceiling. To acquire high accurate localization in an indoor environment, many techniques have been developed. Triangulation approach is often used for identifying the location, but a heavy and complex computation is necessary to calculate the location of the distances between the object and several source points. This computation is also time and power consumption, and not favorable to a mobile device that needs a long action life with battery. To provide a low power consumption approach for a mobile device, this paper presents a fast calculation approach to identify the location of the object without online solving solutions to simultaneous quadratic equations. In our approach, we divide the location identification into two parts, one is offline, and other is online. In offline mode, we make a mapping process that maps the location area to distance space and find a simple formula that can be used to identify the location of the object online with very light computation. The characteristic of the approach is a good tradeoff between the accuracy and computational amount. Therefore, this approach can be used in smartphone and other mobile devices that need a long work time. To show the performance, some simulation experimental results are provided also in the paper.

Keywords: indoor localization, location based service, triangulation, fast calculation, mobile device

Procedia PDF Downloads 174
850 Study of Superconducting Patch Printed on Electric-Magnetic Substrates Materials

Authors: Fortaki Tarek, S. Bedra

Abstract:

In this paper, the effects of both uniaxial anisotropy in the substrate and high Tc superconducting patch on the resonant frequency, half-power bandwidth, and radiation patterns are investigated using an electric field integral equation and the spectral domain Green’s function. The analysis has been based on a full electromagnetic wave model with London’s equations and the Gorter-Casimir two-fluid model has been improved to investigate the resonant and radiation characteristics of high Tc superconducting rectangular microstrip patch in the case where the patch is printed on electric-magnetic uniaxially anisotropic substrate materials. The stationary phase technique has been used for computing the radiation electric field. The obtained results demonstrate a considerable improvement in the half-power bandwidth, of the rectangular microstrip patch, by using a superconductor patch instead of a perfect conductor one. Further results show that high Tc superconducting rectangular microstrip patch on the uniaxial substrate with properly selected electric and magnetic anisotropy ratios is more advantageous than the one on the isotropic substrate by exhibiting wider bandwidth and radiation characteristic. This behavior agrees with that discovered experimentally for superconducting patches on isotropic substrates. The calculated results have been compared with measured one available in the literature and excellent agreement has been found.

Keywords: high Tc superconducting microstrip patch, electric-magnetic anisotropic substrate, Galerkin method, surface complex impedance with boundary conditions, radiation patterns

Procedia PDF Downloads 444
849 Numerical and Experimental Investigation of Airflow Inside Car Cabin

Authors: Mokhtar Djeddou, Amine Mehel, Georges Fokoua, Anne Tanière, Patrick Chevrier

Abstract:

Commuters' exposure to air pollution, particularly to particle matter, inside vehicles is a significant health issue. Assessing particles concentrations and characterizing their distribution is an important first step to understand and propose solutions to improve car cabin air quality. It is known that particles dynamics is intimately driven by particles-turbulence interactions. In order to analyze and model pollutants distribution inside the car the cabin, it is crucialto examine first the single-phase flow topology and turbulence characteristics. Within this context, Computational Fluid Dynamics (CFD) simulations were conducted to model airflow inside a full-scale car cabin using Reynolds Averaged Navier-Stokes (RANS)approach combined with the first order Realizable k- εmodel to close the RANS equations. To validate the numerical model, a campaign of velocity field measurements at different locations in the front and back of the car cabin has been carried out using hot-wire anemometry technique. Comparison between numerical and experimental results shows a good agreement of velocity profiles. Additionally, visualization of streamlines shows the formation of jet flow developing out of the dashboard air vents and the formation of large vortex structures, particularly in the back seats compartment. These vortex structures could play a key role in the accumulation and clustering of particles in a turbulent flow

Keywords: car cabin, CFD, hot wire anemometry, vortical flow

Procedia PDF Downloads 291
848 A Practical and Theoretical Study on the Electromotor Bearing Defect Detection in a Wet Mill Using the Vibration Analysis Method and Defect Length Calculation in the Bearing

Authors: Mostafa Firoozabadi, Alireza Foroughi Nematollahi

Abstract:

Wet mills are one of the most important equipment in the mining industries and any defect occurrence in them can stop the production line and it can make some irrecoverable damages to the system. Electromotors are the significant parts of a mill and their monitoring is a necessary process to prevent unwanted defects. The purpose of this study is to investigate the Electromotor bearing defects, theoretically and practically, using the vibration analysis method. When a defect happens in a bearing, it can be transferred to the other parts of the equipment like inner ring, outer ring, balls, and the bearing cage. The electromotor defects source can be electrical or mechanical. Sometimes, the electrical and mechanical defect frequencies are modulated and the bearing defect detection becomes difficult. In this paper, to detect the electromotor bearing defects, the electrical and mechanical defect frequencies are extracted firstly. Then, by calculating the bearing defect frequencies, and the spectrum and time signal analysis, the bearing defects are detected. In addition, the obtained frequency determines that the bearing level in which the defect has happened and by comparing this level to the standards it determines the bearing remaining lifetime. Finally, the defect length is calculated by theoretical equations to demonstrate that there is no need to replace the bearing. The results of the proposed method, which has been implemented on the wet mills in the Golgohar mining and industrial company in Iran, show that this method is capable of detecting the electromotor bearing defects accurately and on time.

Keywords: bearing defect length, defect frequency, electromotor defects, vibration analysis

Procedia PDF Downloads 502
847 Role of Pulp Volume Method in Assessment of Age and Gender in Lucknow, India, an Observational Study

Authors: Anurag Tripathi, Sanad Khandelwal

Abstract:

Age and gender determination are required in forensic for victim identification. There is secondary dentine deposition throughout life, resulting in decreased pulp volume and size. Evaluation of pulp volume using Cone Beam Computed Tomography (CBCT)is a noninvasive method to evaluate the age and gender of an individual. The study was done to evaluate the efficacy of pulp volume method in the determination of age and gender.Aims/Objectives: The study was conducted to estimate age and determine sex by measuring tooth pulp volume with the help of CBCT. An observational study of one year duration on CBCT data of individuals was conducted in Lucknow. Maxillary central incisors (CI) and maxillary canine (C) of the randomly selected samples were assessed for measurement of pulp volume using a software. Statistical analysis: Chi Square Test, Arithmetic Mean, Standard deviation, Pearson’s Correlation, Linear & Logistic regression analysis. Results: The CBCT data of Ninety individuals with age range between 18-70 years was evaluated for pulp volume of central incisor and canine (CI & C). The Pearson correlation coefficient between the tooth pulp volume (CI & C) and chronological age suggested that pulp volume decreased with age. The validation of the equations for sex determination showed higher prediction accuracy for CI (56.70%) and lower for C (53.30%).Conclusion: Pulp volume obtained from CBCT is a reliable indicator for age estimation and gender prediction.

Keywords: forensic, dental age, pulp volume, cone beam computed tomography

Procedia PDF Downloads 99
846 Nanomechanical Devices Vibrating at Microwave Frequencies in Simple Liquids

Authors: Debadi Chakraborty, John E. Sader

Abstract:

Nanomechanical devices have emerged as a versatile platform for a host of applications due to their extreme sensitivity to environmental conditions. For example, mass measurements with sensitivity at the atomic level have recently been demonstrated. Ultrafast laser spectroscopy coherently excite the vibrational modes of metal nanoparticles and permits precise measurement of the vibration characteristics as a function of nanoparticle shape, size and surrounding environment. This study reports that the vibration of metal nanoparticles in simple liquids, like water and glycerol are not described by conventional fluid mechanics, i.e., Navier Stokes equations. The intrinsic molecular relaxation processes in the surrounding liquid are found to have a profound effect on the fluid-structure interaction of mechanical devices at nanometre scales. Theoretical models have been developed based on the non-Newtonian viscoelastic fluid-structure interaction theory to investigate the vibration of nanoparticles immersed in simple fluids. The utility of this theoretical framework is demonstrated by comparison to measurements on single nanowires and ensembles of metal rods. This study provides a rigorous foundation for the use of metal nanoparticles as ultrasensitive mechanical sensors in fluid and opens a new paradigm for understanding extremely high frequency fluid mechanics, nanoscale sensing technologies, and biophysical processes.

Keywords: fluid-structure interaction, nanoparticle vibration, ultrafast laser spectroscopy, viscoelastic damping

Procedia PDF Downloads 274
845 Aerodynamic Modelling of Unmanned Aerial System through Computational Fluid Dynamics: Application to the UAS-S45 Balaam

Authors: Maxime A. J. Kuitche, Ruxandra M. Botez, Arthur Guillemin

Abstract:

As the Unmanned Aerial Systems have found diverse utilities in both military and civil aviation, the necessity to obtain an accurate aerodynamic model has shown an enormous growth of interest. Recent modeling techniques are procedures using optimization algorithms and statistics that require many flight tests and are therefore extremely demanding in terms of costs. This paper presents a procedure to estimate the aerodynamic behavior of an unmanned aerial system from a numerical approach using computational fluid dynamic analysis. The study was performed using an unstructured mesh obtained from a grid convergence analysis at a Mach number of 0.14, and at an angle of attack of 0°. The flow around the aircraft was described using a standard k-ω turbulence model. Thus, the Reynold Averaged Navier-Stokes (RANS) equations were solved using ANSYS FLUENT software. The method was applied on the UAS-S45 designed and manufactured by Hydra Technologies in Mexico. The lift, the drag, and the pitching moment coefficients were obtained at different angles of attack for several flight conditions defined in terms of altitudes and Mach numbers. The results obtained from the Computational Fluid Dynamics analysis were compared with the results obtained by using the DATCOM semi-empirical procedure. This comparison has indicated that our approach is highly accurate and that the aerodynamic model obtained could be useful to estimate the flight dynamics of the UAS-S45.

Keywords: aerodynamic modelling, CFD Analysis, ANSYS FLUENT, UAS-S45

Procedia PDF Downloads 375
844 Capillary Wave Motion and Atomization Induced by Surface Acoustic Waves under the Navier-Slip Condition at the Wall

Authors: Jaime E. Munoz, Jose C. Arcos, Oscar E. Bautista, Ivan E. Campos

Abstract:

The influence of slippage phenomenon over the destabilization and atomization mechanisms induced via surface acoustic waves on a Newtonian, millimeter-sized, drop deposited on a hydrophilic substrate is studied theoretically. By implementing the Navier-slip model and a lubrication-type approach into the equations which govern the dynamic response of a drop exposed to acoustic stress, a highly nonlinear evolution equation for the air-liquid interface is derived in terms of the acoustic capillary number and the slip coefficient. By numerically solving such an evolution equation, the Spatio-temporal deformation of the drop's free surface is obtained; in this context, atomization of the initial drop into micron-sized droplets is predicted at our numerical model once the acoustically-driven capillary waves reach a critical value: the instability length. Our results show slippage phenomenon at systems with partial and complete wetting favors the formation of capillary waves at the free surface, which traduces in a major volume of liquid being atomized in comparison to the no-slip case for a given time interval. In consequence, slippage at the wall possesses the capability to affect and improve the atomization rate for a drop exposed to a high-frequency acoustic field.

Keywords: capillary instability, lubrication theory, navier-slip condition, SAW atomization

Procedia PDF Downloads 156
843 Land Cover, Land Surface Temperature, and Urban Heat Island Effects in Tropical Sub Saharan City of Accra

Authors: Eric Mensah

Abstract:

The effects of rapid urbanisation of tropical sub-Saharan developing cities on local and global climate are of great concern due to the negative impacts of Urban Heat Island (UHI) effects. The importance of urban parks, vegetative cover and forest reserves in these tropical cities have been undervalued with a rapid degradation and loss of these vegetative covers to urban developments which continue to cause an increase in daily mean temperatures and changes to local climatic conditions. Using Landsat data of the same months and period intervals, the spatial variations of land cover changes, temperature, and vegetation were examined to determine how vegetation improves local temperature and the effects of urbanisation on daily mean temperatures over the past 12 years. The remote sensing techniques of maximum likelihood supervised classification, land surface temperature retrieval technique, and normalised differential vegetation index techniques were used to analyse and create the land use land cover (LULC), land surface temperature (LST), and vegetation and non-vegetation cover maps respectively. Results from the study showed an increase in daily mean temperature by 0.80 °C as a result of rapid increase in urban area by 46.13 sq. km and loss of vegetative cover by 46.24 sq. km between 2005 and 2017. The LST map also shows the existence of UHI within the urban areas of Accra, the potential mitigating effects offered by the existence of forest and vegetative cover as demonstrated by the existence of cool islands around the Achimota ecological forest and University of Ghana botanical gardens areas.

Keywords: land surface temperature, climate, remote sensing, urbanisation

Procedia PDF Downloads 320
842 Enhancing of Flame Retardancy and Hydrophobicity of Cotton by Coating a Phosphorous, Silica, Nitrogen Containing Bio-Flame Retardant Liquid for Upholstery Application

Authors: Li Maksym, Prabhakar M. N., Jung-Il Song

Abstract:

In this study, a flame retardant and hydrophobic cotton textile were prepared by utilizing a renewable halogen-free bio-based solution based on chitosan, urea, and phytic acid, named bio-flame retardant liquid (BFL), through facile dip-coating technology. Deposition of BFL on the surface of the cotton was confirmed by Fourier-transform infrared spectroscopy and scanning electron microscope coupled with energy-dispersive X-ray spectrometer. Thermal and flame retardant properties of the cottons were studied with thermogravimetric analysis, differential scanning calorimetry, vertical flame test, cone calorimeter test. Only with 8.8% of dry weight gain treaded cotton showed self-extinguish properties during fire test. Cone calorimeter test revealed a reduction of peak heat release rate from 203.2 to 21 kW/m2 and total heat release from 20.1 to 2.8 MJ/m2. Incidentally, BFL remarkably improved the thermal stability of flame retardant cotton from expressed in an enhanced amount of char at 700 °C (6.7 vs. 33.5%). BFL initiates the formation of phosphorous and silica contain char layer whichrestrains the propagation of heat and oxygen to unburned materialstrengthen by the liberation of non-combustible gases, which reduce the concentration of flammable volatiles and oxygen hence reducing the flammability of cotton. In addition, hydrophobicity and specific ignition test for upholstery application were performed. In conjunction, the proposed flame retardant cotton is potentially translatable to be utilized as upholstery materials in public transport.

Keywords: cotton farbic, flame retardancy, surface coating, intumescent mechanism

Procedia PDF Downloads 92
841 Multi-Modal Film Boiling Simulations on Adaptive Octree Grids

Authors: M. Wasy Akhtar

Abstract:

Multi-modal film boiling simulations are carried out on adaptive octree grids. The liquid-vapor interface is captured using the volume-of-fluid framework adjusted to account for exchanges of mass, momentum, and energy across the interface. Surface tension effects are included using a volumetric source term in the momentum equations. The phase change calculations are conducted based on the exact location and orientation of the interface; however, the source terms are calculated using the mixture variables to be consistent with the one field formulation used to represent the entire fluid domain. The numerical model on octree representation of the computational grid is first verified using test cases including advection tests in severely deforming velocity fields, gravity-based instabilities and bubble growth in uniformly superheated liquid under zero gravity. The model is then used to simulate both single and multi-modal film boiling simulations. The octree grid is dynamically adapted in order to maintain the highest grid resolution on the instability fronts using markers of interface location, volume fraction, and thermal gradients. The method thus provides an efficient platform to simulate fluid instabilities with or without phase change in the presence of body forces like gravity or shear layer instabilities.

Keywords: boiling flows, dynamic octree grids, heat transfer, interface capturing, phase change

Procedia PDF Downloads 246
840 Clay Effect on PET/Clay and PEN/Clay Nanocomposites Properties

Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachour

Abstract:

Reinforced plastics or nanocomposites have attracted considerable attention in scientific and industrial fields because a very small amount of clay can significantly improve the properties of the polymer. The polymeric matrices used in this work are two saturated polyesters, i.e., polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). The success of processing compatible blends, based on poly(ethylene terephthalate) (PET)/poly(ethylene naphthalene) (PEN)/clay nanocomposites in one step by reactive melt extrusion is described. Untreated clay was first purified and functionalized ‘in situ’ with a compound based on an organic peroxide/ sulfur mixture and (tetramethylthiuram disulfide) as the activator for sulfur. The PET and PEN materials were first separately mixed in the molten state with functionalized clay. The PET/4 wt% clay and PEN/7.5 wt% clay compositions showed total exfoliation. These compositions, denoted nPET and nPEN, respectively, were used to prepare new n(PET/PEN) nanoblends in the same mixing batch. The n(PET/PEN) nanoblends were compared to neat PET/PEN blends. The blends and nanocomposites were characterized using various techniques. Microstructural and nanostructural properties were investigated. Fourier transform infrared spectroscopy (FTIR) results showed that the exfoliation of tetrahedral clay nanolayers is complete, and the octahedral structure totally disappears. It was shown that total exfoliation, confirmed by wide-angle X-ray scattering (WAXS) measurements, contributes to the enhancement of impact strength and tensile modulus. In addition, WAXS results indicated that all samples are amorphous. The differential scanning calorimetry (DSC) study indicated the occurrence of one glass transition temperature Tg, one crystallization temperature Tc and one melting temperature Tm for every composition.

Keywords: exfoliation, DRX, DSC, montmorillonite, nanocomposites, PEN, PET, plastograph, reactive melt-mixing

Procedia PDF Downloads 326
839 A Content Analysis of Sustainability Reporting to Frame the Heterogeneity in Corporate Environment Sustainability Practices

Authors: Venkataraman Sankaranarayanan, Sougata Ray

Abstract:

While extant research has examined many aspects of differential corporate environmental outcomes and behavior, a holistic and integrated view of heterogeneity in corporate environment sustainability (CES) practices remains a puzzle to be fully unraveled – its extent and nature, its relationship to macro or micro level influences, or strategic orientations. Such a perspective would be meaningful for the field given notable strides in CES practices and the corporate social responsibility agenda over the last two decades, in the backdrop of altered global socio-political sensitivities and technological advances. To partly address this gap, this exploratory research adopted a content analysis approach to code patterns in the sustainability disclosures of the 160 largest global firms spread over 8 years. The sample of firms spanned seven industries, nine countries and three continents thereby presenting data rich and diverse enough in several dimensions to be representative of global heterogeneity in CES practices. Through a factor analysis of the coded data, four strategic CES orientations were extracted through the analysis, that effectively straddles most of the variation observed in current CES practices – one that seeks to reduce environmental damage on account of the firm’s operations, another that prioritizes minimalism, a third that focuses on broader ecological status quo, and a final one that champions the ‘business of green’, extending the CES agenda beyond the firm’s boundaries. These environment sustainability strategy orientations are further examined to elicit prominent patterns and explore plausible antecedents.

Keywords: corporate social responsibility, corporate sustainability, environmental management, heterogeneity, strategic orientation

Procedia PDF Downloads 334
838 Characterization of Printed Reflectarray Elements on Variable Substrate Thicknesses

Authors: M. Y. Ismail, Arslan Kiyani

Abstract:

Narrow bandwidth and high loss performance limits the use of reflectarray antennas in some applications. This article reports on the feasibility of employing strategic reflectarray resonant elements to characterize the reflectivity performance of reflectarrays in X-band frequency range. Strategic reflectarray resonant elements incorporating variable substrate thicknesses ranging from 0.016λ to 0.052λ have been analyzed in terms of reflection loss and reflection phase performance. The effect of substrate thickness has been validated by using waveguide scattering parameter technique. It has been demonstrated that as the substrate thickness is increased from 0.508mm to 1.57mm the measured reflection loss of dipole element decreased from 5.66dB to 3.70dB with increment in 10% bandwidth of 39MHz to 64MHz. Similarly the measured reflection loss of triangular loop element is decreased from 20.25dB to 7.02dB with an increment in 10% bandwidth of 12MHz to 23MHz. The results also show a significant decrease in the slope of reflection phase curve as well. A Figure of Merit (FoM) has also been defined for the comparison of static phase range of resonant elements under consideration. Moreover, a novel numerical model based on analytical equations has been established incorporating the material properties of dielectric substrate and electrical properties of different reflectarray resonant elements to obtain the progressive phase distribution for each individual reflectarray resonant element.

Keywords: numerical model, reflectarray resonant elements, scattering parameter measurements, variable substrate thickness

Procedia PDF Downloads 275