Search results for: assessment for learning
9636 Video-Based System for Support of Robot-Enhanced Gait Rehabilitation of Stroke Patients
Authors: Matjaž Divjak, Simon Zelič, Aleš Holobar
Abstract:
We present a dedicated video-based monitoring system for quantification of patient’s attention to visual feedback during robot assisted gait rehabilitation. Two different approaches for eye gaze and head pose tracking are tested and compared. Several metrics for assessment of patient’s attention are also presented. Experimental results with healthy volunteers demonstrate that unobtrusive video-based gaze tracking during the robot-assisted gait rehabilitation is possible and is sufficiently robust for quantification of patient’s attention and assessment of compliance with the rehabilitation therapy.Keywords: video-based attention monitoring, gaze estimation, stroke rehabilitation, user compliance
Procedia PDF Downloads 4269635 Seismic Fragility Assessment of Strongback Steel Braced Frames Subjected to Near-Field Earthquakes
Authors: Mohammadreza Salek Faramarzi, Touraj Taghikhany
Abstract:
In this paper, seismic fragility assessment of a recently developed hybrid structural system, known as the strongback system (SBS) is investigated. In this system, to mitigate the occurrence of the soft-story mechanism and improve the distribution of story drifts over the height of the structure, an elastic vertical truss is formed. The strengthened members of the braced span are designed to remain substantially elastic during levels of excitation where soft-story mechanisms are likely to occur and impose a nearly uniform story drift distribution. Due to the distinctive characteristics of near-field ground motions, it seems to be necessary to study the effect of these records on seismic performance of the SBS. To this end, a set of 56 near-field ground motion records suggested by FEMA P695 methodology is used. For fragility assessment, nonlinear dynamic analyses are carried out in OpenSEES based on the recommended procedure in HAZUS technical manual. Four damage states including slight, moderate, extensive, and complete damage (collapse) are considered. To evaluate each damage state, inter-story drift ratio and floor acceleration are implemented as engineering demand parameters. Further, to extend the evaluation of the collapse state of the system, a different collapse criterion suggested in FEMA P695 is applied. It is concluded that SBS can significantly increase the collapse capacity and consequently decrease the collapse risk of the structure during its life time. Comparing the observing mean annual frequency (MAF) of exceedance of each damage state against the allowable values presented in performance-based design methods, it is found that using the elastic vertical truss, improves the structural response effectively.Keywords: IDA, near-fault, probabilistic performance assessment, seismic fragility, strongback system, uncertainty
Procedia PDF Downloads 1159634 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach
Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas
Abstract:
Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)
Procedia PDF Downloads 739633 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors
Authors: Sudhir Kumar Singh, Debashish Chakravarty
Abstract:
Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.Keywords: finite element method, geotechnical engineering, machine learning, slope stability
Procedia PDF Downloads 1019632 The Importance and Necessity for Acquiring Pedagogical Skills by the Practice Tutors for the Training of the General Nurses
Authors: Maria Luiza Fulga, Georgeta Truca, Mihaela Alexandru, Andriescu Mariana, Crin Marcean
Abstract:
The significance of nursing as a subject in the post-secondary healthcare curriculum is a major. We aimed to enable our students to assess the patient's risk, to establish prevention measures and to adapt to a specific learning context, in order to acquire the skills and abilities necessary for the nursing profession. In order to achieve these objectives, during the three years of study, teachers put an emphasis on acquiring communication skills, because in our country after the first cycle of hospital accreditation concluded in 2016, the National Authority for Quality of Health Management has introduced the criteria for the implementation and application of the nursing process according to the accreditation standards. According to these requirements, the nurse has to carry out the nursing assessment, based on communication as a distinct component, so that they can identify nursing diagnoses and implement the nursing plan. In this respect, we, the teachers, have refocused, by approaching various teaching strategies and preparing students for the real context of learning and applying what they learn. In the educational process, the tutors in the hospitals have an important role to play in acquiring professional skills. Students perform their activity in the hospital in accordance with the curriculum, in order to verify the practical applicability of the theoretical knowledge acquired in the school classes and also have the opportunity to acquire their skills in a real learning context. In clinical education, the student nurse learns in the middle of a guidance team which includes a practice tutor, who is a nurse that takes responsibility for the practical/clinical learning of the students in their field of activity. In achieving this objective, the tutor's abilities involve pedagogical knowledge, knowledge for the good of the individual and nursing theory, in order to be able to guide clinical practice in accordance with current requirements. The aim of this study is to find out the students’ confidence level in practice tutors in hospitals, the students’ degree of satisfaction in the pedagogical skills of the tutors and the practical applicability of the theoretical knowledge. In this study, we used as a method of investigation a student satisfaction questionnaire regarding the clinical practice in the hospital and the sample of the survey consisted of 100 students aged between 20 and 50 years, from the first, second and third year groups, with the General Nurse specialty (nurses responsible for general care), from 'Fundeni' Healthcare Post-Secondary School, Bucharest, Romania. Following the analysis of the data provided, we arrived the conclusion that the hospital tutor needs to improve his/her pedagogical skills, the knowledge of nursing diagnostics, and the implementation of the nursing plan, so that the applicability of the theoretical notions would be increased. Future plans include the pedagogical training of the medical staff, as well as updating the knowledge needed to implement the nursing process in order to meet current requirements.Keywords: clinical training, nursing process, pedagogical skills, tutor
Procedia PDF Downloads 1609631 The Layout Analysis of Handwriting Characters and the Fusion of Multi-style Ancient Books’ Background
Authors: Yaolin Tian, Shanxiong Chen, Fujia Zhao, Xiaoyu Lin, Hailing Xiong
Abstract:
Ancient books are significant culture inheritors and their background textures convey the potential history information. However, multi-style texture recovery of ancient books has received little attention. Restricted by insufficient ancient textures and complex handling process, the generation of ancient textures confronts with new challenges. For instance, training without sufficient data usually brings about overfitting or mode collapse, so some of the outputs are prone to be fake. Recently, image generation and style transfer based on deep learning are widely applied in computer vision. Breakthroughs within the field make it possible to conduct research upon multi-style texture recovery of ancient books. Under the circumstances, we proposed a network of layout analysis and image fusion system. Firstly, we trained models by using Deep Convolution Generative against Networks (DCGAN) to synthesize multi-style ancient textures; then, we analyzed layouts based on the Position Rearrangement (PR) algorithm that we proposed to adjust the layout structure of foreground content; at last, we realized our goal by fusing rearranged foreground texts and generated background. In experiments, diversified samples such as ancient Yi, Jurchen, Seal were selected as our training sets. Then, the performances of different fine-turning models were gradually improved by adjusting DCGAN model in parameters as well as structures. In order to evaluate the results scientifically, cross entropy loss function and Fréchet Inception Distance (FID) are selected to be our assessment criteria. Eventually, we got model M8 with lowest FID score. Compared with DCGAN model proposed by Radford at el., the FID score of M8 improved by 19.26%, enhancing the quality of the synthetic images profoundly.Keywords: deep learning, image fusion, image generation, layout analysis
Procedia PDF Downloads 1579630 A Life Cycle Assessment (LCA) of Aluminum Production Process
Authors: Alaa Al Hawari, Mohammad Khader, Wael El Hasan, Mahmoud Alijla, Ammar Manawi, Abdelbaki Benamour
Abstract:
The production of aluminium alloys and ingots -starting from the processing of alumina to aluminium, and the final cast product- was studied using a Life Cycle Assessment (LCA) approach. The studied aluminium supply chain consisted of a carbon plant, a reduction plant, a casting plant, and a power plant. In the LCA model, the environmental loads of the different plants for the production of 1 ton of aluminium metal were investigated. The impact of the aluminium production was assessed in eight impact categories. The results showed that for all of the impact categories the power plant had the highest impact only in the cases of Human Toxicity Potential (HTP) the reduction plant had the highest impact and in the Marine Aquatic Eco-Toxicity Potential (MAETP) the carbon plant had the highest impact. Furthermore, the impact of the carbon plant and the reduction plant combined was almost the same as the impact of the power plant in the case of the Acidification Potential (AP). The carbon plant had a positive impact on the environment when it comes to the Eutrophication Potential (EP) due to the production of clean water in the process. The natural gas based power plant used in the case study had 8.4 times less negative impact on the environment when compared to the heavy fuel based power plant and 10.7 times less negative impact when compared to the hard coal based power plant.Keywords: life cycle assessment, aluminium production, supply chain, ecological impacts
Procedia PDF Downloads 5329629 Students' Willingness to Accept Virtual Lecturing Systems: An Empirical Study by Extending the UTAUT Model
Authors: Ahmed Shuhaiber
Abstract:
The explosion of the World Wide Web and the electronic trend of university teaching have transformed the learning style to become more learner-centred, Which has popularized the digital delivery of mediated lectures as an alternative or an adjunct to traditional lectures. Despite its potential and popularity, virtual lectures have not been adopted yet in Jordanian universities. This research aimed to fill this gap by studying the factors that influence student’s willingness to accept virtual lectures in one Jordanian University. A quantitative approach was followed by obtaining 216 survey responses and statistically applying the UTAUT model with some modifications. Results revealed that performance expectancy, effort expectancy, social influences and self-efficacy could significantly influence student’s attitudes towards virtual lectures. Additionally, facilitating conditions and attitudes towards virtual lectures were found with significant influence on student’s intention to take virtual lectures. Research implications and future work were specified afterwards.Keywords: E-learning, student willingness, UTAUT, virtual Lectures, web-based learning systems
Procedia PDF Downloads 2919628 Design of the Intelligent Virtual Learning Coach. A Contextual Learning Approach to Digital Literacy of Senior Learners in the Context of Electronic Health Record (EHR)
Authors: Ilona Buchem, Carolin Gellner
Abstract:
The call for the support of senior learners in the development of digital literacy has become prevalent in recent years, especially in view of the aging societies paired with advances in digitalization in all spheres of life, including e-health. The goal has been to create opportunities for learning that incorporate the use of context in a reflective and dialogical way. Contextual learning has focused on developing skills through the application of authentic problems. While major research efforts in supporting senior learners in developing digital literacy have been invested so far in e-learning, focusing on knowledge acquisition and cognitive tasks, little research exists in reflective mentoring and coaching with the help of pedagogical agents and addressing the contextual dimensions of learning. This paper describes an approach to creating opportunities for senior learners to improve their digital literacy in the authentic context of the electronic health record (EHR) with the support of an intelligent virtual learning coach. The paper focuses on the design of the virtual coach as part of an e-learning system, which was developed in the EPA-Coach project founded by the German Ministry of Education and Research. The paper starts with the theoretical underpinnings of contextual learning and the related design considerations for a virtual learning coach based on previous studies. Since previous research in the area was mostly designed to cater to the needs of younger audiences, the results had to be adapted to the specific needs of senior learners. Next, the paper outlines the stages in the design of the virtual coach, which included the adaptation of the design requirements, the iterative development of the prototypes, the results of the two evaluation studies and how these results were used to improve the design of the virtual coach. The paper then presents the four prototypes of a senior-friendly virtual learning coach, which were designed to represent different preferences related to the visual appearance, the communication and social interaction styles, and the pedagogical roles. The first evaluation of the virtual coach design was an exploratory, qualitative study, which was carried out in October 2020 with eight seniors aged 64 to 78 and included a range of questions about the preferences of senior learners related to the visual design, gender, age, communication and role. Based on the results of the first evaluation, the design was adapted to the preferences of the senior learners and the new versions of prototypes were created to represent two male and two female options of the virtual coach. The second evaluation followed a quantitative approach with an online questionnaire and was conducted in May 2021 with 41 seniors aged 66 to 93 years. Following three research questions, the survey asked about (1) the intention to use, (2) the perceived characteristics, and (3) the preferred communication/interaction style of the virtual coach, i. e. task-oriented, relationship-oriented, or a mix. This paper follows with the discussion of the results of the design process and ends with conclusions and next steps in the development of the virtual coach including recommendations for further research.Keywords: virtual learning coach, virtual mentor, pedagogical agent, senior learners, digital literacy, electronic health records
Procedia PDF Downloads 1809627 Occupational Health Assessment in a Telco Account: A Workplace Integrated Safety and Health and Cornell Musculoskeletal Discomfort Questionnaire Analysis Among Diverse Employees at Alorica
Authors: Karl Bryant Buan, Owaida Macadadaya Jr., Mon Eleazar Nonato, Zeke Andrew Palabrica, Charistabelle Mae Santiago
Abstract:
This study explored the occupational health risks faced by employees in the Business Process Outsourcing (BPO) industry, particularly in the Telco Account department of Alorica. The study used a stratified sampling method and a diagnostic tool called Workplace Integrated Safety and Health (WISH) Assessment to measure and evaluate the employees' perception of workplace health and safety. The results showed that more than 50% of call center workers reported feeling emotionally drained, sleep deprived, burnt out, and in need of anxiety or stress medication due to their work. Additionally, there was a significant difference in the perception of employee diversity, specifically in terms of leadership commitment, participation, policies, programs, and practices. The Cornell Musculoskeletal Discomfort Questionnaire (CMDQ) results revealed that most employees complained of discomfort in their lower back, shoulder, upper back, neck, and hip. The researchers recommended an implementation plan for alternative work set-up, a satisfaction survey for employees, team-building activities or programs, and motivational approaches through benefits, incentives, and rewards.Keywords: WISH assessment, CMDQ, ANOVA, diverse SOGIESC
Procedia PDF Downloads 709626 Qualitative Analysis of User Experiences and Needs for Educational Chatbots in Higher Education
Authors: Felix Golla
Abstract:
In an era where technology increasingly intersects with education, the potential of chatbots and ChatGPT agents in enhancing student learning experiences in higher education is both significant and timely. This study explores the integration of these AI-driven tools in educational settings, emphasizing their design and functionality to meet the specific needs of students. Recognizing the gap in literature concerning student-centered AI applications in education, this research offers valuable insights into the role and efficacy of chatbots and ChatGPT agents as educational tools. Employing qualitative research methodologies, the study involved conducting semi-structured interviews with university students. These interviews were designed to gather in-depth insights into the students' experiences and expectations regarding the use of AI in learning environments. The High-Performance Cycle Model, renowned for its focus on goal setting and motivation, served as the theoretical framework guiding the analysis. This model helped in systematically categorizing and interpreting the data, revealing the nuanced perceptions and preferences of students regarding AI tools in education. The major findings of the study indicate a strong preference among students for chatbots and ChatGPT agents that offer personalized interaction, adaptive learning support, and regular, constructive feedback. These features were deemed essential for enhancing student engagement, motivation, and overall learning outcomes. Furthermore, the study revealed that students perceive these AI tools not just as passive sources of information but as active facilitators in the learning process, capable of adapting to individual learning styles and needs. In conclusion, this study underscores the transformative potential of chatbots and ChatGPT agents in higher education. It highlights the need for these AI tools to be designed with a student-centered approach, ensuring their alignment with educational objectives and student preferences. The findings contribute to the evolving discourse on AI in education, suggesting a paradigm shift towards more interactive, responsive, and personalized learning experiences. This research not only informs educators and technologists about the desirable features of educational chatbots but also opens avenues for future studies to explore the long-term impact of AI integration in academic curricula.Keywords: chatbot design in education, high-performance cycle model application, qualitative research in AI, student-centered learning technologies
Procedia PDF Downloads 699625 Exploring Instructional Designs on the Socio-Scientific Issues-Based Learning Method in Respect to STEM Education for Measuring Reasonable Ethics on Electromagnetic Wave through Science Attitudes toward Physics
Authors: Adisorn Banhan, Toansakul Santiboon, Prasong Saihong
Abstract:
Using the Socio-Scientific Issues-Based Learning Method is to compare of the blended instruction of STEM education with a sample consisted of 84 students in 2 classes at the 11th grade level in Sarakham Pittayakhom School. The 2-instructional models were managed of five instructional lesson plans in the context of electronic wave issue. These research procedures were designed of each instructional method through two groups, the 40-experimental student group was designed for the instructional STEM education (STEMe) and 40-controlling student group was administered with the Socio-Scientific Issues-Based Learning (SSIBL) methods. Associations between students’ learning achievements of each instructional method and their science attitudes of their predictions to their exploring activities toward physics with the STEMe and SSIBL methods were compared. The Measuring Reasonable Ethics Test (MRET) was assessed students’ reasonable ethics with the STEMe and SSIBL instructional design methods on two each group. Using the pretest and posttest technique to monitor and evaluate students’ performances of their reasonable ethics on electromagnetic wave issue in the STEMe and SSIBL instructional classes were examined. Students were observed and gained experience with the phenomena being studied with the Socio-Scientific Issues-Based Learning method Model. To support with the STEM that it was not just teaching about Science, Technology, Engineering, and Mathematics; it is a culture that needs to be cultivated to help create a problem solving, creative, critical thinking workforce for tomorrow in physics. Students’ attitudes were assessed with the Test Of Physics-Related Attitude (TOPRA) modified from the original Test Of Science-Related Attitude (TOSRA). Comparisons between students’ learning achievements of their different instructional methods on the STEMe and SSIBL were analyzed. Associations between students’ performances the STEMe and SSIBL instructional design methods of their reasonable ethics and their science attitudes toward physics were associated. These findings have found that the efficiency of the SSIBL and the STEMe innovations were based on criteria of the IOC value higher than evidence as 80/80 standard level. Statistically significant of students’ learning achievements to their later outcomes on the controlling and experimental groups with the SSIBL and STEMe were differentiated between students’ learning achievements at the .05 level. To compare between students’ reasonable ethics with the SSIBL and STEMe of students’ responses to their instructional activities in the STEMe is higher than the SSIBL instructional methods. Associations between students’ later learning achievements with the SSIBL and STEMe, the predictive efficiency values of the R2 indicate that 67% and 75% for the SSIBL, and indicate that 74% and 81% for the STEMe of the variances were attributable to their developing reasonable ethics and science attitudes toward physics, consequently.Keywords: socio-scientific issues-based learning method, STEM education, science attitudes, measurement, reasonable ethics, physics classes
Procedia PDF Downloads 2929624 Evaluation of Teaching Performance in Higher Education: From the Students' Responsibility to Their Evaluative Competence
Authors: Natacha Jesus-Silva, Carla S. Pereira, Natercia Durao, Maria Das Dores Formosinho, Cristina Costa-Lobo
Abstract:
Any assessment process, by its very nature, raises a wide range of doubts, uncertainties, and insecurities of all kinds. The evaluation process should be ethically irreproachable, treating each and every one of the evaluated according to a conduct that ensures that the process is fair, contributing to all recognize and feel well with the processes and results of the evaluation. This is a very important starting point and implies that positive and constructive conceptions and attitudes are developed regarding the evaluation of teaching performance, where students' responsibility is desired. It is not uncommon to find teachers feeling threatened at various levels, in particular as regards their autonomy and their professional dignity. Evaluation must be useful in that it should enable decisions to be taken to improve teacher performance, the quality of teaching or the learning climate of the school. This study is part of a research project whose main objective is to identify, select, evaluate and synthesize the available evidence on Quality Indicators in Higher Education. In this work, the 01 parameters resulting from pedagogical surveys in a Portuguese higher education institution in the north of the country will be presented, surveys for the 2015/2016 school year, presented to 1751 students, in a total of 11 degrees and 18 master's degrees. It has analyzed the evaluation made by students with respect to the performance of a group of 68 teachers working full time. This paper presents the lessons learned in the last three academic years, allowing for the identification of the effects on the following areas: teaching strategies and methodologies, capacity of systematization, learning climate, creation of conditions for active student participation. This paper describes the procedures resulting from the descriptive analysis (frequency analysis, descriptive measures and association measures) and inferential analysis (ANOVA one-way, MANOVA one-way, MANOVA two-way and correlation analysis).Keywords: teaching performance, higher education, students responsibility, indicators of teaching management
Procedia PDF Downloads 2779623 Predicting Radioactive Waste Glass Viscosity, Density and Dissolution with Machine Learning
Authors: Joseph Lillington, Tom Gout, Mike Harrison, Ian Farnan
Abstract:
The vitrification of high-level nuclear waste within borosilicate glass and its incorporation within a multi-barrier repository deep underground is widely accepted as the preferred disposal method. However, for this to happen, any safety case will require validation that the initially localized radionuclides will not be considerably released into the near/far-field. Therefore, accurate mechanistic models are necessary to predict glass dissolution, and these should be robust to a variety of incorporated waste species and leaching test conditions, particularly given substantial variations across international waste-streams. Here, machine learning is used to predict glass material properties (viscosity, density) and glass leaching model parameters from large-scale industrial data. A variety of different machine learning algorithms have been compared to assess performance. Density was predicted solely from composition, whereas viscosity additionally considered temperature. To predict suitable glass leaching model parameters, a large simulated dataset was created by coupling MATLAB and the chemical reactive-transport code HYTEC, considering the state-of-the-art GRAAL model (glass reactivity in allowance of the alteration layer). The trained models were then subsequently applied to the large-scale industrial, experimental data to identify potentially appropriate model parameters. Results indicate that ensemble methods can accurately predict viscosity as a function of temperature and composition across all three industrial datasets. Glass density prediction shows reliable learning performance with predictions primarily being within the experimental uncertainty of the test data. Furthermore, machine learning can predict glass dissolution model parameters behavior, demonstrating potential value in GRAAL model development and in assessing suitable model parameters for large-scale industrial glass dissolution data.Keywords: machine learning, predictive modelling, pattern recognition, radioactive waste glass
Procedia PDF Downloads 1169622 The Use of Semantic Mapping Technique When Teaching English Vocabulary at Saudi Schools
Authors: Mohammed Hassan Alshaikhi
Abstract:
Vocabulary is essential factor of learning and mastering any languages, and it helps learners to communicate with others and to be understood. The aim of this study was to examine whether semantic mapping technique was helpful in terms of improving student's English vocabulary learning comparing to the traditional technique. The students’ age was between 11 and 13 years old. There were 60 students in total who participated in this study. 30 students were in the treatment group (target vocabulary items were taught with semantic mapping). The other 30 students were in the control group (the target vocabulary items were taught by a traditional technique). A t-test was used with the results of pre-test and post-test in order to examine the outcomes of using semantic mapping when teaching vocabulary. The results showed that the vocabulary mastery in the treatment group was increased more than the control group.Keywords: English language, learning vocabulary, Saudi teachers, semantic mapping, teaching vocabulary strategies
Procedia PDF Downloads 2489621 Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques
Authors: Raymond Feng, Shadi Ghiasi
Abstract:
An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy.Keywords: EEG, electroencephalogram, machine learning, mood, music enjoyment, physiological signals
Procedia PDF Downloads 629620 Using Happening Performance in Vocabulary Teaching
Authors: Mustafa Gultekin
Abstract:
It is believed that drama can be used in language classes to create a positive atmosphere for students to use the target language in an interactive way. Thus, drama has been extensively used in many settings in language classes. Although happening has been generally used as a performance art of theatre, this new kind of performance has not been widely known in language teaching area. Therefore, it can be an innovative idea to use happening in language classes, and thus a positive environment can be created for students to use the language in an interactive way. Happening can be defined as an art performance that puts emphasis on interaction in an audience. Because of its interactive feature, happening can also be used in language classes to motivate students to use the language in an interactive environment. The present study aims to explain how a happening performance can be applied to a learning environment to teach vocabulary in English. In line with this purpose, a learning environment was designed for a vocabulary presentation lesson. At the end of the performance, students were asked to compare the traditional way of teaching and happening performance in terms of effectiveness. It was found that happening performance provided the students with a more creative and interactive environment to use the language. Therefore, happening can be used in language classrooms as an innovative tool for education.Keywords: English, happening, language learning, vocabulary teaching
Procedia PDF Downloads 3679619 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques
Authors: Chinlun Lai, Lunjyh Jiang
Abstract:
Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.Keywords: baby care system, Internet of Things, deep learning, machine vision
Procedia PDF Downloads 2259618 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design
Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad
Abstract:
Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.Keywords: early stage of design, energy, thermal comfort, validation, machine learning
Procedia PDF Downloads 749617 University Lecturers' Attitudes towards Learner Autonomy in the EFL Context in Vietnam
Authors: Nhung T. Bui
Abstract:
Part of the dilemma facing educational reforms in Vietnam as in other Asian contexts is how to encourage more independence in students’ learning approaches. Since 2005, the Ministry of Education and Training of Vietnam has included the students’ ability to learn independently in its national education objectives. While learner autonomy has been viewed as a goal in the teaching and learning English as a foreign language (EFL) and there has been a considerable literature on strategies to stimulate autonomy in learners, teachers’ voices have rarely been heard. Given that teachers play a central role in helping their students to be more autonomous, especially in an inherent Confucian heritage culture like Vietnam, their attitudes towards learner autonomy should be investigated before any practical implementations could be undertaken. This paper reports significant findings of a survey questionnaire with 262 lecturers of English from 5 universities in Hanoi, Vietnam giving opinions regarding the practices and prospects of learner autonomy in their classrooms. The study reveals that lecturers perceive they should be more responsible than their students in all class-related activities; they most appreciate their students’ ability to learn cooperatively and that they consider stimulating students’ interest as the most important teaching strategy to promote learner autonomy. Lecturers, then, are strongly suggested to gradually ‘empower’ their students through the application of out-of-classroom activities; of learning activities which requires collaboration and team spirit; and of activities which could boost students’ interest in learning English.Keywords: English as a foreign language, higher education, learner autonomy, Vietnam
Procedia PDF Downloads 2679616 Teachers' Emphatic Concern for Their Learners
Authors: Prakash Singh
Abstract:
The focus of this exploratory study is on whether teachers demonstrate emphatic concern for their learners in planning, implementing and assessing learning outcomes in their regular classrooms. Empathy must be shown to all learners equally and not only for high-risk learners at the expense of other ability learners. Empathy demonstrated by teachers allows them to build a stronger bond with all their learners. This bond based on trust leads to positive outcomes for learners to be able to excel in their work. Empathic teachers must make every effort to simplify the subject matter for high risk learners so that these learners not only enjoy their learning activities but are also successful like their more able peers. A total of 87.5% of the participants agreed that empathy allows teachers to demonstrate humanistic values in their choice of learning materials for learners of different abilities. It is therefore important for teachers to select content and instructional materials that will contribute to the learners’ success in the mainstream of education. It is also imperative for teachers to demonstrate empathic skills and consequently, to be attuned to the emotions and emotional needs of their learners. Schools need to be reformed, not by simply lengthening the school day or by simply adding more content in the curriculum, but by making school more satisfying to learners. This must be consistent with their diverse learning needs and interests so that they gain a sense of power, fulfillment, and importance in their regular classrooms. Hence, teacher - pupil relationships based on empathic concern for the latter’s educational needs lays the foundation for quality education to be offered.Keywords: emotional intelligence, empathy, learners’ emotional needs, teachers’ empathic skills
Procedia PDF Downloads 4369615 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning
Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza
Abstract:
The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library
Procedia PDF Downloads 1779614 The Use of Project to Enhance Learning Domains Stated by National Qualifications Framework: TQF
Authors: Duangkamol Thitivesa
Abstract:
This paper explores the use of project work in a content-based instruction in a Rajabhat University, Thailand. The use of project is to promote kinds of learning expected of student teachers as stated by Thailand Quality Framework: TQF. The kinds of learning are grouped into five domains: Ethical and moral development, knowledge, cognitive skill, interpersonal skills and responsibility, and analytical and communication skills. The content taught in class is used to lead the student teachers to relate their previously-acquired linguistic knowledge to meaningful realizations of the language system in passages of immediate relevance to their professional interests, teaching methods in particular. Two research questions are formulate to guide this study: 1) To what degree are the five domains of learning expected of student teachers after the use of project in a content class?, and 2) What is the academic achievement of the students’ writing skills, as part of the learning domains stated by TQF, against the 70% attainment target after the use of project to enhance the skill? The sample of the study comprised of 38 fourth-year English major students. The data was collected by means of a summative achievement test, student writing works, an observation checklist, and project diary. The scores in the summative achievement test were analyzed by mean score, standard deviation, and t-test. Project diary serves as students’ record of the language acquired during the project. List of structures and vocabulary noted in the diary has shown students’ ability to attend to, recognize, and focus on meaningful patterns of language forms.Keywords: Thailand quality framework, project Work, writing skill, summative
Procedia PDF Downloads 1509613 The Role of Learning in Stimulation Policies to Increase Participation in Lifelong Development: A Government Policy Analysis
Authors: Björn de Kruijf, Arjen Edzes, Sietske Waslander
Abstract:
In an ever-quickly changing society, lifelong development is seen as a solution to labor market problems by politicians and policymakers. In this paper, we investigate how policy instruments are used to increase participation in lifelong development and on which behavioral principles policy is based. Digitization, automation, and an aging population change society and the labor market accordingly. Skills that were once most sought after in the workforce can become abundantly present. For people to remain relevant in the working population, they need to continue adapting new skills useful in the current labor market. Many reports have been written that focus on the role of lifelong development in this changing society and how lifelong development can help keep people adapt and stay relevant. Inspired by these reports, governments have implemented a broad range of policies to support participation in lifelong development. The question we ask ourselves is how government policies promote participation in lifelong development. This stems from a complex interplay of policy instruments and learning. Regulation, economic and soft instruments can be combined to promote lifelong development, and different types of education further complex policies on lifelong development. Literature suggests that different stages in people’s lives might warrant different methods of learning. Governments could anticipate this in their policies. In order to influence people’s behavior, the government can tap into a broad range of sociological, psychological, and (behavioral) economic principles. The traditional economic assumption that behavior is rational is known to be only partially true, and the government can use many biases in human behavior to stimulate participation in lifelong development. In this paper, we also try to find which biases the government taps into to promote participation if they tap into any of these biases. The goal of this paper is to analyze government policies intended to promote participation in lifelong development. To do this, we develop a framework to analyze the policies on lifelong development. We specifically incorporate the role of learning and the behavioral principles underlying policy instruments in the framework. We apply this framework to the case of the Netherlands, where we examine a set of policy documents. We single out the policies the government has put in place and how they are vertically and horizontally related. Afterward, we apply the framework and classify the individual policies by policy instrument and by type of learning. We find that the Dutch government focuses on formal and non-formal learning in their policy instruments. However, the literature suggests that learning at a later age is mainly done in an informal manner through experiences.Keywords: learning, lifelong development, policy analysis, policy instruments
Procedia PDF Downloads 839612 Dynamic Measurement System Modeling with Machine Learning Algorithms
Authors: Changqiao Wu, Guoqing Ding, Xin Chen
Abstract:
In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.Keywords: dynamic system modeling, neural network, normal equation, second order gradient descent
Procedia PDF Downloads 1279611 A Pilot Study to Investigate the Use of Machine Translation Post-Editing Training for Foreign Language Learning
Authors: Hong Zhang
Abstract:
The main purpose of this study is to show that machine translation (MT) post-editing (PE) training can help our Chinese students learn Spanish as a second language. Our hypothesis is that they might make better use of it by learning PE skills specific for foreign language learning. We have developed PE training materials based on the data collected in a previous study. Training material included the special error types of the output of MT and the error types that our Chinese students studying Spanish could not detect in the experiment last year. This year we performed a pilot study in order to evaluate the PE training materials effectiveness and to what extent PE training helps Chinese students who study the Spanish language. We used screen recording to record these moments and made note of every action done by the students. Participants were speakers of Chinese with intermediate knowledge of Spanish. They were divided into two groups: Group A performed PE training and Group B did not. We prepared a Chinese text for both groups, and participants translated it by themselves (human translation), and then used Google Translate to translate the text and asked them to post-edit the raw MT output. Comparing the results of PE test, Group A could identify and correct the errors faster than Group B students, Group A did especially better in omission, word order, part of speech, terminology, mistranslation, official names, and formal register. From the results of this study, we can see that PE training can help Chinese students learn Spanish as a second language. In the future, we could focus on the students’ struggles during their Spanish studies and complete the PE training materials to teach Chinese students learning Spanish with machine translation.Keywords: machine translation, post-editing, post-editing training, Chinese, Spanish, foreign language learning
Procedia PDF Downloads 1449610 Critical Assessment to the Wastewater Management Sector in Lebanon: Irresponsible Generation, Fragmented Collection, and Limited Treatment
Authors: Nora Fayssal, Lara Altawil, Hrair Danageuzian, Jimmy Romanos
Abstract:
Wastewater management is a global concern and priority, both to protect the natural environment from the consequences of poor disposal, specifically water resources and to harness its potential as an additional water supply through water reuse. Lebanon still lags behind, being at the bottom of the list among the Arab countries in both safely managed sanitation services and wastewater treatment and in achieving the targets of SDG 6.3. This study which relied on a data collection survey targeting the municipalities, provides a critical assessment of the wastewater sector in Lebanon. The results revealed the fragmented sewerage collection systems, where only 13% of the targeted municipalities have complete coverage, leaving most of the urbanized areas at risk of pollution. The results also highlight the limited quantity of wastewater treated and the fragility of the operation of the wastewater treatment plants in light of the recent energy crisis. Ultimately, only 14% of the generated Wastewater is currently treated in Lebanon with primary treatment only. The assessment showed that wastewater management wasn’t a priority on the national level for decades, where the lack of institutional coordination and long-term vision, the absence of deterrent regulations and advanced technology, the influx of Syrian refugees, and the recent economic crisis stand behind the current situation.Keywords: wastewater management, lebanon, wastewater collection, SDG 6.3., governance gaps
Procedia PDF Downloads 59609 Solving Mean Field Problems: A Survey of Numerical Methods and Applications
Authors: Amal Machtalay
Abstract:
In this survey, we aim to review the rapidly growing literature on numerical methods to solve different forms of mean field problems, namely mean field games (MFG), mean field controls (MFC), potential MFGs, and master equations, as well as their corresponding recent applications. Here, we distinguish two families of numerical methods: iterative methods based on mesh generation and those called mesh-free, normally related to neural networking and learning frameworks.Keywords: mean-field games, numerical schemes, partial differential equations, complex systems, machine learning
Procedia PDF Downloads 1139608 Practice Based Approach to the Development of Family Medicine Residents’ Educational Environment
Authors: Lazzat M. Zhamaliyeva, Nurgul A. Abenova, Gauhar S. Dilmagambetova, Ziyash Zh. Tanbetova, Moldir B. Ahmetzhanova, Tatyana P. Ostretcova, Aliya A. Yegemberdiyeva
Abstract:
Introduction: There are many reasons for the weak training of family doctors in Kazakhstan: the unified national educational program is not focused on competencies, the role of a general practitioner (GP) is not clear, poor funding for the health care and education system, outdated teaching and assessment methods, inefficient management. We highlight two issues in particular. Firstly, academic teachers of family medicine (FM) in Kazakhstan do not practice as family doctors; most of them are narrow specialists (pediatricians, therapists, surgeons, etc.); they usually hold one-time consultations; clinical mentors from practical healthcare (non-academic teachers) do not have the teaching competences, and the vast majority of them are also narrow specialists. Secondly, clinical sites (polyclinics) are unprepared for general practice and do not follow the principles of family medicine; residents do not like to be in primary health care (PHC) settings due to the chaos that is happening there, as well as due to the lack of the necessary equipment for mastering and consolidating practical skills. Aim: We present the concept of the family physicians’ training office (FPTO), which is being created as a friendly learning environment for young general practitioners and for the involvement of academic teachers of family medicine in the practical work and innovative development of PHC. Methodology: In developing the conceptual framework and identifying practical activities, we drew on literature and expert input, and interviews. Results: The goal of the FPTO is to create a favorable educational and clinical environment for the development of the FM residents’ competencies, in which the residents with academic teachers and clinical mentors could understand and accept the principles of family medicine, improve clinical knowledge and skills, and gain experience in improving the quality of their practice in scientific basis. Three main areas of office activity are providing primary care to the patients, improving educational services for FM residents and other medical workers, and promoting research in PHC and innovations. The office arranges for residents to see outpatients at least 50% of the time, and teachers of FM departments at least 1/4 of their working time conduct general medical appointments next to residents. Taking into account the educational and scientific workload, the number of attached population for one GP does not exceed 500 persons. The equipment of the office allows FPTO workers to perform invasive and other manipulations without being sent to other clinics. In the office, training for residents is focused on their needs and aimed at achieving the required level of competence. International methodologies and assessment tools are adapted to local conditions and evaluated for their effectiveness and acceptability. Residents and their faculty actively conduct research in the field of family medicine. Conclusions: We propose to change the learning environment in order to create teams of like-minded people, to unite residents and teachers even more for the development of family medicine. The offices will also invest resources in developing and maintaining young doctors' interest in family medicine.Keywords: educational environment, family medicine residents, family physicians’ training office, primary care research
Procedia PDF Downloads 1349607 Typhoon Disaster Risk Assessment of Mountain Village: A Case Study of Shanlin District in Kaohsiung
Abstract:
Taiwan is mountainous country, 70% of land is covered with mountains. Because of extreme climate, the mountain villages with sensitive and fragile environment often get easily affected by inundation and debris flow from typhoon which brings huge rainfall. Due to inappropriate development, overuse and fewer access roads, occurrence of disaster becomes more frequent through downpour and rescue actions are postponed. However, risk map is generally established through administrative boundaries, the difference of urban and rural area is ignored. The neglect of mountain village characteristics eventually underestimates the importance of factors related to vulnerability and reduces the effectiveness. In disaster management, there are different strategies and actions at each stage. According to different tasks, there will be different risk indices and weights to analyze disaster risk for each stage and then it will contribute to confront threat and reduce impact appropriately on right time. Risk map is important in mitigation, but also in response stage because some factors such as road network will be changed by disaster. This study will use risk assessment to establish risk map of Shanlin District which is mountain village in Kaohsiung as a case study in mitigation and response stage through Analytic Hierarchy Process (AHP). AHP helps to recognize the composition and weights of risk factors in mountain village by experts’ opinions through survey design and is combined with present potential hazard map to produce risk map.Keywords: risk assessment, mountain village, risk map, analytic hierarchy process
Procedia PDF Downloads 399