Search results for: antioxidant compounds
500 How Hormesis Impacts Practice of Ecological Risk Assessment and Food Safety Assessment
Authors: Xiaoxian Zhang
Abstract:
Guidelines of ecological risk assessment (ERA) and food safety assessment (FSA) used nowadays, based on an S-shaped threshold dose-response curve (SDR), fail to consider hormesis, a reproducible biphasic dose-response model represented as a J-shaped or an inverted U-shaped curve, that occurs in the real-life environment across multitudinous compounds on cells, organisms, populations, and even the ecosystem. Specifically, in SDR-based ERA and FSA practice, predicted no effect concentration (PNEC) is calculated separately for individual substances from no observed effect concentration (NOEC, usually equivalent to 10% effect concentration (EC10) of a contaminant or food condiment) over an assessment coefficient that is bigger than 1. Experienced researchers doubted that hormesis in the real-life environment might lead to a waste of limited human and material resources in ERA and FSA practice, but related data are scarce. In this study, hormetic effects on bioluminescence of Aliivibrio fischeri (A. f) induced by sulfachloropyridazine (SCP) under 40 conditions to simulate the real-life scenario were investigated, and hormetic effects on growth of human MCF-7 cells caused by brown sugar and mascavado sugar were found likewise. After comparison of related parameters, it has for the first time been proved that there is a 50% probability for safe concentration (SC) of contaminants and food condiments to fall within the hormetic-stimulatory range (HSR) or left to HSR, revealing the unreliability of traditional parameters in standardized (eco)toxicological studies, and supporting qualitatively and quantitatively the over-strictness of ERA and FSA resulted from misuse of SDR. This study provides a novel perspective for ERA and FSA practitioners that hormesis should dominate and conditions where SDR works should only be singled out on a specific basis.Keywords: dose-response relationship, food safety, ecological risk assessment, hormesis
Procedia PDF Downloads 144499 Effect of Long-Term Boron Exposure on Liver Structure of Adult Male Albino Rats and a Possible Role of Vitamin C
Authors: Ola Abdel-Tawab Hussein
Abstract:
Background: Boron is a naturally occurring agent and an essential trace element of human, animals and higher plants. It is released in the form of boric acid (BA) that is water soluble and biolologically available. Its largest uses are in glass, detergents, agriculture, leather tanning industries, cosmetics, photographic materials, soaps and cleaners. Human consume daily few milligrams in the water, fruits and vegetables. High doses of boron had been recorded to be developmental and reproductive toxin in animals(Only few studies on human had investigated the health effects associated with exposure to boron. Vitamin C is a major water soluble non-enzymatic antioxidant, acts to overcome the oxidative stress. Aim of the work: However , the liver is exposed to toxic substances that are absorbed, degraded or conjugated there were little information exists about the effects of boron that it would specifically have in the liver tissue of experimental rats. So the present work aimed to study the effects of long-term boron ingestion on histological structural of the liver of adult male albino rats and to evaluate the protective role of vitamin C against induced changes. Material and Methods: 30 adult male albino rats were divided into 3 equal groups; Group I: control, Group II: recieved drinking water containing 55x10-6 gm boron/liter for 90 days and Group III: recieved vitamin C (200mg/Kg.B.W) orally concomitant with boron for the same period. liver specimens were processed for light and electron microscopic(TEM) study. Results: Examination of the liver sections of group II revealed foci of severe dilatation and congestion of central and portal veins with mononuclear cellular infiltration and hepatocellular vacuolation. Increased collagen deposition specially around the portal areas. Marked electrolucent areas in the cytoplasm, heterochromatic nuclei and destroyed organelles of the hepatocytes. Apoptotic cells were observed and decreased lipid content of ito cells. In Group III the co administration of vitamin C improved most of the structural changes of the hepatocytes, Ito cells, increased binucleated cells and decreased collagen fibers deposition. Conclusion: Thus, the long term exposure to boron, induced histological changes on the structure of liver. The co administration of vitamin C improved most of these structural changes.Keywords: boron, liver, vitamin C, rats
Procedia PDF Downloads 344498 Influence of Catharanthus roseus, Ocimum sanctum and Lantana camara Extracts on Survival and Longevity of Dysdercus koenigii
Authors: Sunil Kayesth, Kamal Kumar Gupta
Abstract:
The development of resistance among insects and pests, environmental contamination and adverse effects on non-target organisms is contributed by the indiscriminate use of chemical based insecticides. To overcome these environmental and other ecological issues that are need to replace these harmful toxic compounds. The present study was designed to evaluate the effect of Catharanthus roseus, Ocimum sanctum and Lantana camara plants volatiles on survival and longevity of Dysdercus koenigii. The hexane extract and ethanol extracts of these three plants were used. The fifth instars were exposed to hexane extract with concentrations of 10%, 5%, 2.5% 1.25%, 0.1%, 0.5% 0.25%, 0.125% and 0.0625% while, adults were treated with10%, 5%, 2.5% and 1.25%. 1-ml of each of these concentrations was used to make a thin film in sterilized glass jars of 500 ml capacity. Fifteen- newly emerged fifth instar nymphs and adult bugs were treated separately with the extracts for 24- hour exposure to the plant volatiles. For ethanol extracts cottonseed were treated with ethanol extracts of 10%, 5%, 2.5% and 1.25% concentrations. The treated seeds were provided to the Dysdercus for a period of 24 hours and their feeding behaviour was observed. The effect of hexane and ethanol extract of these plants was observed and readings were recorded for 15 days. Survival and longevity of both fifth instars and adults were in correlation with the concentrations of the plant extracts. Among three plant extracts, Ocimum hexane extract was most toxic and Catharanthus was moderate while Lantana was least toxic. The ethanol extracts of Lantana was highly antifeedent while Ocimum was moderate and Catharanthus was least antifeedent. Both Catharanthus and Ocimum appeared to have potential molecules, which possessed insecticidal activity while Ocimum and Lantana showed antifeedent activities. These insecticidal and antifeedent properties may be used in IPM.Keywords: Catharanthus roseus, Ocimum sanctum, Lantana camara, Dysdercus koenigii
Procedia PDF Downloads 317497 Glutamine Supplementation and Resistance Traning on Anthropometric Indices, Immunoglobulins, and Cortisol Levels
Authors: Alireza Barari, Saeed Shirali, Ahmad Abdi
Abstract:
Introduction: Exercise has contradictory effects on the immune system. Glutamine supplementation may increase the resistance of the immune system in athletes. The Glutamine is one of the most recognized immune nutrients that as a fuel source, substrate in the synthesis of nucleotides and amino acids and is also known to be part of the antioxidant defense. Several studies have shown that improving glutamine levels in plasma and tissues can have beneficial effects on the function of immune cells such as lymphocytes and neutrophils. This study aimed to investigate the effects of resistance training and training combined with glutamine supplementation to improve the levels of cortisol and immunoglobulin in untrained young men. The research shows that physical training can increase the cytokines in the athlete’s body of course; glutamine can counteract the negative effects of resistance training on immune function and stability of the mast cell membrane. Materials and methods: This semi-experimental study was conducted on 30 male non-athletes. They were randomly divided into three groups: control (no exercise), resistance training, resistance training and glutamine supplementation, respectively. Resistance training for 4 weeks and glutamine supplementation in 0.3 gr/kg/day after practice was applied. The resistance-training program consisted of eight exercises (leg press, lat pull, chest press, squat, seatedrow, abdominal crunch, shoulder press, biceps curl and triceps press down) four times per week. Participants performed 3 sets of 10 repetitions at 60–75% 1-RM. Anthropometry indexes (weight, body mass index, and body fat percentage), oxygen uptake (VO2max) Maximal, cortisol levels of immunoglobulins (IgA, IgG, IgM) were evaluated Pre- and post-test. Results: Results showed four week resistance training with and without glutamine cause significant increase in body weight, BMI and significantly decreased (P < 0/001) in BF. Vo2max also increased in both groups of exercise (P < 0/05) and exercise with glutamine (P < 0/001), such as in both groups significant reduction in IgG (P < 0/05) was observed. But no significant difference observed in levels of cortisol, IgA, IgM in any of the groups. No significant change observed in either parameter in the control group. No significant difference observed between the groups. Discussion: The alterations in the hormonal and immunological parameters can be used in order to assess the effect overload on the body, whether acute or chronically. The plasmatic concentration of glutamine has been associated to the functionality of the immunological system in individuals sub-mitted to intense physical training. resistance training has destructive effects on the immune system and glutamine supplementation cannot neutralize the damaging effects of power exercise on the immune system.Keywords: glutamine, resistance traning, immuglobulins, cortisol
Procedia PDF Downloads 478496 Using Fly Ash Based Synthetic Zeolite Permeable Reactive Barrier to Remove Arsenic, Cadmium, and their Mixture from Aqueous Solution
Authors: Mozhgan Bahadory, Gholam-Hossein Rostami
Abstract:
Over the next quarter of a century, the US government and the private sector will spend billions of dollars annually to clean the contaminated sites from pollution such as petroleum products, heavy metals, and solvents organic compounds. During the past three decades, almost 750,000 sites that require remediation have been reported to the United States federal and state agencies. Out of these contamination sites, approximately 300,000 are still in need of remediation. In these sites, the most widespread forms of contamination are petroleum products and heavy metals. At least half of US Department of Defense, US Department of Energy, Superfund sites, and Resource Conservation and Recovery Act (RCRA) sites have been reported to contain heavy metals. Heavy metals most often found in the contaminated water are lead, mercury, chromium, cadmium, arsenic, and zinc. This investigation emphasizes the elimination of arsenic and cadmium from aqueous solution. During the past several years, we developed a novel material called Alkali-Activated fly ash Material Permeable Reactive Barrier (AAM-PRB), which includes fly ash, fine aggregates, coarse aggregates, activating chemicals, and water. AAM can be produced with high permeability, 10-1 cm/s, then crushed into pelletized form. Laboratory experiments showed that water containing 10 ppm, 100 ppm, and 1000 ppm of arsenic and cadmium ion passing through AAM-PRB reduced to less than 0.1 ppm. However, water containing 10,000 ppm arsenic ion passing through AAM- PRB shows that the breakthrough was achieved. The removal of the mixture of arsenic and cadmium from aqueous solutions was also tested by using AAM-PRB. The results indicate that the efficiency of AAM-PRB for simultaneous removal of arsenic and cadmium from 10 ppm, 100 ppm, and 1,000 ppm were marginally below that of arsenic alone. Still, it was significantly lower for cadmium from the aqueous solution. The basic science behind removing heavy metal and microstructural investigation AAM-PRB will be the focus of our future work.Keywords: arsenic, cadmium, contaminated water, fly ash, permeability, reactive barrier
Procedia PDF Downloads 71495 Effect of Supplementation of Rough Lemon Juice, Amla Juice and Aloe Vera Gel on Physio-biochemical and Hematological Parameters of Broiler Chicken During Summer Season
Authors: Suraj Amrutkar, R. Gowri, Asma Khan, Nazam Khan, Vikas Mahajan, Manpreet Kour And Bharti Deshmukh
Abstract:
Herbal additives are rich in vitamin C, A and other biological active compounds and may act as surrogate source to subdue heat stress in chicken. Among various herbal additives such as rough lemon (Citrus Jambhiri Lush) juice, amla (Emblica officinalis) juice and aloe vera (Aloe barbadensis miller) gel are easily available during summer (stress period) and also cost less as comparison to synthetic feed additives in market. In order to analyze the performance by supplementation of rough lemon juice, amla juice and aloe vera gel in broiler under heat stress conditions. Study was carried out with a random distribution of day old straight run chicks (240 No.) in to four treatment group (n=60) was done. All the groups were given basal diet (Maize-Soya based; T0) was same for all the groups with supplementation of rough lemon juice (T1), amla juice (T2) and aloe vera (T3) @ 2% in drinking water. Experiment trial lasted for 42 days during heat stress period (June-July) with minimum THI (78.2) and Maximum THI (88.02). Feed and water were offered ad-libitum throughout the trial. Results revealed significantly higher (P<0.05) body weight in T3 and T2, followed by T1 and least in T0 at 42 days of age. The overall mean of Feed conversion ratio of various treatment T0, T1, T2 andT3 were 2.16, 1.98, 1.89 and 1.82, respectively. The mortality percentage in various treatment, T0, T1, T2 and T3, were 6.67, 3.33, 0.0 and 1.67, respectively. pH value, PCV (%), Sodium (mmol/L) and Potassium (mmol/L) was higher in T3 than rest of the groups. HL ratio is significantly lower (P<0.05) in T3, T2 followed by T1 than T0 at 42 days of age. It may be inferred that amongst these phyto-additives, aloe vera leads in alleviating heat stress in broiler in an economical way, followed by amla and rough lemon.Keywords: rough lemon, amla, aloe vera, heat stress, broiler
Procedia PDF Downloads 91494 Cosmic Radiation Hazards and Protective Strategies in Space Exploration
Authors: Mehrnaz Mostafavi, Alireza Azani, Mahtab Shabani, Fatemeh Ghafari
Abstract:
While filled with promise and wonder, space exploration also presents significant challenges, one of the foremost being the threat of cosmic radiation to astronaut health. Recent advancements in assessing these risks and developing protective strategies have shed new light on this issue. Cosmic radiation encompasses a variety of high-energy particles originating from sources like solar particle events, galactic cosmic rays, and cosmic rays from beyond the solar system. These particles, composed of protons, electrons, and heavy ions, pose a substantial threat to human health in space due to the lack of Earth's protective atmosphere and magnetic field. Researchers have made significant progress in assessing the risks associated with cosmic radiation exposure. By employing advanced dosimetry techniques and conducting biological studies, they have gained insights into how cosmic radiation affects astronauts' health, including increasing the risk of cancer and radiation sickness. This research has led to personalized risk assessment methods tailored to individual astronaut profiles. Distinctive protection strategies have been proposed to combat the dangers of cosmic radiation. These include developing spacecraft shielding materials and designs to enhance radiation protection. Additionally, researchers are exploring pharmacological interventions such as radioprotective drugs and antioxidant therapies to mitigate the biological effects of radiation exposure and preserve astronaut well-being. The findings from recent research have significant implications for the future of space exploration. By advancing our understanding of cosmic radiation risks and developing effective protection strategies, we pave the way for safer and more sustainable human missions beyond Earth's orbit. This is especially crucial for long-duration missions to destinations like Mars, where astronauts will face prolonged exposure to cosmic radiation. In conclusion, recent research has marked a milestone in addressing the challenges posed by cosmic radiation in space exploration. By delving into the complexities of cosmic radiation exposure and developing innovative protection strategies, scientists are ensuring the health and resilience of astronauts as they venture into the vast expanse of the cosmos. Continued research and collaboration in this area are essential for overcoming the cosmic radiation challenge and enabling humanity to embark on new frontiers of exploration and discovery in space.Keywords: Space exploration, cosmic radiation, astronaut health, risk assessment, protective strategies
Procedia PDF Downloads 75493 Advanced Structural Analysis of Energy Storage Materials
Authors: Disha Gupta
Abstract:
The aim of this research is to conduct X-ray and e-beam characterization techniques on lithium-ion battery materials for the improvement of battery performance. The key characterization techniques employed are the synchrotron X-ray Absorption Spectroscopy (XAS) combined with X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to obtain a more holistic approach to understanding material properties. This research effort provides additional battery characterization knowledge that promotes the development of new cathodes, anodes, electrolyte and separator materials for batteries, hence, leading to better and more efficient battery performance. Both ex-situ and in-situ synchrotron experiments were performed on LiFePO₄, one of the most common cathode material, from different commercial sources and their structural analysis, were conducted using Athena/Artemis software. This analysis technique was then further extended to study other cathode materials like LiMnxFe(₁₋ₓ)PO₄ and even some sulphate systems like Li₂Mn(SO₄)₂ and Li₂Co0.5Mn₀.₅ (SO₄)₂. XAS data were collected for Fe and P K-edge for LiFePO4, and Fe, Mn and P-K-edge for LiMnxFe(₁₋ₓ)PO₄ to conduct an exhaustive study of the structure. For the sulphate system, Li₂Mn(SO₄)₂, XAS data was collected at both Mn and S K-edge. Finite Difference Method for Near Edge Structure (FDMNES) simulations were also conducted for various iron, manganese and phosphate model compounds and compared with the experimental XANES data to understand mainly the pre-edge structural information of the absorbing atoms. The Fe K-edge XAS results showed a charge compensation occurring on the Fe atom for all the differently synthesized LiFePO₄ materials as well as the LiMnxFe(₁₋ₓ)PO₄ systems. However, the Mn K-edge showed a difference in results as the Mn concentration changed in the materials. For the sulphate-based system Li₂Mn(SO₄)₂, however, no change in the Mn K-edge was observed, even though electrochemical studies showed Mn redox reactions.Keywords: li-ion batteries, electrochemistry, X-ray absorption spectroscopy, XRD
Procedia PDF Downloads 148492 Sirt1 Activators Promote Skin Cell Regeneration and Cutaneous Wound Healing
Authors: Hussain Mustatab Wahedi, Sun You Kim
Abstract:
Skin acts as a barrier against the harmful environmental factors. Integrity and timely recovery of the skin from injuries and harmful effects of radiations is thus very important. This study aimed to investigate the importance of Sirt1 in the recovery of skin from UVB-induced damage and cutaneous wounds by using natural and synthetic novel Sirt1 activators. Juglone, known as a natural Pin1 inhibitor, and NED416 a novel synthetic Sirt1 activator were checked for their ability to regulate the expression and activity of Sirt1 and hence photo-damage and wound healing in cultured skin cells (NHDF and HaCaT cells) and mouse model by using Sirt1 siRNA knockdown, cell migration assay, GST-Pulldown assay, western blot analysis, tube formation assay, and immunohistochemistry. Interestingly, Sirt1 knockdown inhibited skin cell migration in vitro. Juglone up regulated the expression of Sirt1 in both the cell lines under normal and UVB irradiated conditions, enhanced Sirt1 activity and increased the cell viability by reducing reactive oxygen species synthesis and apoptosis. Juglone promoted wound healing by increasing cell migration and angiogenesis through Cdc42/Rac1/PAK, MAPKs and Smad pathways in skin cells. NED416 upregulated Sirt1 expression in HaCaT and NHDF cells as well as increased Sirt1 activity. NED416 promoted the process of wound healing in early as well as later stages by increasing macrophage recruitment, skin cell migration, and angiogenesis through Cdc42/Rac1 and MAPKs pathways. So, both these compounds activated Sirt1 and promoted the process of wound healing thus pointing towards the possible role of Sirt1 in skin regeneration and wound healing.Keywords: skin regeneration, wound healing, Sirt1, UVB light
Procedia PDF Downloads 187491 DFT Insights into CO₂ Capture Mechanisms and Kinetics in Diamine-Appended Grafted Mg₂ (dobpdc) Metal- Organic Frameworks
Authors: Mao-Sheng Su, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Climate change is widely recognized as a global crisis, with anthropogenic CO₂ emissions from fossil fuel combustion and industrial processes being major contributors. To address this challenge, carbon capture and sequestration (CCS) technology has emerged as a key strategy for selectively capturing CO₂ from flue gas streams. Among the various solid adsorbents, metal–organic frameworks (MOFs) are notable for their extensive surface area and controllable pore chemistry. The porous MOF structure is comprised of metal ions or clusters coordinated to organic linker compounds. In particular, the pore parameters of MOFs are readily tunable, making them promising materials for CO₂ capture applications. Among these, amine-functionalized MOFs have demonstrated exceptional CO₂ capture abilities because their high uptake capacity and selectivity. In this study, we have investigated the CO₂ capture abilities and adsorption mechanisms of the diamine-appended framework N-Ethylethylenediamine-Mg₂(4,4’-dioxidobiphenyl-3,3’-dicarboxylate) (e-2-Mg₂(dobpdc)) using density functional theory (DFT) calculations. Previous studies have suggested that CO₂ can be captured via both outer- and inner-amine binding sites. Our findings reveal that CO₂ adsorption at the outer amine site is kinetically more favorable compared to the inner amine site, with a lower energy barrier of 1.34 eV for CO₂ physisorption to chemisorption compared to the inner amine, which has an activation barrier of 1.60 eV. Furthermore, we find that CO₂ adsorption is significantly enhanced in an alkaline environment, as deprotonation of the diamine molecule reduces the energy barrier to 0.24 eV. This theoretical study provides detailed insights into CO₂ adsorption in diamine-appended e-2-Mg₂(dobpdc) MOF, offering a deeper understanding of CO₂ capture mechanisms and valuable information for the advancement of effective CO₂ sequestration technologies.Keywords: DFT, MOFs, CO₂ capture, catalyst
Procedia PDF Downloads 25490 Hierarchical Zeolites as Potential Carriers of Curcumin
Authors: Ewelina Musielak, Agnieszka Feliczak-Guzik, Izabela Nowak
Abstract:
Based on the latest data, it is expected that the substances of therapeutic interest used will be as natural as possible. Therefore, active substances with the highest possible efficacy and low toxicity are sought. Among natural substances with therapeutic effects, those of plant origin stand out. Curcumin isolated from the Curcuma longa plant has proven to be particularly important from a medical point of view. Due to its ability to regulate many important transcription factors, cytokines, and protein kinases, curcumin has found use as an anti-inflammatory, antioxidant, antiproliferative, antiangiogenic, and anticancer agent. The unfavorable properties of curcumin, such as low solubility, poor bioavailability, and rapid degradation under neutral or alkaline pH conditions, limit its clinical application. These problems can be solved by combining curcumin with suitable carriers such as hierarchical zeolites. This is a new class of materials that exhibit several advantages. Hierarchical zeolites used as drug carriers enable delayed release of the active ingredient and promote drug transport to the desired tissues and organs. In addition, hierarchical zeolites play an important role in regulating micronutrient levels in the body and have been used successfully in cancer diagnosis and therapy. To apply curcumin to hierarchical zeolites synthesized from commercial FAU zeolite, solutions containing curcumin, carrier and acetone were prepared. The prepared mixtures were then stirred on a magnetic stirrer for 24 h at room temperature. The curcumin-filled hierarchical zeolites were drained into a glass funnel, where they were washed three times with acetone and distilled water, after which the obtained material was air-dried until completely dry. In addition, the effect of piperine addition to zeolite carrier containing a sufficient amount of curcumin was studied. The resulting products were weighed and the percentage of pure curcumin in the hierarchical zeolite was calculated. All the synthesized materials were characterized by several techniques: elemental analysis, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, Fourier transform infrared (FT-IR), N2 adsorption, and X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The aim of the presented study was to improve the biological activity of curcumin by applying it to hierarchical zeolites based on FAU zeolite. The results showed that the loading efficiency of curcumin into hierarchical zeolites based on commercial FAU-type zeolite is enhanced by modifying the zeolite carrier itself. The hierarchical zeolites proved to be very good and efficient carriers of plant-derived active ingredients such as curcumin.Keywords: carriers of active substances, curcumin, hierarchical zeolites, incorporation
Procedia PDF Downloads 96489 Nano Sol Based Solar Responsive Smart Window for Aircraft
Authors: K. A. D. D. Kuruppu, R. M. De Silva, K. M. N. De Silva
Abstract:
This research work was based on developing a solar responsive aircraft window panel which can be used as a self-cleaning surface and also a surface which degrade Volatile Organic compounds (VOC) available in the aircraft cabin areas. Further, this surface has the potential of harvesting energy from Solar. The transparent inorganic nano sol solution was prepared. The obtained sol solution was characterized using X-ray diffraction, Particle size analyzer and FT-IR. The existing nano material which shows the similar characteristics was also used to compare the efficiencies with the newly prepared nano sol. Nano sol solution was coated on cleaned four aircraft window pieces separately using a spin coater machine. The existing nano material was dissolved and prepared a solution having the similar concentration as nano sol solution. Pre-cleaned four aircraft window pieces were coated with this solution and the rest cleaned four aircraft window pieces were considered as control samples. The control samples were uncoated from anything. All the window pieces were allowed to dry at room temperature. All the twelve aircraft window pieces were uniform in all the factors other than the type of coating. The surface morphologies of the samples were analyzed using SEM. The photocatalytic degradation of VOC was determined after incorporating gas of Toluene to each sample followed by the analysis done by UV-VIS spectroscopy. The self- cleaning capabilities were analyzed after adding of several types of stains on the window pieces. The self-cleaning property of each sample was analyzed using UV-VIS spectroscopy. The highest photocatalytic degradation of Volatile Organic compound and the highest photocatalytic degradation of stains were obtained for the samples which were coated by the nano sol solution. Therefore, the experimental results clearly show that there is a potential of using this nano sol in aircraft window pieces which favors the self-cleaning property as well as efficient photocatalytic degradation of VOC gases. This will ensure safer environment inside aircraft cabins.Keywords: aircraft, nano, smart windows, solar
Procedia PDF Downloads 255488 Optimization of Samarium Extraction via Nanofluid-Based Emulsion Liquid Membrane Using Cyanex 272 as Mobile Carrier
Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari
Abstract:
Samarium as a rare-earth element is playing a growing important role in high technology. Traditional methods for extraction of rare earth metals such as ion exchange and solvent extraction have disadvantages of high investment and high energy consumption. Emulsion liquid membrane (ELM) as an improved solvent extraction technique is an effective transport method for separation of various compounds from aqueous solutions. In this work, the extraction of samarium from aqueous solutions by ELM was investigated using response surface methodology (RSM). The organic membrane phase of the ELM was a nanofluid consisted of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as mobile carrier, and kerosene as base fluid. 1 M nitric acid solution was used as internal aqueous phase. The effects of the important process parameters on samarium extraction were investigated, and the values of these parameters were optimized using the Central Composition Design (CCD) of RSM. These parameters were the concentration of MWCNT in nanofluid, the carrier concentration, and the volume ratio of organic membrane phase to internal phase (Roi). The three-dimensional (3D) response surfaces of samarium extraction efficiency were obtained to visualize the individual and interactive effects of the process variables. A regression model for % extraction was developed, and its adequacy was evaluated. The result shows that % extraction improves by using MWCNT nanofluid in organic membrane phase and extraction efficiency of 98.92% can be achieved under the optimum conditions. In addition, demulsification was successfully performed and the recycled membrane phase was proved to be effective in the optimum condition.Keywords: Cyanex 272, emulsion liquid membrane, MWCNT nanofluid, response surface methology, Samarium
Procedia PDF Downloads 423487 Degradation of Petroleum Hydrocarbons Using Pseudomonas Aeruginosa Isolated from Oil Contaminated Soil Incorporated into E. coli DH5α Host
Authors: C. S. Jeba Samuel
Abstract:
Soil, especially from oil field has posed a great hazard for terrestrial and marine ecosystems. The traditional treatment of oil contaminated soil cannot degrade the crude oil completely. So far, biodegradation proves to be an efficient method. During biodegradation, crude oil is used as the carbon source and addition of nitrogenous compounds increases the microbial growth, resulting in the effective breakdown of crude oil components to low molecular weight components. The present study was carried out to evaluate the biodegradation of crude oil by hydrocarbon-degrading microorganism Pseudomonas aeruginosa isolated from natural environment like oil contaminated soil. Pseudomonas aeruginosa, an oil degrading microorganism also called as hydrocarbon utilizing microorganism (or “HUM” bug) can utilize crude oil as sole carbon source. In this study, the biodegradation of crude oil was conducted with modified mineral basal salt medium and nitrogen sources so as to increase the degradation. The efficacy of the plasmid from the isolated strain was incorporated into E.coli DH5 α host to speed up the degradation of oil. The usage of molecular techniques has increased oil degradation which was confirmed by the degradation of aromatic and aliphatic rings of hydrocarbons and was inferred by the lesser number of peaks in Fourier Transform Infrared Spectroscopy (FTIR). The gas chromatogram again confirms better degradation by transformed cells by the lesser number of components obtained in the oil treated with transformed cells. This study demonstrated the technical feasibility of using direct inoculation of transformed cells onto the oil contaminated region thereby leading to the achievement of better oil degradation in a shorter time than the degradation caused by the wild strain.Keywords: biodegradation, aromatic rings, plasmid, hydrocarbon, Fourier Transform Infrared Spectroscopy (FTIR)
Procedia PDF Downloads 369486 An Efficient and Low Cost Protocol for Rapid and Mass in vitro Propagation of Hyssopus officinalis L.
Authors: Ira V. Stancheva, Ely G. Zayova, Maria P. Geneva, Marieta G. Hristozkova, Lyudmila I. Dimitrova, Maria I. Petrova
Abstract:
The study describes a highly efficient and low-cost protocol for rapid and mass in vitro propagation of medicinal and aromatic plant species (Hyssopus officinalis L., Lamiaceae). Hyssop is an important aromatic herb used for its medicinal values because of its antioxidant, anti-inflammatory and antimicrobial properties. The protocol for large-scale multiplication of this aromatic plant was developed using young stem tips explants. The explants were sterilized with 0.04% mercuric chloride (HgCl₂) solution for 20 minutes and washing three times with sterile distilled water in 15 minutes. The cultural media was full and half strength Murashige and Skoog medium containing indole-3-butyric acid. Full and ½ Murashige and Skoog media without auxin were used as controls. For each variant 20 glass tubes with two plants were used. In each tube two tip and nodal explants were inoculated. Maximum shoot and root number were obtained on ½ Murashige and Skoog medium supplemented with 0.1 mg L-1 indole-3-butyric acid at the same time after four weeks of culture. The number of shoots per explant and shoot height were considered. The data on rooting percentage, the number of roots per plant and root length were collected after the same cultural period. The highest percentage of survival 85% for this medicinal plant was recorded in mixture of soil, sand and perlite (2:1:1 v/v/v). This mixture was most suitable for acclimatization of all propagated plants. Ex vitro acclimatization was carried out at 24±1 °C and 70% relative humidity under 16 h illuminations (50 μmol m⁻²s⁻¹). After adaptation period, the all plants were transferred to the field. The plants flowered within three months after transplantation. Phenotypic variations in the acclimatized plants were not observed. An average of 90% of the acclimatized plants survived after transferring into the field. All the in vitro propagated plants displayed normal development under the field conditions. Developed in vitro techniques could provide a promising alternative tool for large-scale propagation that increases the number of homologous plants for field cultivation. Acknowledgments: This study was conducted with financial support from National Science Fund at the Bulgarian Ministry of Education and Science, Project DN06/7 17.12.16.Keywords: Hyssopus officinalis L., in vitro culture, micro propagation, acclimatization
Procedia PDF Downloads 310485 Enhancement of Growth and Lipid Accumulation in Microalgae with Aggregation Induced Emission-Based Photosensitiser
Authors: Sharmin Ferdewsi Rakhi, A. H. M. Mohsinul Reza, Brynley Davies, Jianzhong Wang, Youhong Tang, Jian Qin
Abstract:
Mass production of microalgae has become a focus of research owing to their promising aspects for sustainable food, biofunctional compounds, and biofuel feedstock. However, low lipid content with optimum algal biomass is still a challenge that must be resolved for commercial use. This research aims to determine the effects of light spectral shift and reactive oxygen species (ROS) on growth and lipid biosynthesis in a green microalga, Chlamydomonas reinhardtii. Aggregation Induced Emission (AIE)-based photosensitisers, CN-TPAQ-PF6 ([C₃₂H₂₃N₄]+) with high ROS productivity, was introduced into the algal culture media separately for effective conversion of the green-yellow-light to the red spectra. The intense photon energy and high-photon flux density in the photosystems and ROS supplementation induced photosynthesis and lipid biogenesis. In comparison to the control, maximum algal growth (0.15 g/l) was achieved at 2 µM CN-TPAQ-PF6 exposure. A significant increase in total lipid accumulation (146.87 mg/g dry biomass) with high proportion of 10-Heptadecanoic acid (C17:1) linolenic acid (C18:2), α-linolenic acid (C18:3) was observed. The elevated level of cellular NADP/NADPH triggered the Acetyl-Co-A production in lipid biogenesis cascade. Furthermore, MTT analysis suggested that this nanomaterial is highly biocompatible on HaCat cell lines with 100% cell viability. This study reveals that the AIE-based approach can strongly impact algal biofactory development for sustainable food, healthy lipids and eco-friendly biofuel.Keywords: microalgae, photosensitiser, lipid, biomass, aggregation-induced-emission, reactive oxygen species
Procedia PDF Downloads 49484 Activity Antidiarrheal Extract Kedondong Leaf in Balb/C Strain Male Mice Invivo
Authors: Johanrik, Arini Aprilliani, Fikri Haikal, Diyas Yuca, Muhammad A. Latif, Edijanti Goenarwo, Nurita P. Sari
Abstract:
Diarrhea is one of the leading causes of morbidity and mortality in many countries, as well as responsible for the deaths of millions of people each year. Previous research showed that the leaves, bark, and root bark of kedondong contains saponins, tannins, and flavonoids. Tannins have anti-diarrheal effects that work as the freeze of protein / astrigen, and may inhibit the secretion of chloride over the tannate bonding between protein in the intestines. Chemical compounds of flavonoids also have an effect as anti-diarrheal block receptors Cl ˉ in intestinal thus reducing the secretion of Cl ˉ to the intestinal lume. This research aims to know the anti-diarrheal activity of extracts kedondong leaf in mice Balb/C strain males in vivo. This research also proves kedondong leaves as an anti-diarrhea through trial efficacy of kedondong leaves as antisekretori and antimotilitas. This research using post-test only controlled group design. Analysis of statistical data normality and homogenity were tested by Kolmogorov Smirnov. If the data obtained homogenous then using ANOVA test. This research using ethanolic extracts kedondong leaf 200, 400 and 800 mg/kgBW to prove there is anti-diarrhea it makes into six treatment groups, for anti-secretory it makes into five treatment groups and anti-motility became five treatment groups. The result showed dose of ethanolic extracts kedondong leaf 800 mg/kgBW have significant value (p < 0.005). The conclusion from this extracts kedondong leaf research 800 mg/kgBW have pharmacological effects as antidiarrhea on Balb/C strain male mice with a mechanism of action as antisecretory and antimotility.Keywords: anti-diarrhea, anti-secretory, anti-motility, kedondong leaf
Procedia PDF Downloads 462483 INNPT Nano Particles Material Technology as Enhancement Technology for Biological WWTP Performance and Capacity
Authors: Medhat Gad
Abstract:
Wastewater treatment became a big issue in this decade due to shortage of water resources, growth of population and modern live requirements. Reuse of treated wastewater in industrial and agriculture sectors has a big demand to substitute the shortage of clean water supply as well as to save the eco system from dangerous pollutants in insufficient treated wastewater In last decades, most of wastewater treatment plants are built using primary or secondary biological treatment technology which almost does not provide enough treatment and removal of phosphorus and nitrogen. those plants which built ten to 15 years ago also now suffering from overflow which decrease the treatment efficiency of the plant. Discharging treated wastewater which contains phosphorus and nitrogen to water reservoirs and irrigation canals destroy ecosystem and aquatic life. Using chemical material to enhance treatment efficiency for domestic wastewater but it leads to huge amount of sludge which cost a lot of money. To enhance wastewater treatment, we used INNPT nano material which consists of calcium, aluminum and iron oxides and compounds plus silica, sodium and magnesium. INNPT nano material used with a dose of 100 mg/l to upgrade SBR treatment plant in Cairo Egypt -which has three treatment tanks each with a capacity of 2500 cubic meters per day - to tertiary treatment level by removing Phosphorus, Nitrogen and increase dissolved oxygen in final effluent. The results showed that the treatment retention time decreased from 9 hours in SBR system to one hour using INNPT nano material with improvement in effluent quality while increasing plant capacity to 20 k cubic meters per day. Nitrogen removal efficiency achieved 77%, while phosphorus removal efficiency achieved 90% and COD removal efficiency was 93% which all comply with tertiary treatment limits according to Egyptian law.Keywords: INNPT technology, nanomaterial, tertiary wastewater treatment, capacity extending
Procedia PDF Downloads 162482 Simultaneous Adsorption and Characterization of NOx and SOx Emissions from Power Generation Plant on Sliced Porous Activated Carbon Prepared by Physical Activation
Authors: Muhammad Shoaib, Hassan M. Al-Swaidan
Abstract:
Air pollution has been a major challenge for the scientists today, due to the release of toxic emissions from various industries like power plants, desalination plants, industrial processes and transportation vehicles. Harmful emissions into the air represent an environmental pressure that reflects negatively on human health and productivity, thus leading to a real loss in the national economy. Variety of air pollutants in the form of carbon oxides, hydrocarbons, nitrogen oxides, sulfur oxides, suspended particulate material etc. are present in air due to the combustion of different types of fuels like crude oil, diesel oil and natural gas. Among various pollutants, NOx and SOx emissions are considered as highly toxic due to its carcinogenicity and its relation with various health disorders. In Kingdom of Saudi Arabia electricity is generated by burning of crude, diesel or natural gas in the turbines of electricity stations. Out of these three, crude oil is used extensively for electricity generation. Due to the burning of the crude oil there are heavy contents of gaseous pollutants like sulfur dioxides (SOx) and nitrogen oxides (NOx), gases which are ultimately discharged in to the environment and is a serious environmental threat. The breakthrough point in case of lab studies using 1 gm of sliced activated carbon adsorbant comes after 20 and 30 minutes for NOx and SOx, respectively, whereas in case of PP8 plant breakthrough point comes in seconds. The saturation point in case of lab studies comes after 100 and 120 minutes and for actual PP8 plant it comes after 60 and 90 minutes for NOx and SOx adsorption, respectively. Surface characterization of NOx and SOx adsorption on SAC confirms the presence of peaks in the FT-IR spectrum. CHNS study verifies that the SAC is suitable for NOx and SOx along with some other C and H containing compounds coming out from stack emission stream from the turbines of a power plant.Keywords: activated carbon, flue gases, NOx and SOx adsorption, physical activation, power plants
Procedia PDF Downloads 345481 Effect of Garlic Extract on Growth Performance and Immune System of Broiler
Authors: Merry Muspita Dyah Utami
Abstract:
The positive effect of garlic extract have been reported by many studies. It has antibiotical potential, antibacterial, antiviral, antiparasitic, antifungal, and growth promoting. Supplementary garlic for broilers could mediate in getting the bioactive compounds in garlic. The avian bursa must be essential for antibody-mediated immunity. The size of bursa of fabricius must be some sort of endocrine or lymphoid gland associated with growth and sexual development. The research was conducted to evaluate the effects of garlic extract on growth performance and immune system of broiler. Seventy-two day old chick were equally divided into four group, three replication and six chicks each. Group I was control without garlic extract, then garlic extraxt was administrated to the experimental group II, III and IV (2, 4, 6% in ration). The experiment was conducted for three weeks period from day old chick to 21 days. Body weight of broiler were determined at day 1 and 21, feed intake was determined at the same period, feed conversion ratio was calculated accordingly. At 21 day age, four birds per replicate were slaughtered , bursa was collected, weight and calculated as a percentage of live body weight. Mortality was recorded as it occurred and was used to ajust the total number of broiler to determine the total feed intake and feed conversion rasio. Data were expressed as the mean was compare by one way analysis of variance (Anova) follow by Duncan Test, which used to identify differences between groups. A value of P<0.05 was accepted as significance. The body weight, feed conversion rasio, and the weight of bursa of fabricius showed a significant differences, but feed consumption and the percentage of bursa of live body weight were not significantly different (P > 0.05) influenced by dietary treatments. The results of this research, garlic extract has a potential role as natural growth promoter and immunomodulatory system in broiler.Keywords: garlic extract, growth, immunity, broiler
Procedia PDF Downloads 329480 Conservation Planning of Paris Polyphylla Smith, an Important Medicinal Herb of the Indian Himalayan Region Using Predictive Distribution Modelling
Authors: Mohd Tariq, Shyamal K. Nandi, Indra D. Bhatt
Abstract:
Paris polyphylla Smith (Family- Liliaceae; English name-Love apple: Local name- Satuwa) is an important folk medicinal herb of the Indian subcontinent, being a source of number of bioactive compounds for drug formulation. The rhizomes are widely used as antihelmintic, antispasmodic, digestive stomachic, expectorant and vermifuge, antimicrobial, anti-inflammatory, heart and vascular malady, anti-fertility and sedative. Keeping in view of this, the species is being constantly removed from nature for trade and various pharmaceuticals purpose, as a result, the availability of the species in its natural habitat is decreasing. In this context, it would be pertinent to conserve this species and reintroduce them in its natural habitat. Predictive distribution modelling of this species was performed in Western Himalayan Region. One such recent method is Ecological Niche Modelling, also popularly known as Species distribution modelling, which uses computer algorithms to generate predictive maps of species distributions in a geographic space by correlating the point distributional data with a set of environmental raster data. In case of P. polyphylla, and to understand its potential distribution zones and setting up of artificial introductions, or selecting conservation sites, and conservation and management of their native habitat. Among the different districts of Uttarakhand (28°05ˈ-31°25ˈ N and 77°45ˈ-81°45ˈ E) Uttarkashi, Rudraprayag, Chamoli, Pauri Garhwal and some parts of Bageshwar, 'Maximum Entropy' (Maxent) has predicted wider potential distribution of P. polyphylla Smith. Distribution of P. polyphylla is mainly governed by Precipitation of Driest Quarter and Mean Diurnal Range i.e., 27.08% and 18.99% respectively which indicates that humidity (27%) and average temperature (19°C) might be suitable for better growth of Paris polyphylla.Keywords: biodiversity conservation, Indian Himalayan region, Paris polyphylla, predictive distribution modelling
Procedia PDF Downloads 328479 Textile Wastewater Ecotoxicity Abatement after Aerobic Granular Sludge Treatment and Advanced Oxidation Process
Authors: Ana M. T. Mata, Alexiane Ligneul
Abstract:
Textile effluents are usually heavily loaded with organic carbon and color compounds, the latter being azo dyes in an estimated 70% of the case effluent posing a major challenge in environmental protection. In this study, the ecotoxicity of simulated textile effluent after biological treatment with anaerobic and aerobic phase (aerobic granular sludge, AGS) and after advanced oxidation processes (AOP) namely ozonation and UV irradiation as post-treatment, were tested to evaluate the fitness of this treatments for ecotoxicity abatement. AGS treatment achieved an 80% removal in both COD and color. AOP was applied with the intention to mineralize the metabolites resulting from biodecolorization of the azo dye Acid Red 14, especially the stable aromatic amine (4-amino-1-naphthalenesulfonic acid, 4A1NS). The ecotoxicity evaluation was based on growth inhibition of the algae Pseudokirchneriella subcapitata following OECD TG 201 except regarding the medium, MBL medium was used instead. Five replicate control cultures and samples were performed with an average STD of 2.7% regarding specific algae growth rate determination. It was found that untreated textile effluent holds an inhibition of specific growth rate of 82%. AGS treatment by itself is able to lower ecotoxicity to 53%. This is probably due to the high color removal of the treatment. AOP post-treatment with Ozone and UV irradiation improves the ecotoxicity abatment to 49 and 43% inhibition respectively, less significantly than previously thought. Since over 85% of 4A1NS was removed by either of the AOP (followed by HPLC), an individual ecotoxicity test of 4A1NS was performed showing that 4A1NS does not inhibit algae growth (0% inhibition). It was concluded that AGS treatment is able by itself to achieve a significant ecotoxicity abatement of textile effluent. The cost-benefit of AOP as a post-treatment have to be better accessed since their application resulted in an improvement of only 10% regarding ecotoxicity effluent removal. It was also found that the 4A1NS amine had no apparent effect on ecotoxicity. Further studies will be conducted to study where ecotoxicity is coming from after AGS biological treatment and how to eliminate it.Keywords: textile wastewate, ecotoxicity, aerobic granular sludge, AOP
Procedia PDF Downloads 163478 Circadian-Clock Controlled Drug Transport Across Blood-Cerebrospinal Fluid Barrier
Authors: André Furtado, Rafael Mineiro, Isabel Gonçalves, Cecília Santos, Telma Quintela
Abstract:
The development of therapies for central nervous system (CNS) disorders is one of the biggest challenges of current pharmacology, given the unique features of brain barriers, which limit drug delivery. Efflux transporters (ABC transporters) expressed at the blood-cerebrospinal fluid barrier (BCSFB), are the main obstacles for the delivery of therapeutic compounds into the CNS, compromising the effective treatment of brain cancer, brain metastasis from peripheral cancers, or even neurodegenerative disorders. It is thus extremely important to understand the regulation of these transporters for reducing their expression while treating a brain disorder or choosing the most appropriate conditions for drug administration. Based on the fact that the BCSFB have fine-tuned biological rhythms, studying the circadian variation of drug transport processes is critical for choosing the most appropriate time of the day for drug administration. In our study, using an in vitro model of the BCSFB, we characterized the circadian transport profile of methotrexate (MTX) and donepezil (DNPZ), two drugs involved in the treatment of cancer and Alzheimer’s Disease symptoms, respectively. We found that MTX is transported across the basal and apical membranes of the BCSFB in a circadian way. The circadian pattern of an ABC transporter, Abcc4, might be partially responsible for MTX circadian transport. Furthermore, regarding the DNPZ transport study, we observed that the regulation of Abcg2 expression by the circadian rhythm will impact the circadian-dependent transport of DNPZ across the BCSFB. Overall, our results will contribute to the current knowledge on brain pharmacoresistance at the BCSFB by disclosing how circadian rhythms control drug delivery to the brain, setting the grounds for a potential application of chronotherapy to brain diseases to enhance the efficacy of medications and minimize their side effects.Keywords: blood-cerebrospinal fluid barrier, ABC transporters, drug transport, chronotherapy
Procedia PDF Downloads 13477 Development of Immuno-Modulators: Application of Molecular Dynamics Simulation
Authors: Ruqaiya Khalil, Saman Usmani, Zaheer Ul-Haq
Abstract:
The accurate characterization of ligand binding affinity is indispensable for designing molecules with optimized binding affinity. Computational tools help in many directions to predict quantitative correlations between protein-ligand structure and their binding affinities. Molecular dynamics (MD) simulation is a modern state-of-the-art technique to evaluate the underlying basis of ligand-protein interactions by characterizing dynamic and energetic properties during the event. Autoimmune diseases arise from an abnormal immune response of the body against own tissues. The current regimen for the described condition is limited to immune-modulators having compromised pharmacodynamics and pharmacokinetics profiles. One of the key player mediating immunity and tolerance, thus invoking autoimmunity is Interleukin-2; a cytokine influencing the growth of T cells. Molecular dynamics simulation techniques are applied to seek insight into the inhibitory mechanisms of newly synthesized compounds that manifested immunosuppressant potentials during in silico pipeline. In addition to estimation of free energies associated with ligand binding, MD simulation yielded us a great deal of information about ligand-macromolecule interactions to evaluate the pattern of interactions and the molecular basis of inhibition. The present study is a continuum of our efforts to identify interleukin-2 inhibitors of both natural and synthetic origin. Herein, we report molecular dynamics simulation studies of Interluekin-2 complexed with different antagonists previously reported by our group. The study of protein-ligand dynamics enabled us to gain a better understanding of the contribution of different active site residues in ligand binding. The results of the study will be used as the guide to rationalize the fragment based synthesis of drug-like interleukin-2 inhibitors as immune-modulators.Keywords: immuno-modulators, MD simulation, protein-ligand interaction, structure-based drug design
Procedia PDF Downloads 260476 Aggregation-Induced-Active Stimuli-Responsive Based Nano-Objects for Wastewater Treatment Application
Authors: Parvaneh Eskandari, Rachel O'Reilly
Abstract:
In the last years, controlling the self-assembly behavior of stimuli-responsive nano-objects, including micelles, vesicles, worm-like, etc., at different conditions is considered a pertinent challenge in the polymer community. The aim of the project was to synthesize aggregation-induced emission (AIE)-active stimuli-responsive polymeric nano-objects to control the self-assemblies morphologies of the prepared nano-objects. Two types of nanoobjects, micelle and vesicles, including PDMAEMA-b-P(BzMA-TPEMA) [PDMAEMA: poly(N,Ndimethylaminoethyl methacrylate); P(BzMA-TPEMA): poly[benzyl methacrylate-co- tetraphenylethene methacrylate]] were synthesized by using reversible addition−fragmentation chain-transfer (RAFT)- mediated polymerization-induced self-assembly (PISA), which combines polymerization and self-assembly in a single step. Transmission electron microscope and dynamic light scattering (DLS) analysis were used to confirm the formed self-assemblies morphologies. The controlled self-assemblies were applied as nitrophenolic compounds (NPCs) adsorbents from wastewater, thanks to their CO2-responsive part, PDMAEMA. Moreover, the fluorescence-active part of the prepared nano-objects, P(BzMA-TPEMA), played a key role in the detection of the NPCs at the aqueous solution. The optical properties of the prepared nano-objects were studied by UV/Vis and fluorescence spectroscopies. For responsivity investigations, the hydrodynamic diameter and Zeta-potential (ζ-potential) of the sample's aqueous solution were measured by DLS. In the end, the prepared nano-objects were used for the detection and adsorption of different NPCs.Keywords: aggregation-induced emission polymers, stimuli-responsive polymers, reversible addition−fragmentation chain-transfer polymerization, polymerization-induced self-assembly, wastewater treatment
Procedia PDF Downloads 72475 Utilization of Activated Carbon for the Extraction and Separation of Methylene Blue in the Presence of Acid Yellow 61 Using an Inclusion Polymer Membrane
Authors: Saâd Oukkass, Abderrahim Bouftou, Rachid Ouchn, L. Lebrun, Miloudi Hlaibi
Abstract:
We invariably exist in a world steeped in colors, whether in our clothing, food, cosmetics, or even medications. However, most of the dyes we use pose significant problems, being both harmful to the environment and resistant to degradation. Among these dyes, methylene blue and acid yellow 61 stand out, commonly used to dye various materials such as cotton, wood, and silk. Fortunately, various methods have been developed to treat and remove these polluting dyes, among which membrane processes play a prominent role. These methods are praised for their low energy consumption, ease of operation, and their ability to achieve effective separation of components. Adsorption on activated carbon is also a widely employed technique, complementing the basic processes. It proves particularly effective in capturing and removing organic compounds from water due to its substantial specific surface area while retaining its properties unchanged. In the context of our study, we examined two crucial aspects. Firstly, we explored the possibility of selectively extracting methylene blue from a mixture containing another dye, acid yellow 61, using a polymer inclusion membrane (PIM) made of PVA. After characterizing the morphology and porosity of the membrane, we applied kinetic and thermodynamic models to determine the values of permeability (P), initial flux (J0), association constant (Kass), and apparent diffusion coefficient (D*). Subsequently, we measured activation parameters (activation energy (Ea), enthalpy (ΔH#ass), entropy (ΔS#)). Finally, we studied the effect of activated carbon on the processes carried out through the membrane, demonstrating a clear improvement. These results make the membrane developed in this study a potentially pivotal player in the field of membrane separation.Keywords: dyes, methylene blue, membrane, activated carbon
Procedia PDF Downloads 80474 Combustion Characteristics of Wet Woody Biomass in a Grate Furnace: Including Measurements within the Bed
Authors: Narges Razmjoo, Hamid Sefidari, Michael Strand
Abstract:
Biomass combustion is a growing technique for heat and power production due to the increasing stringent regulations with CO2 emissions. Grate-fired systems have been regarded as a common and popular combustion technology for burning woody biomass. However, some grate furnaces are not well optimized and may emit significant amount of unwanted compounds such as dust, NOx, CO, and unburned gaseous components. The combustion characteristics inside the fuel bed are of practical interest, as they are directly related to the release of volatiles and affect the stability and the efficiency of the fuel bed combustion. Although numerous studies have been presented on the grate firing of biomass, to the author’s knowledge, none of them have conducted a detailed experimental study within the fuel bed. It is difficult to conduct measurements of temperature and gas species inside the burning bed of the fuel in full-scale boilers. Results from such inside bed measurements can also be applied by the numerical experts for modeling the fuel bed combustion. The current work presents an experimental investigation into the combustion behavior of wet woody biomass (53 %) in a 4 MW reciprocating grate boiler, by focusing on the gas species distribution along the height of the fuel bed. The local concentrations of gases (CO, CO2, CH4, NO, and O2) inside the fuel bed were measured through a glass port situated on the side wall of the furnace. The measurements were carried out at five different heights of the fuel bed, by means of a bent stainless steel probe containing a type-k thermocouple. The sample gas extracted from the fuel bed, through the probe, was filtered and dried and then was analyzed using two infrared spectrometers. Temperatures of about 200-1100 °C were measured close to the grate, indicating that char combustion is occurring at the bottom of the fuel bed and propagates upward. The CO and CO2 concentration varied in the range of 15-35 vol % and 3-16 vol %, respectively, and NO concentration varied between 10-140 ppm. The profile of the gas concentrations distribution along the bed height provided a good overview of the combustion sub-processes in the fuel bed.Keywords: experimental, fuel bed, grate firing, wood combustion
Procedia PDF Downloads 325473 Effect of Doping on Band Gap of Zinc Oxide and Degradation of Methylene Blue and Industrial Effluent
Authors: V. P. Borker, K. S. Rane, A. J. Bhobe, R. S. Karmali
Abstract:
Effluent of dye industries contains chemicals and organic dyes. Sometimes they are thrown in the water bodies without any treatment. This leads to environmental pollution and is detrimental to flora and fauna. Semiconducting oxide zinc oxide with wide bandgap 3.37 eV is used as a photocatalyst in degrading organic dyes using UV radiations. It generates electron-hole pair on exposure to UV light. If degradation is aimed at solar radiations, bandgap of zinc oxide is to be reduced so as to utilize visible radiation. Thus, in present study, zinc oxide, ZnO is synthesized from zinc oxalate, N doped zinc oxide, ZnO₁₋ₓNₓ from hydrazinated zinc oxalate, cadmium doped zinc oxide Zn₀.₉Cd₀.₁₀ and magnesium-doped zinc oxide Zn₀.₉Mg₀.₁₀ from mixed metal oxalate and hydrazinated mixed metal oxalate. The precursors were characterized by FTIR. They were decomposed to form oxides and XRD were recorded. The compounds were monophasic. Bandgap was calculated using Diffuse Reflectance Spectrum. The bandgap of ZnO was reduced to 3.24 because of precursor method of synthesis leading large surface area. The bandgap of Zn₀.₉Cd₀.₁₀ was 3.11 eV and that of Zn₀.₉Mg₀.₁₀ 3.41 eV. The lowest value was of ZnO₁₋ₓNₓ 3.09 eV. These oxides were used to degrade methylene blue, a model dye in sunlight. ZnO₁₋ₓNₓ was also used to degrade effluent of industry manufacturing colours, crayons and markers. It was observed that ZnO₁₋ₓNₓ acts as a good photocatalyst for degradation of methylene blue. It can degrade the solution within 120 minutes. Similarly, diluted effluent was decolourised using this oxide. Some colours were degraded using ZnO. Thus, the use of these two oxides could mineralize effluent. Lesser bandgap leads to more electro hole pair thus helps in the formation of hydroxyl ion radicals. These radicals attack the dye molecule, fragmentation takes place and it is mineralised.Keywords: cadmium doped zinc oxide, dye degradation, dye effluent degradation, N doped zinc oxide, zinc oxide
Procedia PDF Downloads 166472 Enhanced Photocatalytic H₂ Production from H₂S on Metal Modified Cds-Zns Semiconductors
Authors: Maali-Amel Mersel, Lajos Fodor, Otto Horvath
Abstract:
Photocatalytic H₂ production by H₂S decomposition is regarded to be an environmentally friendly process to produce carbon-free energy through direct solar energy conversion. For this purpose, sulphide-based materials, as photocatalysts, were widely used due to their excellent solar spectrum responses and high photocatalytic activity. The loading of proper co-catalysts that are based on cheap and earth-abundant materials on those semiconductors was shown to play an important role in the improvement of their efficiency. In this research, CdS-ZnS composite was studied because of its controllable band gap and excellent performance for H₂ evolution under visible light irradiation. The effects of the modification of this photocatalyst with different types of materials and the influence of the preparation parameters on its H₂ production activity were investigated. The CdS-ZnS composite with an enhanced photocatalytic activity for H₂ production was synthesized from ammine complexes. Two types of modification were used: compounds of Ni-group metals (NiS, PdS, and Pt) were applied as co-catalyst on the surface of CdS-ZnS semiconductor, while NiS, MnS, CoS, Ag₂S, and CuS were used as a dopant in the bulk of the catalyst. It was found that 0.1% of noble metals didn’t remarkably influence the photocatalytic activity, while the modification with 0.5% of NiS was shown to be more efficient in the bulk than on the surface. The modification with other types of metals results in a decrease of the rate of H₂ production, while the co-doping seems to be more promising. The preparation parameters (such as the amount of ammonia to form the ammine complexes, the order of the preparation steps together with the hydrothermal treatment) were also found to highly influence the rate of H₂ production. SEM, EDS and DRS analyses were made to reveal the structure of the most efficient photocatalysts. Moreover, the detection of the conduction band electron on the surface of the catalyst was also investigated. The excellent photoactivity of the CdS-ZnS catalysts with and without modification encourages further investigations to enhance the hydrogen generation by optimization of the reaction conditions.Keywords: H₂S, photoactivity, photocatalytic H₂ production, CdS-ZnS
Procedia PDF Downloads 127471 Characterization of Pectinase from Local Microorganisms to Support Industry Based Green Chemistry
Authors: Sasangka Prasetyawan, Anna Roosdiana, Diah Mardiana, Suratmo
Abstract:
Pectinase are enzymes that hydrolyze pectin compounds. The use of this enzyme is primarily to reduce the viscosity of the beverage thus simplifying the purification process. Pectinase activity influenced by microbial sources . Exploration of two types of microbes that Aspergillus spp. and Bacillus spp. pectinase give different performance, but the use of local strain is still not widely studied. The aim of this research is exploration of pectinase from A. niger and B. firmus include production conditions and characterization. Bacillus firmus incubated and shaken at a speed of 200 rpm at pH variation (5, 6, 7, 8, 9, 10), temperature (30, 35, 40, 45, 50) °C and incubation time (6, 12, 18, 24, 30, 36 ) hours. Media was centrifuged at 3000 rpm, pectinase enzyme activity determined. Enzyme production by A. niger determined to variations in temperature and pH were similar to B. firmus, but the variation of the incubation time was 24, 48, 72, 96, 120 hours. Pectinase crude extract was further purified by precipitation using ammonium sulfate saturation in fraction 0-20 %, 20-40 %, 40-60 %, 60-80 %, then dialyzed. Determination of optimum conditions pectinase activity performed by measuring the variation of enzyme activity on pH (4, 6, 7, 8, 10), temperature (30, 35, 40, 45, 50) °C, and the incubation time (10, 20, 30, 40, 50) minutes . Determination of kinetic parameters of pectinase enzyme reaction carried out by measuring the rate of enzyme reactions at the optimum conditions, but the variation of the concentration of substrate (pectin 0.1 % , 0.2 % , 0.3 % , 0.4 % , 0.5 % ). The results showed that the optimum conditions of production of pectinase from B. firmus achieved at pH 7-8.0, 40-50 ⁰C temperature and fermentation time 18 hours. Purification of pectinase showed the highest purity in the 40-80 % ammonium sulfate fraction. Character pectinase obtained : the optimum working conditions of A. niger pectinase at pH 5 , while pectinase from B. firmus at pH 7, temperature and optimum incubation time showed the same value, namely the temperature of 50 ⁰C and incubation time of 30 minutes. The presence of metal ions can affect the activity of pectinase , the concentration of Zn 2 + , Pb 2 + , Ca 2 + and K + and 2 mM Mg 2 + above 6 mM inhibit the activity of pectinase .Keywords: pectinase, Bacillus firmus, Aspergillus niger, green chemistry
Procedia PDF Downloads 366