Search results for: tomato yield prediction
2146 Production, Quality Control, and Biodistribution Assessment of 111In-BPAMD as a New Bone Imaging Agent
Authors: H. Yousefnia, A. Aghanejad, A. Mirzaei, R. Enayati, A. R. Jalilian, S. Zolghadri
Abstract:
Bone metastases occur in many cases at an early stage of the tumour disease; however, their symptoms are recognized rather late. The aim of this study was the preparation and quality control of 111In-BPAMD for diagnostic purposes. 111In was produced at the Agricultural, Medical, and Industrial Research School (AMIRS) by means of 30 MeV cyclotron via natCd(p,x)111In reaction. Complexion of In‐111 with BPAMD was carried out by using acidic solution of 111InCl3 and BPAMD in absolute water. The effect of various parameters such as temperature, ligand concentration, pH, and time on the radiolabeled yield was studied. 111In-BPAMD was prepared successfully with the radiochemical purity of 95% at the optimized condition (100 µg of BPAMD, pH=5, and at 90°C for 1 h) which was measured by ITLC method. The final solution was injected to wild-type mice and biodistribution was determined up to 72 h. SPECT images were acquired after 2 and 24 h post injection. Both the biodistribution studies and SPECT imaging indicated high bone uptake while accumulation in other organs was approximately negligible. The results show that 111In-BPAMD can be used as an excellent tracer for diagnosis of bone metastases by SPECT imaging.Keywords: biodistribution, BPAMD, 111In, SPECT
Procedia PDF Downloads 5612145 Effect of Model Dimension in Numerical Simulation on Assessment of Water Inflow to Tunnel in Discontinues Rock
Authors: Hadi Farhadian, Homayoon Katibeh
Abstract:
Groundwater inflow to the tunnels is one of the most important problems in tunneling operation. The objective of this study is the investigation of model dimension effects on tunnel inflow assessment in discontinuous rock masses using numerical modeling. In the numerical simulation, the model dimension has an important role in prediction of water inflow rate. When the model dimension is very small, due to low distance to the tunnel border, the model boundary conditions affect the estimated amount of groundwater flow into the tunnel and results show a very high inflow to tunnel. Hence, in this study, the two-dimensional universal distinct element code (UDEC) used and the impact of different model parameters, such as tunnel radius, joint spacing, horizontal and vertical model domain extent has been evaluated. Results show that the model domain extent is a function of the most significant parameters, which are tunnel radius and joint spacing.Keywords: water inflow, tunnel, discontinues rock, numerical simulation
Procedia PDF Downloads 5242144 Machine Learning for Feature Selection and Classification of Systemic Lupus Erythematosus
Authors: H. Zidoum, A. AlShareedah, S. Al Sawafi, A. Al-Ansari, B. Al Lawati
Abstract:
Systemic lupus erythematosus (SLE) is an autoimmune disease with genetic and environmental components. SLE is characterized by a wide variability of clinical manifestations and a course frequently subject to unpredictable flares. Despite recent progress in classification tools, the early diagnosis of SLE is still an unmet need for many patients. This study proposes an interpretable disease classification model that combines the high and efficient predictive performance of CatBoost and the model-agnostic interpretation tools of Shapley Additive exPlanations (SHAP). The CatBoost model was trained on a local cohort of 219 Omani patients with SLE as well as other control diseases. Furthermore, the SHAP library was used to generate individual explanations of the model's decisions as well as rank clinical features by contribution. Overall, we achieved an AUC score of 0.945, F1-score of 0.92 and identified four clinical features (alopecia, renal disorders, cutaneous lupus, and hemolytic anemia) along with the patient's age that was shown to have the greatest contribution on the prediction.Keywords: feature selection, classification, systemic lupus erythematosus, model interpretation, SHAP, Catboost
Procedia PDF Downloads 842143 Evaluating the Suitability and Performance of Dynamic Modulus Predictive Models for North Dakota’s Asphalt Mixtures
Authors: Duncan Oteki, Andebut Yeneneh, Daba Gedafa, Nabil Suleiman
Abstract:
Most agencies lack the equipment required to measure the dynamic modulus (|E*|) of asphalt mixtures, necessitating the need to use predictive models. This study compared measured |E*| values for nine North Dakota asphalt mixes using the original Witczak, modified Witczak, and Hirsch models. The influence of temperature on the |E*| models was investigated, and Pavement ME simulations were conducted using measured |E*| and predictions from the most accurate |E*| model. The results revealed that the original Witczak model yielded the lowest Se/Sy and highest R² values, indicating the lowest bias and highest accuracy, while the poorest overall performance was exhibited by the Hirsch model. Using predicted |E*| as inputs in the Pavement ME generated conservative distress predictions compared to using measured |E*|. The original Witczak model was recommended for predicting |E*| for low-reliability pavements in North Dakota.Keywords: asphalt mixture, binder, dynamic modulus, MEPDG, pavement ME, performance, prediction
Procedia PDF Downloads 482142 Multi-Disciplinary Optimisation Methodology for Aircraft Load Prediction
Authors: Sudhir Kumar Tiwari
Abstract:
The paper demonstrates a methodology that can be used at an early design stage of any conventional aircraft. This research activity assesses the feasibility derivation of methodology for aircraft loads estimation during the various phases of design for a transport category aircraft by utilizing potential of using commercial finite element analysis software, which may drive significant time saving. Early Design phase have limited data and quick changing configuration results in handling of large number of load cases. It is useful to idealize the aircraft as a connection of beams, which can be very accurately modelled using finite element analysis (beam elements). This research explores the correct approach towards idealizing an aircraft using beam elements. FEM Techniques like inertia relief were studied for implementation during course of work. The correct boundary condition technique envisaged for generation of shear force, bending moment and torque diagrams for the aircraft. The possible applications of this approach are the aircraft design process, which have been investigated.Keywords: multi-disciplinary optimization, aircraft load, finite element analysis, stick model
Procedia PDF Downloads 3522141 A Comparative Study of Microstructure, Thermal and Mechanical Properties of A359 Composites Reinforced with SiC, Si3N4 and AlN Particles
Authors: Essam Shalaby, Alexander Churyumov, Malak Abou El-Khair, Atef Daoud
Abstract:
A comparative study of the thermal and mechanical behavior of squeezed A359 composites containing 5, 10 and 15 wt.% SiC, (SiC+ Si3N4) and AlN particulates was investigated. Stir followed by squeeze casting techniques are used to produce A359 composites. It was noticed that, A359/AlN composites have high thermal conductivity as compared to A359 alloy and even to A359/SiC or A359/(SiC+Si3N4) composites. Microstructures of the composites have shown homogeneous and even distribution of reinforcements within the matrix. Interfacial reactions between particles and matrix were investigated using X-ray diffraction and energy dispersive X-ray analysis. The presence of particles led not only to increase peak hardness of the composites but also to accelerate the aging kinetics. As compared with A359 matrix alloy, compression test of the composites has exhibited a significant increase in the yield and the ultimate compressive strengths with a relative reduction in the failure strain. Those light weight composites have a high potential to be used for automotive and aerospace applications.Keywords: metal-matrix composite, squeeze, microstructure, thermal conductivity, compressive properties
Procedia PDF Downloads 3812140 National Digital Soil Mapping Initiatives in Europe: A Review and Some Examples
Authors: Dominique Arrouays, Songchao Chen, Anne C. Richer-De-Forges
Abstract:
Soils are at the crossing of many issues such as food and water security, sustainable energy, climate change mitigation and adaptation, biodiversity protection, human health and well-being. They deliver many ecosystem services that are essential to life on Earth. Therefore, there is a growing demand for soil information on a national and global scale. Unfortunately, many countries do not have detailed soil maps, and, when existing, these maps are generally based on more or less complex and often non-harmonized soil classifications. An estimate of their uncertainty is also often missing. Thus, there are not easy to understand and often not properly used by end-users. Therefore, there is an urgent need to provide end-users with spatially exhaustive grids of essential soil properties, together with an estimate of their uncertainty. One way to achieve this is digital soil mapping (DSM). The concept of DSM relies on the hypothesis that soils and their properties are not randomly distributed, but that they depend on the main soil-forming factors that are climate, organisms, relief, parent material, time (age), and position in space. All these forming factors can be approximated using several exhaustive spatial products such as climatic grids, remote sensing products or vegetation maps, digital elevation models, geological or lithological maps, spatial coordinates of soil information, etc. Thus, DSM generally relies on models calibrated with existing observed soil data (point observations or maps) and so-called “ancillary co-variates” that come from other available spatial products. Then the model is generalized on grids where soil parameters are unknown in order to predict them, and the prediction performances are validated using various methods. With the growing demand for soil information at a national and global scale and the increase of available spatial co-variates national and continental DSM initiatives are continuously increasing. This short review illustrates the main national and continental advances in Europe, the diversity of the approaches and the databases that are used, the validation techniques and the main scientific and other issues. Examples from several countries illustrate the variety of products that were delivered during the last ten years. The scientific production on this topic is continuously increasing and new models and approaches are developed at an incredible speed. Most of the digital soil mapping (DSM) products rely mainly on machine learning (ML) prediction models and/or the use or pedotransfer functions (PTF) in which calibration data come from soil analyses performed in labs or for existing conventional maps. However, some scientific issues remain to be solved and also political and legal ones related, for instance, to data sharing and to different laws in different countries. Other issues related to communication to end-users and education, especially on the use of uncertainty. Overall, the progress is very important and the willingness of institutes and countries to join their efforts is increasing. Harmonization issues are still remaining, mainly due to differences in classifications or in laboratory standards between countries. However numerous initiatives are ongoing at the EU level and also at the global level. All these progress are scientifically stimulating and also promissing to provide tools to improve and monitor soil quality in countries, EU and at the global level.Keywords: digital soil mapping, global soil mapping, national and European initiatives, global soil mapping products, mini-review
Procedia PDF Downloads 1842139 Corrosion Protective Coatings in Machines Design
Authors: Cristina Diaz, Lucia Perez, Simone Visigalli, Giuseppe Di Florio, Gonzalo Fuentes, Roberto Canziani, Paolo Gronchi
Abstract:
During the last 50 years, the selection of materials is one of the main decisions in machine design for different industrial applications. It is due to numerous physical, chemical, mechanical and technological factors to consider in it. Corrosion effects are related with all of these factors and impact in the life cycle, machine incidences and the costs for the life of the machine. Corrosion affects the deterioration or destruction of metals due to the reaction with the environment, generally wet. In food industry, dewatering industry, concrete industry, paper industry, etc. corrosion is an unsolved problem and it might introduce some alterations of some characteristics in the final product. Nowadays, depending on the selected metal, its surface and its environment of work, corrosion prevention might be a change of metal, use a coating, cathodic protection, use of corrosion inhibitors, etc. In the vast majority of the situations, use of a corrosion resistant material or in its defect, a corrosion protection coating is the solution. Stainless steels are widely used in machine design, because of their strength, easily cleaned capacity, corrosion resistance and appearance. Typical used are AISI 304 and AISI 316. However, their benefits don’t fit every application, and some coatings are required against corrosion such as some paintings, galvanizing, chrome plating, SiO₂, TiO₂ or ZrO₂ coatings, etc. In this work, some coatings based in a bilayer made of Titanium-Tantalum, Titanium-Niobium, Titanium-Hafnium or Titanium-Zirconium, have been developed used magnetron sputtering configuration by PVD (Physical Vapor Deposition) technology, for trying to reduce corrosion effects on AISI 304, AISI 316 and comparing it with Titanium alloy substrates. Ti alloy display exceptional corrosion resistance to chlorides, sour and oxidising acidic media and seawater. In this study, Ti alloy (99%) has been included for comparison with coated AISI 304 and AISI 316 stainless steel. Corrosion tests were conducted by a Gamry Instrument under ASTM G5-94 standard, using different electrolytes such as tomato salsa, wine, olive oil, wet compost, a mix of sand and concrete with water and NaCl for testing corrosion in different industrial environments. In general, in all tested environments, the results showed an improvement of corrosion resistance of all coated AISI 304 and AISI 316 stainless steel substrates when they were compared to uncoated stainless steel substrates. After that, comparing these results with corrosion studies on uncoated Ti alloy substrate, it was observed that in some cases, coated stainless steel substrates, reached similar current density that uncoated Ti alloy. Moreover, Titanium-Zirconium and Titanium-Tantalum coatings showed for all substrates in study including coated Ti alloy substrates, a reduction in current density more than two order in magnitude. As conclusion, Ti-Ta, Ti-Zr, Ti-Nb and Ti-Hf coatings have been developed for improving corrosion resistance of AISI 304 and AISI 316 materials. After corrosion tests in several industry environments, substrates have shown improvements on corrosion resistance. Similar processes have been carried out in Ti alloy (99%) substrates. Coated AISI 304 and AISI 316 stainless steel, might reach similar corrosion protection on the surface than uncoated Ti alloy (99%). Moreover, coated Ti Alloy (99%) might increase its corrosion resistance using these coatings.Keywords: coatings, corrosion, PVD, stainless steel
Procedia PDF Downloads 1582138 Vibration Measurements of Single-Lap Cantilevered SPR Beams
Authors: Xiaocong He
Abstract:
Self-pierce riveting (SPR) is a new high-speed mechanical fastening technique which is suitable for point joining dissimilar sheet materials, as well as coated and pre-painted sheet materials. Mechanical structures assembled by SPR are expected to possess a high damping capacity. In this study, experimental measurement techniques were proposed for the prediction of vibration behavior of single-lap cantilevered SPR beams. The dynamic test software and the data acquisition hardware were used in the experimental measurement of the dynamic response of the single-lap cantilevered SPR beams. Free and forced vibration behavior of the single-lap cantilevered SPR beams was measured using the LMS CADA-X experimental modal analysis software and the LMS-DIFA Scadas II data acquisition hardware. The frequency response functions of the SPR beams of different rivet number were compared. The main goal of the paper is to provide a basic measuring method for further research on vibration based non-destructive damage detection in single-lap cantilevered SPR beams.Keywords: self-piercing riveting, dynamic response, experimental measurement, frequency response functions
Procedia PDF Downloads 4292137 Data Analysis to Uncover Terrorist Attacks Using Data Mining Techniques
Authors: Saima Nazir, Mustansar Ali Ghazanfar, Sanay Muhammad Umar Saeed, Muhammad Awais Azam, Saad Ali Alahmari
Abstract:
Terrorism is an important and challenging concern. The entire world is threatened by only few sophisticated terrorist groups and especially in Gulf Region and Pakistan, it has become extremely destructive phenomena in recent years. Predicting the pattern of attack type, attack group and target type is an intricate task. This study offers new insight on terrorist group’s attack type and its chosen target. This research paper proposes a framework for prediction of terrorist attacks using the historical data and making an association between terrorist group, their attack type and target. Analysis shows that the number of attacks per year will keep on increasing, and Al-Harmayan in Saudi Arabia, Al-Qai’da in Gulf Region and Tehreek-e-Taliban in Pakistan will remain responsible for many future terrorist attacks. Top main targets of each group will be private citizen & property, police, government and military sector under constant circumstances.Keywords: data mining, counter terrorism, machine learning, SVM
Procedia PDF Downloads 4092136 Analysis of Soft and Hard X-Ray Intensities Using Different Shapes of Anodes in a 4kJ Mather Type Plasma Focus Facility
Authors: Mahsa Mahtab, Morteza Habibi
Abstract:
The effect of different anode tip geometries on the intensity of soft and hard x-ray emitted from a 4 kJ plasma focus device is investigated. For this purpose, 5 different anode tips are used. The shapes of the uppermost region of these anodes have been cylindrical-flat, cylindrical-hollow, spherical-convex, cone-flat and cone-hollow. Analyzed data have shown that cone-flat, spherical-convex and cone-hollow anodes significantly increase X-ray intensity respectively in comparison with cylindrical-flat anode; while the cylindrical-hollow tip decreases. Anode radius reduction at its end in conic or spherical anodes enhance SXR by increasing plasma density through collecting a greater mass of gas and more gradual transition phase to form a more stable dense plasma pinch. Also, HXR is enhanced by increasing the energy of electrons colliding with the anode surface through raise of induced electrical field. Finally, the cone-flat anode is introduced to use in cases in which the plasma focus device is used as an X-ray source due to its highest yield of X-ray emissions.Keywords: plasma focus, anode tip, HXR, SXR, pinched plasma
Procedia PDF Downloads 4002135 Sorbitol Galactoside Synthesis Using β-Galactosidase Immobilized on Functionalized Silica Nanoparticles
Authors: Milica Carević, Katarina Banjanac, Marija ĆOrović, Ana Milivojević, Nevena Prlainović, Aleksandar Marinković, Dejan Bezbradica
Abstract:
Nowadays, considering the growing awareness of functional food beneficial effects on human health, due attention is dedicated to the research in the field of obtaining new prominent products exhibiting improved physiological and physicochemical characteristics. Therefore, different approaches to valuable bioactive compounds synthesis have been proposed. β-Galactosidase, for example, although mainly utilized as hydrolytic enzyme, proved to be a promising tool for these purposes. Namely, under the particular conditions, such as high lactose concentration, elevated temperatures and low water activities, reaction of galactose moiety transfer to free hydroxyl group of the alternative acceptor (e.g. different sugars, alcohols or aromatic compounds) can generate a wide range of potentially interesting products. Up to now, galacto-oligosaccharides and lactulose have attracted the most attention due to their inherent prebiotic properties. The goal of this study was to obtain a novel product sorbitol galactoside, using the similar reaction mechanism, namely transgalactosylation reaction catalyzed by β-galactosidase from Aspergillus oryzae. By using sugar alcohol (sorbitol) as alternative acceptor, a diverse mixture of potential prebiotics is produced, enabling its more favorable functional features. Nevertheless, an introduction of alternative acceptor into the reaction mixture contributed to the complexity of reaction scheme, since several potential reaction pathways were introduced. Therefore, the thorough optimization using response surface method (RSM), in order to get an insight into different parameter (lactose concentration, sorbitol to lactose molar ratio, enzyme concentration, NaCl concentration and reaction time) influences, as well as their mutual interactions on product yield and productivity, was performed. In view of product yield maximization, the obtained model predicted optimal lactose concentration 500 mM, the molar ratio of sobitol to lactose 9, enzyme concentration 0.76 mg/ml, concentration of NaCl 0.8M, and the reaction time 7h. From the aspect of productivity, the optimum substrate molar ratio was found to be 1, while the values for other factors coincide. In order to additionally, improve enzyme efficiency and enable its reuse and potential continual application, immobilization of β-galactosidase onto tailored silica nanoparticles was performed. These non-porous fumed silica nanoparticles (FNS)were chosen on the basis of their biocompatibility and non-toxicity, as well as their advantageous mechanical and hydrodinamical properties. However, in order to achieve better compatibility between enzymes and the carrier, modifications of the silica surface using amino functional organosilane (3-aminopropyltrimethoxysilane, APTMS) were made. Obtained support with amino functional groups (AFNS) enabled high enzyme loadings and, more importantly, extremely high expressed activities, approximately 230 mg proteins/g and 2100 IU/g, respectively. Moreover, this immobilized preparation showed high affinity towards sorbitol galactoside synthesis. Therefore, the findings of this study could provided a valuable contribution to the efficient production of physiologically active galactosides in immobilized enzyme reactors.Keywords: β-galactosidase, immobilization, silica nanoparticles, transgalactosylation
Procedia PDF Downloads 3012134 Estimation of Subgrade Resilient Modulus from Soil Index Properties
Authors: Magdi M. E. Zumrawi, Mohamed Awad
Abstract:
Determination of Resilient Modulus (MR) is quite important for characterizing materials in pavement design and evaluation. The main focus of this study is to develop a correlation that predict the resilient modulus of subgrade soils from simple and easy measured soil index properties. To achieve this objective, three subgrade soils representing typical Khartoum soils were selected and tested in the laboratory for measuring resilient modulus. Other basic laboratory tests were conducted on the soils to determine their physical properties. Several soil samples were prepared and compacted at different moisture contents and dry densities and then tested using resilient modulus testing machine. Based on experimental results, linear relationship of MR with the consistency factor ‘Fc’ which is a combination of dry density, void ratio and consistency index had been developed. The results revealed that very good linear relationship found between the MR and the consistency factor with a coefficient of linearity (R2) more than 0.9. The consistency factor could be used for the prediction of the MR of compacted subgrade soils with precise and reliable results.Keywords: Consistency factor, resilient modulus, subgrade soil, properties
Procedia PDF Downloads 1932133 Enhance the Power of Sentiment Analysis
Authors: Yu Zhang, Pedro Desouza
Abstract:
Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modelling and testing work was done in R and Greenplum in-database analytic tools.Keywords: sentiment analysis, social media, Twitter, Amazon, data mining, machine learning, text mining
Procedia PDF Downloads 3532132 Multilabel Classification with Neural Network Ensemble Method
Authors: Sezin Ekşioğlu
Abstract:
Multilabel classification has a huge importance for several applications, it is also a challenging research topic. It is a kind of supervised learning that contains binary targets. The distance between multilabel and binary classification is having more than one class in multilabel classification problems. Features can belong to one class or many classes. There exists a wide range of applications for multi label prediction such as image labeling, text categorization, gene functionality. Even though features are classified in many classes, they may not always be properly classified. There are many ensemble methods for the classification. However, most of the researchers have been concerned about better multilabel methods. Especially little ones focus on both efficiency of classifiers and pairwise relationships at the same time in order to implement better multilabel classification. In this paper, we worked on modified ensemble methods by getting benefit from k-Nearest Neighbors and neural network structure to address issues within a beneficial way and to get better impacts from the multilabel classification. Publicly available datasets (yeast, emotion, scene and birds) are performed to demonstrate the developed algorithm efficiency and the technique is measured by accuracy, F1 score and hamming loss metrics. Our algorithm boosts benchmarks for each datasets with different metrics.Keywords: multilabel, classification, neural network, KNN
Procedia PDF Downloads 1552131 Influence of the Mixer on the Rheological Properties of the Fresh Concrete
Authors: Alexander Nitsche, Piotr-Robert Lazik, Harald Garrecht
Abstract:
The viscosity of the concrete has a great influence on the properties of the fresh concrete. Fresh concretes with low viscosity have a good flowability, whereas high viscosity has a lower flowability. Clearly, viscosity is directly linked to other parameters such as consistency, compaction, and workability of the concrete. The above parameters also depend very much on the energy induced during the mixing process and, of course, on the installation of the mixer itself. The University of Stuttgart has decided to investigate the influence of different mixing systems on the viscosity of various types of concrete, such as road concrete, self-compacting concrete, and lightweight concrete, using a rheometer and other testing methods. Each type is tested with three different mixers, and the rheological properties, namely consistency, and viscosity are determined. The aim of the study is to show that different types of concrete mixed with different types of mixers reach completely different yield points. Therefore, a 3 step procedure will be introduced. At first, various types of concrete mixtures and their differences are introduced. Then, the chosen suspension mixer and conventional mixers, which are going to be used in this paper, will be discussed. Lastly, the influence of the mixing system on the rheological properties of each of the select mix designs, as well as on fresh concrete, in general, will be presented.Keywords: rheological properties, flowability, suspension mixer, viscosity
Procedia PDF Downloads 1442130 Effect of Linear Thermal Gradient on Steady-State Creep Behavior of Isotropic Rotating Disc
Authors: Minto Rattan, Tania Bose, Neeraj Chamoli
Abstract:
The present paper investigates the effect of linear thermal gradient on the steady-state creep behavior of rotating isotropic disc using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate has been taken for analysis. The stress and strain rate distributions have been calculated for discs rotating at linear thermal gradation using von Mises’ yield criterion. The material parameters have been estimated by regression fit of the available experimental data. The results are displayed and compared graphically in designer friendly format for the above said temperature profile with the disc operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.Keywords: creep, isotropic, steady-state, thermal gradient
Procedia PDF Downloads 2692129 User-Based Cannibalization Mitigation in an Online Marketplace
Authors: Vivian Guo, Yan Qu
Abstract:
Online marketplaces are not only digital places where consumers buy and sell merchandise, and they are also destinations for brands to connect with real consumers at the moment when customers are in the shopping mindset. For many marketplaces, brands have been important partners through advertising. There can be, however, a risk of advertising impacting a consumer’s shopping journey if it hurts the use experience or takes the user away from the site. Both could lead to the loss of transaction revenue for the marketplace. In this paper, we present user-based methods for cannibalization control by selectively turning off ads to users who are likely to be cannibalized by ads subject to business objectives. We present ways of measuring cannibalization of advertising in the context of an online marketplace and propose novel ways of measuring cannibalization through purchase propensity and uplift modeling. A/B testing has shown that our methods can significantly improve user purchase and engagement metrics while operating within business objectives. To our knowledge, this is the first paper that addresses cannibalization mitigation at the user-level in the context of advertising.Keywords: cannibalization, machine learning, online marketplace, revenue optimization, yield optimization
Procedia PDF Downloads 1602128 Mechanical Properties of Ancient Timber Structure Based on the Non Destructive Test Method: A Study to Feiyun Building, Shanxi, China
Authors: Annisa Dewanti Putri, Wang Juan, Y. Qing Shan
Abstract:
The structural assessment is one of a crucial part for ancient timber structure, in which this phase will be the reference for the maintenance and preservation phase. The mechanical properties of a structure are one of an important component of the structural assessment of building. Feiyun as one of the particular preserved building in China will become one of the Pioneer of Timber Structure Building Assessment. The 3-storey building which is located in Shanxi Province consists of complex ancient timber structure. Due to condition and preservation purpose, assessments (visual inspections, Non-Destructive Test and a Semi Non-Destructive test) were conducted. The stress wave measurement, moisture content analyzer, and the micro-drilling resistance meter data will overview the prediction of Mechanical Properties. As a result, the mechanical properties can be used for the next phase as reference for structural damage solutions.Keywords: ancient structure, mechanical properties, non destructive test, stress wave, structural assessment, timber structure
Procedia PDF Downloads 4742127 Water Demand Modelling Using Artificial Neural Network in Ramallah
Authors: F. Massri, M. Shkarneh, B. Almassri
Abstract:
Water scarcity and increasing water demand especially for residential use are major challenges facing Palestine. The need to accurately forecast water consumption is useful for the planning and management of this natural resource. The main objective of this paper is to (i) study the major factors influencing the water consumption in Palestine, (ii) understand the general pattern of Household water consumption, (iii) assess the possible changes in household water consumption and suggest appropriate remedies and (iv) develop prediction model based on the Artificial Neural Network to the water consumption in Palestinian cities. The paper is organized in four parts. The first part includes literature review of household water consumption studies. The second part concerns data collection methodology, conceptual frame work for the household water consumption surveys, survey descriptions and data processing methods. The third part presents descriptive statistics, multiple regression and analysis of the water consumption in the two Palestinian cities. The final part develops the use of Artificial Neural Network for modeling the water consumption in Palestinian cities.Keywords: water management, demand forecasting, consumption, ANN, Ramallah
Procedia PDF Downloads 2192126 Mansonone G and Its Ether Analogues as New Antibacterial Agents
Authors: Rita Hairani, Warinthorn Chavasiri
Abstract:
Naphthoquinones are secondary metabolites widespread in nature and can be produced by plants, fungi and actinomycetes. The interest of naphthoquinones is not only limited as organic dyes, but also their wide variety of biological activities such as antitumor, antibacterial, and cytotoxic activities. Typical 1,2-naphthoquinones such as mansonones can be found in Mansonia gagei Drumm. (“chan-cha-mod”), Sterculaceae family. This plant has been used traditionally to treat some diseases such as antiemetic and antidepressant. In this study, some natural mansonones isolated from the CH2Cl2 extract of M. gagei heartwood have been assessed for their antibacterial activities using agar well diffusion method. According to the antibacterial activity results of four natural mansonones (mansonones C, E, G and H), mansonones E and G showed higher activities than the others against Staphylococcus aureus, Propionibacterium acnes and Salmonella typhi, respectively. Since mansonone G exhibited good antibacterial activity and was obtained in the highest yield, we decided to derivertize mansonone G into five ether analogues. Based on the antibacterial activities of these synthesized compounds, four ether analogues (compounds 1-4) revealed higher antibacterial activities than its natural mansonone G against S. aureus and S. typhi.Keywords: Mansonia gagei Drumm., antibacterial activities, mansonone G, ether analogues
Procedia PDF Downloads 4262125 PM10 Prediction and Forecasting Using CART: A Case Study for Pleven, Bulgaria
Authors: Snezhana G. Gocheva-Ilieva, Maya P. Stoimenova
Abstract:
Ambient air pollution with fine particulate matter (PM10) is a systematic permanent problem in many countries around the world. The accumulation of a large number of measurements of both the PM10 concentrations and the accompanying atmospheric factors allow for their statistical modeling to detect dependencies and forecast future pollution. This study applies the classification and regression trees (CART) method for building and analyzing PM10 models. In the empirical study, average daily air data for the city of Pleven, Bulgaria for a period of 5 years are used. Predictors in the models are seven meteorological variables, time variables, as well as lagged PM10 variables and some lagged meteorological variables, delayed by 1 or 2 days with respect to the initial time series, respectively. The degree of influence of the predictors in the models is determined. The selected best CART models are used to forecast future PM10 concentrations for two days ahead after the last date in the modeling procedure and show very accurate results.Keywords: cross-validation, decision tree, lagged variables, short-term forecasting
Procedia PDF Downloads 1942124 New York’s Heat Pump Mandate: Doubling Annual Heating Costs to Achieve a 13% Reduction in New York’s CO₂ Gas Emissions
Authors: William Burdick
Abstract:
Manmade climate change is an existential threat that must be mitigated at the earliest opportunity. The role of government in climate change mitigation is enacting and enforcing law and policy to affect substantial reductions in greenhouse gasses, in the short and long term, without substantial increases in the cost of energy. To be optimally effective those laws and policies must be established and enforced based on peer reviewed evidence and scientific facts and result in substantial outcomes in years, not decades. Over the next fifty years, New York’s 2019 Climate Change and Community Protection Act and 2021 All Electric Building Act that mandate replacing natural gas heating systems with heat pumps will, immediately double annual heating costs and by 2075, yield less than 16.2% reduction in CO₂ emissions from heating systems in new housing units, less than a 13% reduction in total CO₂ emissions, and affect a $40B in cumulative additional heating cost, compared to natural gas fueled heating systems.Keywords: climate change, mandate, heat pump, natural gas
Procedia PDF Downloads 702123 Radionuclides Transport Phenomena in Vadose Zone
Authors: R. Testoni, R. Levizzari, M. De Salve
Abstract:
Radioactive waste management is fundamental to safeguard population and environment by radiological risks. Environmental assessment of a site, where nuclear activities are located, allows understanding the hydro geological system and the radionuclides transport in groundwater and subsoil. Use of dedicated software is the basis of transport phenomena investigation and for dynamic scenarios prediction; this permits to understand the evolution of accidental contamination events, but at the same time the potentiality of the software itself can be verified. The aim of this paper is to perform a numerical analysis by means of HYDRUS 1D code, so as to evaluate radionuclides transport in a nuclear site in Piedmont region (Italy). In particular, the behaviour in vadose zone was investigated. An iterative assessment process was performed for risk assessment of radioactive contamination. The analysis therein developed considers the following aspects: i) hydro geological site characterization; ii) individuation of the main intrinsic and external site factors influencing water flow and radionuclides transport phenomena; iii) software potential for radionuclides leakage simulation purposes.Keywords: HYDRUS 1D, radionuclides transport phenomena, site characterization, radiation protection
Procedia PDF Downloads 3972122 The Optimization of Immobilization Conditions for Biohydrogen Production from Palm Industry Wastewater
Authors: A. W. Zularisam, Sveta Thakur, Lakhveer Singh, Mimi Sakinah Abdul Munaim
Abstract:
Clostridium sp. LS2 was immobilised by entrapment in polyethylene glycol (PEG) gel beads to improve the biohydrogen production rate from palm oil mill effluent (POME). We sought to explore and optimise the hydrogen production capability of the immobilised cells by studying the conditions for cell immobilisation, including PEG concentration, cell loading and curing times, as well as the effects of temperature and K2HPO4 (500–2000 mg/L), NiCl2 (0.1–5.0 mg/L), FeCl2 (100–400 mg/L) MgSO4 (50–200 mg/L) concentrations on hydrogen production rate. The results showed that by optimising the PEG concentration (10% w/v), initial biomass (2.2 g dry weight), curing time (80 min) and temperature (37 °C), as well as the concentrations of K2HPO4 (2000 mg/L), NiCl2 (1 mg/L), FeCl2 (300 mg/L) and MgSO4 (100 mg/L), a maximum hydrogen production rate of 7.3 L/L-POME/day and a yield of 0.31 L H2/g chemical oxygen demand were obtained during continuous operation. We believe that this process may be potentially expanded for sustained and large-scale hydrogen production.Keywords: hydrogen, polyethylene glycol, immobilised cell, fermentation, palm oil mill effluent
Procedia PDF Downloads 2712121 X-Ray Crystallographic, Hirshfeld Surface Analysis and Docking Study of Phthalyl Sulfacetamide
Authors: Sanjay M. Tailor, Urmila H. Patel
Abstract:
Phthalyl Sulfacetamide belongs to well-known member of antimicrobial sulfonamide family. It is a potent antitumor drug. Structural characteristics of 4-amino-N-(2quinoxalinyl) benzene-sulfonamides (Phthalyl Sulfacetamide), C14H12N4O2S has been studied by method of X-ray crystallography. The compound crystallizes in monoclinic space group P21/n with unit cell parameters a= 7.9841 Ǻ, b= 12.8208 Ǻ, c= 16.6607 Ǻ, α= 90˚, β= 93.23˚, γ= 90˚and Z=4. The X-ray based three-dimensional structure analysis has been carried out by direct methods and refined to an R-value of 0.0419. The crystal structure is stabilized by intermolecular N-H…N, N-H…O and π-π interactions. The Hirshfeld surfaces and consequently the fingerprint analysis have been performed to study the nature of interactions and their quantitative contributions towards the crystal packing. An analysis of Hirshfeld surfaces and fingerprint plots facilitates a comparison of intermolecular interactions, which are the key elements in building different supramolecular architectures. Docking is used for virtual screening for the prediction of the strongest binders based on various scoring functions. Docking studies are carried out on Phthalyl Sulfacetamide for better activity, which is important for the development of a new class of inhibitors.Keywords: phthalyl sulfacetamide, crystal structure, hirshfeld surface analysis, docking
Procedia PDF Downloads 3472120 Preliminary Investigations on the Development and Production of Topical Skin Ointments
Authors: C. C. Igwe, C. E. Ogbuadike
Abstract:
Bryophyllum pinnatum is a tropical plant used by the indigenous people of South-East Nigeria as a medicinal plant for the treatment of skin ulcer and is being explored for the production of topical herbal skin ointments. This preliminary study involves the extraction and characterization of bioactive compounds from this plant for anti-skin ulcer, antimicrobial, and antioxidant activity, as well as formulating topical herbal medications for skin ulcer. Thus extraction, percentage yield, moisture content analysis, solvent-solvent fractionation and GC-MS has been carried out on processed leaves sample of B. pinnatum. GC-MS analysis revealed the presence of seven compounds, namely: 1-Octene, 3, 7-dimethyl, 1-Tridecene, E-14-Hexadecenal, 3-Eicosene (E)-, 11-Tricosene, 1-Tridecyn-4-ol and Butanamide. Standardized herbal products have been produced from B. pinnatum extracts. The products are being evaluated for safety and efficacy tests to ascertain their toxicity (if any), anti-ulcer, antibiotic and antioxidant properties. Further work is on-going to characterize the bioactive principles present in the plant extracts.Keywords: anti-microbial, bioactive compounds, bryophyllum pinnatum, skin ulcer
Procedia PDF Downloads 772119 Generating Swarm Satellite Data Using Long Short-Term Memory and Generative Adversarial Networks for the Detection of Seismic Precursors
Authors: Yaxin Bi
Abstract:
Accurate prediction and understanding of the evolution mechanisms of earthquakes remain challenging in the fields of geology, geophysics, and seismology. This study leverages Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), a generative model tailored to time-series data, for generating synthetic time series data based on Swarm satellite data, which will be used for detecting seismic anomalies. LSTMs demonstrated commendable predictive performance in generating synthetic data across multiple countries. In contrast, the GAN models struggled to generate synthetic data, often producing non-informative values, although they were able to capture the data distribution of the time series. These findings highlight both the promise and challenges associated with applying deep learning techniques to generate synthetic data, underscoring the potential of deep learning in generating synthetic electromagnetic satellite data.Keywords: LSTM, GAN, earthquake, synthetic data, generative AI, seismic precursors
Procedia PDF Downloads 322118 Antibacterial and Antifungal Activity of Essential Oil of Eucalyptus camendulensis on a Few Bacteria and Fungi
Authors: M. Mehani, N. Salhi, T. Valeria, S. Ladjel
Abstract:
Red River Gum (Eucalyptus camaldulensis) is a tree of the genus Eucalyptus widely distributed in Algeria and in the world. The value of its aromatic secondary metabolites offers new perspectives in the pharmaceutical industry. This strategy can contribute to the sustainable development of our country. Preliminary tests performed on the essential oil of Eucalyptus camendulensis showed that this oil has antibacterial activity vis-à-vis the bacterial strains (Enterococcus feacalis, Enterobacter cloaceai, Proteus microsilis, Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa) and antifungic (Fusarium sporotrichioide and Fusarium graminearum). The culture medium used was nutrient broth Muller Hinton. The interaction between the bacteria and the essential oil is expressed by a zone of inhibition with diameters of MIC indirectly expression of. And we used the PDA medium to determine the fungal activity. The extraction of the aromatic fraction (essentially oil- hydrolat) of the fresh aerian part of the Eucalyptus camendulensis was performed by hydrodistillation. The average essential oil yield is 0.99%. The antimicrobial and fungal study of the essential oil and hydrosol showed a high inhibitory effect on the growth of pathogens.Keywords: essential oil, Eucalyptus camendulensis, bacteria and fungi, red river gum
Procedia PDF Downloads 2342117 Identification of CLV for Online Shoppers Using RFM Matrix: A Case Based on Features of B2C Architecture
Authors: Riktesh Srivastava
Abstract:
Online Shopping have established an astonishing evolution in the last few years. And it is now apparent that B2C architecture is becoming progressively imperative channel for even traditional brick and mortar type traders as well. In this completion knowing customers and predicting behavior are extremely important. More important, when any customer logs onto the B2C architecture, the traces of their buying patterns can be stored and used for future predictions. Such a prediction is called Customer Lifetime Value (CLV). Earlier, we used Net Present Value to do so, however, it ignores two important aspects of B2C architecture, “market risks” and “big amount of customer data”. Now, we use RFM- Recency, Frequency and Monetary Value to estimate the CLV, and as the term exemplifies, market risks, is well sheltered. Big Data Analysis is also roofed in RFM, which gives real exploration of the Big Data and lead to a better estimation for future cash flow from customers. In the present paper, 6 factors (collected from varied sources) are used to determine as to what attracts the customers to the B2C architecture. For these 6 factors, RFM is computed for 3 years (2013, 2014 and 2015) respectively. CLV and Revenue are the two parameters defined using RFM analysis, which gives the clear picture of the future predictions.Keywords: CLV, RFM, revenue, recency, frequency, monetary value
Procedia PDF Downloads 220