Search results for: multi junction solar cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8521

Search results for: multi junction solar cells

5971 Reducing Change-Related Costs in Assembly of Lithium-Ion Batteries for Electric Cars by Mechanical Decoupling

Authors: Achim Kampker, Heiner Hans Heimes, Mathias Ordung, Nemanja Sarovic

Abstract:

A key component of the drive train of electric vehicles is the lithium-ion battery system. Among various other components, such as the battery management system or the thermal management system, the battery system mostly consists of several cells which are integrated mechanically as well as electrically. Due to different vehicle concepts with regards to space, energy and power specifications, there is a variety of different battery systems. The corresponding assembly lines are specially designed for each battery concept. Minor changes to certain characteristics of the battery have a disproportionally high effect on the set-up effort in the form of high change-related costs. This paper will focus on battery systems which are made out of battery cells with a prismatic format. The product architecture and the assembly process will be analyzed in detail based on battery concepts of existing electric cars and key variety-causing drivers will be identified. On this basis, several measures will be presented and discussed on how to change the product architecture and the assembly process in order to reduce change-related costs.

Keywords: assembly, automotive industry, battery system, battery concept

Procedia PDF Downloads 307
5970 Approaches to Ethical Hacking: A Conceptual Framework for Research

Authors: Lauren Provost

Abstract:

The digital world remains increasingly vulnerable, making the development of effective cybersecurity approaches even more critical in supporting the success of the digital economy and national security. Although approaches to cybersecurity have shifted and improved in the last decade with new models, especially with cloud computing and mobility, a record number of high severity vulnerabilities were recorded in the National Institute of Standards and Technology (NIST), and its National Vulnerability Database (NVD) in 2020. This is due, in part, to the increasing complexity of cyber ecosystems. Security must be approached with a more comprehensive, multi-tool strategy that addresses the complexity of cyber ecosystems, including the human factor. Ethical hacking has emerged as such an approach: a more effective, multi-strategy, comprehensive approach to cyber security's most pressing needs, especially understanding the human factor. Research on ethical hacking, however, is limited in scope. The two main objectives of this work are to (1) provide highlights of case studies in ethical hacking, (2) provide a conceptual framework for research in ethical hacking that embraces and addresses both technical and nontechnical security measures. Recommendations include an improved conceptual framework for research centered on ethical hacking that addresses many factors and attributes of significant attacks that threaten computer security; a more robust, integrative multi-layered framework embracing the complexity of cybersecurity ecosystems.

Keywords: ethical hacking, literature review, penetration testing, social engineering

Procedia PDF Downloads 221
5969 Characterization of a Dentigerous Cyst Cell Line and Its Secretion of Metalloproteinases

Authors: Muñiz-Lino Marcos A.

Abstract:

The ectomesenchymal tissues involved in tooth development and their remnants are the origin of different odontogenic lesions, including tumors and cysts of the jaws, with a wide range of clinical behaviors. A dentigerous cyst (DC) represents approximately 20% of all cases of odontogenic cysts, and it has been demonstrated that it can develop benign and malignant odontogenic tumors. DC is characterized by bone destruction of the area surrounding the crown of a tooth that has not erupted and contains liquid. The treatment of odontogenic tumors and cysts usually involves a partial or total removal of the jaw, causing important secondary co-morbidities. However, molecules implicated in DC pathogenesis, as well as in its development into odontogenic tumors, remain unknown. A cellular model may be useful to study these molecules, but that model has not been established yet. Here, we reported the establishment of a cell culture derived from a dentigerous cyst. This cell line was named DeCy-1. In spite of its ectomesenchymal morphology, DeCy-1 cells express epithelial markers such as cytokeratins 5, 6, and 8. Furthermore, these cells express the ODAM protein, which is present in odontogenesis and in dental follicles, indicating that DeCy-1 cells are derived from odontogenic epithelium. Analysis by electron microscopy of this cell line showed that it has a high vesicular activity, suggesting that DeCy-1 could secrete molecules that may be involved in DC pathogenesis. Thus, secreted proteins were analyzed by PAGE-SDS where we observed approximately 11 bands. In addition, the capacity of these secretions to degrade proteins was analyzed by gelatin substrate zymography. A degradation band of about 62 kDa was found in these assays. Western blot assays suggested that the matrix metalloproteinase 2 (MMP-2) is responsible for this protease activity. Thus, our results indicate that the establishment of a cell line derived from DC is a useful in vitro model to study the biology of this odontogenic lesion and its participation in the development of odontogenic tumors.

Keywords: dentigerous cyst, ameloblastoma, MMP-2, odontogenic tumors

Procedia PDF Downloads 45
5968 U-Net Based Multi-Output Network for Lung Disease Segmentation and Classification Using Chest X-Ray Dataset

Authors: Jaiden X. Schraut

Abstract:

Medical Imaging Segmentation of Chest X-rays is used for the purpose of identification and differentiation of lung cancer, pneumonia, COVID-19, and similar respiratory diseases. Widespread application of computer-supported perception methods into the diagnostic pipeline has been demonstrated to increase prognostic accuracy and aid doctors in efficiently treating patients. Modern models attempt the task of segmentation and classification separately and improve diagnostic efficiency; however, to further enhance this process, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional CNN module for auxiliary classification output. The proposed model achieves a final Jaccard Index of .9634 for image segmentation and a final accuracy of .9600 for classification on the COVID-19 radiography database.

Keywords: chest X-ray, deep learning, image segmentation, image classification

Procedia PDF Downloads 145
5967 A Review on Intelligent Systems for Geoscience

Authors: R Palson Kennedy, P.Kiran Sai

Abstract:

This article introduces machine learning (ML) researchers to the hurdles that geoscience problems present, as well as the opportunities for improvement in both ML and geosciences. This article presents a review from the data life cycle perspective to meet that need. Numerous facets of geosciences present unique difficulties for the study of intelligent systems. Geosciences data is notoriously difficult to analyze since it is frequently unpredictable, intermittent, sparse, multi-resolution, and multi-scale. The first half addresses data science’s essential concepts and theoretical underpinnings, while the second section contains key themes and sharing experiences from current publications focused on each stage of the data life cycle. Finally, themes such as open science, smart data, and team science are considered.

Keywords: Data science, intelligent system, machine learning, big data, data life cycle, recent development, geo science

Procedia PDF Downloads 137
5966 A Study on Computational Fluid Dynamics (CFD)-Based Design Optimization Techniques Using Multi-Objective Evolutionary Algorithms (MOEA)

Authors: Ahmed E. Hodaib, Mohamed A. Hashem

Abstract:

In engineering applications, a design has to be as fully perfect as possible in some defined case. The designer has to overcome many challenges in order to reach the optimal solution to a specific problem. This process is called optimization. Generally, there is always a function called “objective function” that is required to be maximized or minimized by choosing input parameters called “degrees of freedom” within an allowed domain called “search space” and computing the values of the objective function for these input values. It becomes more complex when we have more than one objective for our design. As an example for Multi-Objective Optimization Problem (MOP): A structural design that aims to minimize weight and maximize strength. In such case, the Pareto Optimal Frontier (POF) is used, which is a curve plotting two objective functions for the best cases. At this point, a designer should make a decision to choose the point on the curve. Engineers use algorithms or iterative methods for optimization. In this paper, we will discuss the Evolutionary Algorithms (EA) which are widely used with Multi-objective Optimization Problems due to their robustness, simplicity, suitability to be coupled and to be parallelized. Evolutionary algorithms are developed to guarantee the convergence to an optimal solution. An EA uses mechanisms inspired by Darwinian evolution principles. Technically, they belong to the family of trial and error problem solvers and can be considered global optimization methods with a stochastic optimization character. The optimization is initialized by picking random solutions from the search space and then the solution progresses towards the optimal point by using operators such as Selection, Combination, Cross-over and/or Mutation. These operators are applied to the old solutions “parents” so that new sets of design variables called “children” appear. The process is repeated until the optimal solution to the problem is reached. Reliable and robust computational fluid dynamics solvers are nowadays commonly utilized in the design and analyses of various engineering systems, such as aircraft, turbo-machinery, and auto-motives. Coupling of Computational Fluid Dynamics “CFD” and Multi-Objective Evolutionary Algorithms “MOEA” has become substantial in aerospace engineering applications, such as in aerodynamic shape optimization and advanced turbo-machinery design.

Keywords: mathematical optimization, multi-objective evolutionary algorithms "MOEA", computational fluid dynamics "CFD", aerodynamic shape optimization

Procedia PDF Downloads 258
5965 Multiscale Structures and Their Evolution in a Screen Cylinder Wake

Authors: Azlin Mohd Azmi, Tongming Zhou, Akira Rinoshika, Liang Cheng

Abstract:

The turbulent structures in the wake (x/d =10 to 60) of a screen cylinder have been reduced to understand the roles of the various structures as evolving downstream by comparing with those obtained in a solid circular cylinder wake at Reynolds number, Re of 7000. Using a wavelet multi-resolution technique, the flow structures are decomposed into a number of wavelet components based on their central frequencies. It is observed that in the solid cylinder wake, large-scale structures (of frequency f0 and 1.2 f0) make the largest contribution to the Reynolds stresses although they start to lose their roles significantly at x/d > 20. In the screen cylinder wake, the intermediate-scale structures (2f0 and 4f0) contribute the most to the Reynolds stresses at x/d =10 before being taken over by the large-scale structures (f0) further downstream.

Keywords: turbulent structure, screen cylinder, vortex, wavelet multi-resolution analysis

Procedia PDF Downloads 460
5964 Parallel Pipelined Conjugate Gradient Algorithm on Heterogeneous Platforms

Authors: Sergey Kopysov, Nikita Nedozhogin, Leonid Tonkov

Abstract:

The article presents a parallel iterative solver for large sparse linear systems which can be used on a heterogeneous platform. Traditionally, the problem of solving linear systems does not scale well on multi-CPU/multi-GPUs clusters. For example, most of the attempts to implement the classical conjugate gradient method were at best counted in the same amount of time as the problem was enlarged. The paper proposes the pipelined variant of the conjugate gradient method (PCG), a formulation that is potentially better suited for hybrid CPU/GPU computing since it requires only one synchronization point per one iteration instead of two for standard CG. The standard and pipelined CG methods need the vector entries generated by the current GPU and other GPUs for matrix-vector products. So the communication between GPUs becomes a major performance bottleneck on multi GPU cluster. The article presents an approach to minimize the communications between parallel parts of algorithms. Additionally, computation and communication can be overlapped to reduce the impact of data exchange. Using the pipelined version of the CG method with one synchronization point, the possibility of asynchronous calculations and communications, load balancing between the CPU and GPU for solving the large linear systems allows for scalability. The algorithm is implemented with the combined use of technologies: MPI, OpenMP, and CUDA. We show that almost optimum speed up on 8-CPU/2GPU may be reached (relatively to a one GPU execution). The parallelized solver achieves a speedup of up to 5.49 times on 16 NVIDIA Tesla GPUs, as compared to one GPU.

Keywords: conjugate gradient, GPU, parallel programming, pipelined algorithm

Procedia PDF Downloads 166
5963 Review of Existing Pumped Storage Technologies and their Application in the Case of Bistrica Pump Storage Plant

Authors: Dušan Bojović, Wei Huang, Zdravko Stojanović, Jovan Ilić

Abstract:

In an era of ever-growing electricity generation from renewable energy sources, namely wind and solar, a need for reliable energy storage and intensive balancing of the electric power system gains significance. For decades, pump storage hydroelectric power plants have proven to be an important asset regarding the storage of generated electricity. However, with the increasing overall share of wind and solar in electric systems at large, the importance of electric grid stability keeps growing. A large pump storage project, the Bistrica Pump Storage Plant (PSP), is currently under development in Serbia. The Bistrica PSP will be designed as a 600+ MW power plant, which is envisaged as a significant contributor to the Serbian power grid stability as more and more renewable energy sources are implemented over time. PSP Bistrica is seen as a strategically important project on the green agenda path of the Electric Power Industry of Serbia as a necessary pre-condition for the safe implementation of other renewable energy sources. The importance of such a plant would also play an important role in reducing the electricity production from coal, i.e., thermoelectric power plants. During the project’s development, various techniques and technologies are evaluated for the purpose of determining the optimum (the most profitable) solution. Over the course of this paper, these technologies – such as frequency-regulated pump turbines and ternary sets will be presented, with a detailed explanation of their possible application within the Bistrica PSP project and their relative advantages/disadvantages in this particular case.

Keywords: hydraulic turbines, pumped storage, renewable energy, competing technologies

Procedia PDF Downloads 93
5962 Rocket Launch Simulation for a Multi-Mode Failure Prediction Analysis

Authors: Mennatallah M. Hussein, Olivier de Weck

Abstract:

The advancement of space exploration demands a robust space launch services program capable of reliably propelling payloads into orbit. Despite rigorous testing and quality assurance, launch failures still occur, leading to significant financial losses and jeopardizing mission objectives. Traditional failure prediction methods often lack the sophistication to account for multi-mode failure scenarios, as well as the predictive capability in complex dynamic systems. Traditional approaches also rely on expert judgment, leading to variability in risk prioritization and mitigation strategies. Hence, there is a pressing need for robust approaches that enhance launch vehicle reliability from lift-off until it reaches its parking orbit through comprehensive simulation techniques. In this study, the developed model proposes a multi-mode launch vehicle simulation framework for predicting failure scenarios when incorporating new technologies, such as new propulsion systems or advanced staging separation mechanisms in the launch system. To this end, the model combined a 6-DOF system dynamics with comprehensive data analysis to simulate multiple failure modes impacting launch performance. The simulator utilizes high-fidelity physics-based simulations to capture the complex interactions between different subsystems and environmental conditions.

Keywords: launch vehicle, failure prediction, propulsion anomalies, rocket launch simulation, rocket dynamics

Procedia PDF Downloads 35
5961 Cytotoxicity thiamethoxam Study on the Hepatopancreas and Its Reversibility under the Effect of Ginger in Helix aspersa

Authors: Samira Bensoltane, Smina Ait Hamlet, Samti Meriem, Semmasel Asma

Abstract:

Living organisms in the soil are subject to regular fluctuations of abiotic parameters, as well as a chemical contamination of the environment due to human activities. They are subject to multiple stressors they face. The aim of our work was to study the effects of insecticide: thiamethoxam (neonicotinoid), and the potential reversibility of the effects by an antioxidant: ginger on a bioindicator species in ecotoxicology, the land snail Helix aspersa. The effects were studied by a targeted cell approach of evaluating the effect of these molecules on tissue and cellular aspect of hepatopancreas through histological study. Treatment with thiamethoxam concentrations 10, 20, and 40 mg/l shows signs of inflammation even at low concentrations and from the 5th day of treatment. Histological examination of the hepatopancreas of snails treated with thiamethoxam showed significant changes from the lowest concentrations tested , note intertubular connective tissue enlargement, necrosis deferent types of cells (cells with calcium , digestive, excretory) , also damage acini, alteration of the apical membrane and lysis of the basement membrane in a dose- dependent manner. After 10 days of treatment and with 40 mg/l, the same changes were observed with a very advanced degeneration of the wall of the member that could be confused with the cell debris. For cons, the histological study of the hepatopancreas in Helix aspersa treated with ginger for a period of 15 days after stopping treatment with thiamethoxam has shown a partial regeneration of hepatopancreatic tissue snails treated with all concentrations of thiamethoxam and especially in the intertubular connective tissue of the wall and hepatopancreatic digestive tubules. Finally, we can conclude that monitoring the effect of the insecticide thiamethoxam showed significant alterations, however, treatment with ginger shows regeneration of damaged cells themselves much sharper at low concentration (10 mg/L).

Keywords: Helix aspersa, insecticides, thiamethoxam, ginger, hepatopancreas

Procedia PDF Downloads 217
5960 Replacing MOSFETs with Single Electron Transistors (SET) to Reduce Power Consumption of an Inverter Circuit

Authors: Ahmed Shariful Alam, Abu Hena M. Mustafa Kamal, M. Abdul Rahman, M. Nasmus Sakib Khan Shabbir, Atiqul Islam

Abstract:

According to the rules of quantum mechanics there is a non-vanishing probability of for an electron to tunnel through a thin insulating barrier or a thin capacitor which is not possible according to the laws of classical physics. Tunneling of electron through a thin insulating barrier or tunnel junction is a random event and the magnitude of current flowing due to the tunneling of electron is very low. As the current flowing through a Single Electron Transistor (SET) is the result of electron tunneling through tunnel junctions of its source and drain the supply voltage requirement is also very low. As a result, the power consumption across a Single Electron Transistor is ultra-low in comparison to that of a MOSFET. In this paper simulations have been done with PSPICE for an inverter built with both SETs and MOSFETs. 35mV supply voltage was used for a SET built inverter circuit and the supply voltage used for a CMOS inverter was 3.5V.

Keywords: ITRS, enhancement type MOSFET, island, DC analysis, transient analysis, power consumption, background charge co-tunneling

Procedia PDF Downloads 530
5959 Anti-Neuroinflammatory and Anti-Apoptotic Efficacy of Equol, against Lipopolysaccharide Activated Microglia and Its Neurotoxicity

Authors: Lalita Subedi, Jae Kyoung Chae, Yong Un Park, Cho Kyo Hee, Lee Jae Hyuk, Kang Min Cheol, Sun Yeou Kim

Abstract:

Neuroinflammation may mediate the relationship between low levels of estrogens and neurodegenerative disease. Estrogens are neuroprotective and anti-inflammatory in neurodegenerative disease models. Due to the long term side effects of estrogens, researches have been focused on finding an effective phytoestrogens for biological activities. Daidzein present in soybeans and its active metabolite equol (7-hydroxy-3-(4'-hydroxyphenyl)-chroman) bears strong antioxidant and anticancer showed more potent anti-inflammatory and neuroprotective role in neuroinflammatory model confirmed its in vitro activity with molecular mechanism through NF-κB pathway. Three major CNS cells Microglia (BV-2), Astrocyte (C6), Neuron (N2a) were used to find the effect of equol in inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), MAPKs signaling proteins, apoptosis related proteins by western blot analysis. Nitric oxide (NO) and prostaglandin E2 (PGE2) was measured by the Gries method and ELISA, respectively. Cytokines like tumor necrosis factor-α (TNF-α) and IL-6 were also measured in the conditioned medium of LPS activated cells with or without equol. Equol inhibited the NO production, PGE-2 production and expression of COX-2 and iNOS in LPS-stimulated microglial cells at a dose dependent without any cellular toxicity. At the same time Equol also showed promising effect in modulation of MAPK’s and nuclear factor kappa B (NF-κB) expression with significant inhibition of the production of proinflammatory cytokine like interleukin -6 (IL-6), and tumor necrosis factor -α (TNF-α). Additionally, it inhibited the LPS activated microglia-induced neuronal cell death by downregulating the apoptotic phenomenon in neuronal cells. Furthermore, equol increases the production of neurotrophins like NGF and increase the neurite outgrowth as well. In conclusion the natural daidzein metabolite equol are more active than daidzein, which showed a promising effectiveness as an anti-neuroinflammatory and neuroprotective agent via downregulating the LPS stimulated microglial activation and neuronal apoptosis. This work was supported by Brain Korea 21 Plus project and High Value-added Food Technology Development Program 114006-4, Ministry of Agriculture, Food and Rural Affairs.

Keywords: apoptosis, equol, neuroinflammation, phytoestrogen

Procedia PDF Downloads 362
5958 Breast Cancer: The Potential of miRNA for Diagnosis and Treatment

Authors: Abbas Pourreza

Abstract:

MicroRNAs (miRNAs) are small single-stranded non-coding RNAs. They are almost 18-25 nucleotides long and very conservative through evolution. They are involved in adjusting the expression of numerous genes due to the existence of a complementary region, generally in the 3' untranslated regions (UTR) of target genes, against particular mRNAs in the cell. Also, miRNAs have been proven to be involved in cell development, differentiation, proliferation, and apoptosis. More than 2000 miRNAs have been recognized in human cells, and these miRNAs adjust approximately one-third of all genes in human cells. Dysregulation of miRNA originated from abnormal DNA methylation patterns of the locus, cause to down-regulated or overexpression of miRNAs, and it may affect tumor formation or development of it. Breast cancer (BC) is the most commonly identified cancer, the most prevalent cancer (23%), and the second-leading (14%) mortality in all types of cancer in females. BC can be classified based on the status (+/−) of the hormone receptors, including estrogen receptor (ER), progesterone receptor (PR), and the Receptor tyrosine-protein kinase erbB-2 (ERBB2 or HER2). Currently, there are four main molecular subtypes of BC: luminal A, approximately 50–60 % of BCs; luminal B, 10–20 %; HER2 positive, 15–20 %, and 10–20 % considered Basal (triple-negative breast cancer (TNBC)) subtype. Aberrant expression of miR-145, miR-21, miR-10b, miR-125a, and miR-206 was detected by Stem-loop real-time RT-PCR in BC cases. Breast tumor formation and development may result from down-regulation of a tumor suppressor miRNA such as miR-145, miR-125a, and miR-206 and/or overexpression of an oncogenic miRNA such as miR-21 and miR-10b. MiR-125a, miR-206, miR-145, miR-21, and miR-10b are hugely predicted to be new tumor markers for the diagnosis and prognosis of BC. MiR-21 and miR-125a could play a part in the treatment of HER-2-positive breast cancer cells, while miR-145 and miR-206 could speed up the evolution of cure techniques for TNBC. To conclude, miRNAs will be presented as hopeful molecules to be used in the primary diagnosis, prognosis, and treatment of BC and battle as opposed to its developed drug resistance.

Keywords: breast cancer, HER2 positive, miRNA, TNBC

Procedia PDF Downloads 98
5957 Artificial Reproduction System and Imbalanced Dataset: A Mendelian Classification

Authors: Anita Kushwaha

Abstract:

We propose a new evolutionary computational model called Artificial Reproduction System which is based on the complex process of meiotic reproduction occurring between male and female cells of the living organisms. Artificial Reproduction System is an attempt towards a new computational intelligence approach inspired by the theoretical reproduction mechanism, observed reproduction functions, principles and mechanisms. A reproductive organism is programmed by genes and can be viewed as an automaton, mapping and reducing so as to create copies of those genes in its off springs. In Artificial Reproduction System, the binding mechanism between male and female cells is studied, parameters are chosen and a network is constructed also a feedback system for self regularization is established. The model then applies Mendel’s law of inheritance, allele-allele associations and can be used to perform data analysis of imbalanced data, multivariate, multiclass and big data. In the experimental study Artificial Reproduction System is compared with other state of the art classifiers like SVM, Radial Basis Function, neural networks, K-Nearest Neighbor for some benchmark datasets and comparison results indicates a good performance.

Keywords: bio-inspired computation, nature- inspired computation, natural computing, data mining

Procedia PDF Downloads 274
5956 Religion: The Human Entropy

Authors: Abul Kayum Zarzis Alam

Abstract:

Death is not a terminal; it is just a junction. From Agamas to Vedas, from Buddhism to Judaism, all the major scriptures and religions of the world always do converge to this hypothesis of death. Death is the ultimate catastrophe of life and it is the genesis of every religion on this Earth. Several hundred thousand years ago, the Homo Sapiens in Paleolithic age introduced the notion of religion on this Earth in its most primitive form just to escape from death and natural catastrophes through their belief in supernatural things which created the sense of superstition among the Homo Sapiens which has only increased over time. This sense of superstition and belief in supernatural things are building blocks of religion. Religion is like entropy, a degree of disorder. Entropy for an irreversible system like our own Universe always increases. Same is happening to our human civilization where the disorder had been increasing over time. The degree of this disorder of human civilization is religion divides and conquers over the human civilization of Earth. Religion is the human entropy which had been governing and will govern us. Just like entropy, religion is also an essential intrinsic property of the system which makes the system evolved. We have to optimize this ambivalence of the human entropy to make our civilization an inclusive and sustainable one.

Keywords: death, earth, entropy, Homo sapiens, religion and human entropy

Procedia PDF Downloads 181
5955 Adaptive Power Control of the City Bus Integrated Photovoltaic System

Authors: Piotr Kacejko, Mariusz Duk, Miroslaw Wendeker

Abstract:

This paper presents an adaptive controller to track the maximum power point of a photovoltaic modules (PV) under fast irradiation change on the city-bus roof. Photovoltaic systems have been a prominent option as an additional energy source for vehicles. The Municipal Transport Company (MPK) in Lublin has installed photovoltaic panels on its buses roofs. The solar panels turn solar energy into electric energy and are used to load the buses electric equipment. This decreases the buses alternators load, leading to lower fuel consumption and bringing both economic and ecological profits. A DC–DC boost converter is selected as the power conditioning unit to coordinate the operating point of the system. In addition to the conversion efficiency of a photovoltaic panel, the maximum power point tracking (MPPT) method also plays a main role to harvest most energy out of the sun. The MPPT unit on a moving vehicle must keep tracking accuracy high in order to compensate rapid change of irradiation change due to dynamic motion of the vehicle. Maximum power point track controllers should be used to increase efficiency and power output of solar panels under changing environmental factors. There are several different control algorithms in the literature developed for maximum power point tracking. However, energy performances of MPPT algorithms are not clarified for vehicle applications that cause rapid changes of environmental factors. In this study, an adaptive MPPT algorithm is examined at real ambient conditions. PV modules are mounted on a moving city bus designed to test the solar systems on a moving vehicle. Some problems of a PV system associated with a moving vehicle are addressed. The proposed algorithm uses a scanning technique to determine the maximum power delivering capacity of the panel at a given operating condition and controls the PV panel. The aim of control algorithm was matching the impedance of the PV modules by controlling the duty cycle of the internal switch, regardless of changes of the parameters of the object of control and its outer environment. Presented algorithm was capable of reaching the aim of control. The structure of an adaptive controller was simplified on purpose. Since such a simple controller, armed only with an ability to learn, a more complex structure of an algorithm can only improve the result. The presented adaptive control system of the PV system is a general solution and can be used for other types of PV systems of both high and low power. Experimental results obtained from comparison of algorithms by a motion loop are presented and discussed. Experimental results are presented for fast change in irradiation and partial shading conditions. The results obtained clearly show that the proposed method is simple to implement with minimum tracking time and high tracking efficiency proving superior to the proposed method. This work has been financed by the Polish National Centre for Research and Development, PBS, under Grant Agreement No. PBS 2/A6/16/2013.

Keywords: adaptive control, photovoltaic energy, city bus electric load, DC-DC converter

Procedia PDF Downloads 216
5954 Extension of the Simplified Theory of Plastic Zones for Analyzing Elastic Shakedown in a Multi-Dimensional Load Domain

Authors: Bastian Vollrath, Hartwig Hubel

Abstract:

In case of over-elastic and cyclic loading, strain may accumulate due to a ratcheting mechanism until the state of shakedown is possibly achieved. Load history dependent numerical investigations by a step-by-step analysis are rather costly in terms of engineering time and numerical effort. In the case of multi-parameter loading, where various independent loadings affect the final state of shakedown, the computational effort becomes an additional challenge. Therefore, direct methods like the Simplified Theory of Plastic Zones (STPZ) are developed to solve the problem with a few linear elastic analyses. Post-shakedown quantities such as strain ranges and cyclic accumulated strains are calculated approximately by disregarding the load history. The STPZ is based on estimates of a transformed internal variable, which can be used to perform modified elastic analyses, where the elastic material parameters are modified, and initial strains are applied as modified loading, resulting in residual stresses and strains. The STPZ already turned out to work well with respect to cyclic loading between two states of loading. Usually, few linear elastic analyses are sufficient to obtain a good approximation to the post-shakedown quantities. In a multi-dimensional load domain, the approximation of the transformed internal variable transforms from a plane problem into a hyperspace problem, where time-consuming approximation methods need to be applied. Therefore, a solution restricted to structures with four stress components was developed to estimate the transformed internal variable by means of three-dimensional vector algebra. This paper presents the extension to cyclic multi-parameter loading so that an unlimited number of load cases can be taken into account. The theoretical basis and basic presumptions of the Simplified Theory of Plastic Zones are outlined for the case of elastic shakedown. The extension of the method to many load cases is explained, and a workflow of the procedure is illustrated. An example, adopting the FE-implementation of the method into ANSYS and considering multilinear hardening is given which highlights the advantages of the method compared to incremental, step-by-step analysis.

Keywords: cyclic loading, direct method, elastic shakedown, multi-parameter loading, STPZ

Procedia PDF Downloads 163
5953 Study of the Hysteretic I-V Characteristics in a Polystyrene/ZnO-Nanorods Stack Layer

Authors: You-Lin Wu, Yi-Hsing Sung, Shih-Hung Lin, Jing-Jenn Lin

Abstract:

Performance improvement in optoelectronic devices such as solar cells and photodetectors has been reported when a polymer/ZnO nanorods stack is used. Resistance switching of polymer/ZnO nanocrystals (or nanorods) hybrid has also gained a lot of research interests recently. It has been reported that high- and low-resistance states of a metal/insulator/metal (MIM) structure diode with a polystyrene (PS) and ZnO hybrid as the insulator layer can be switched by applied bias after a high-voltage forming process, while the same device structure merely with a PS layer does not show any forming behavior. In this work, we investigated the current-voltage (I-V) characteristics of an MIM device with a PS/ZnO nanorods stack deposited on fluorine-doped tin oxide (FTO) glass substrate. The ZnO nanorods were grown by a hydrothermal method using a mixture of zinc nitrate, hexamethylenetetramine, and DI water. Following that, a PS layer was deposited by spin coating. Finally, the device with a structure of Ti/ PS/ZnO nanorods/FTO was completed by e-gun evaporated Ti layer on top of the PS layer. Semiconductor parameters analyzer Agilent 4156C was then used to measure the I-V characteristics of the device by applying linear ramp sweep voltage with sweep sequence of 0V → 4V → 0V → 3V → 0V → 2V → 0V → 1V → 0V in both positive and negative directions. It is interesting to find that the I-V characteristics are bias dependent and hysteretic, indicating that the device Ti/PS/ZnO nanorods/FTO structure has ferroelectricity. Our results also show that the maximum hysteresis loop height of the I-V characteristics as well as the voltage at which the maximum hysteresis loop height of each scan occurs increase with increasing maximum sweep voltage. It should be noticed that, although ferroelectricity has been found in ZnO at its melting temperature (1975℃) and in Li- or Co-doped ZnO, neither PS nor ZnO has ferroelectricity at room temperature. Using the same structure but with a PS or ZnO layer only as the insulator does not give and hysteretic I-V characteristics. It is believed that a charge polarization layer is induced near the PS/ZnO nanorods stack interface and thus causes the ferroelectricity in the device with Ti/PS/ZnO nanorods/FTO structure. Our results show that the PS/ZnO stack can find a potential application in a resistive switching memory device with MIM structure.

Keywords: ferroelectricity, hysteresis, polystyrene, resistance switching, ZnO nanorods

Procedia PDF Downloads 312
5952 MicroRNA Drivers of Resistance to Androgen Deprivation Therapy in Prostate Cancer

Authors: Philippa Saunders, Claire Fletcher

Abstract:

INTRODUCTION: Prostate cancer is the most prevalent malignancy affecting Western males. It is initially an androgen-dependent disease: androgens bind to the androgen receptor and drive the expression of genes that promote proliferation and evasion of apoptosis. Despite reduced androgen dependence in advanced prostate cancer, androgen receptor signaling remains a key driver of growth. Androgen deprivation therapy (ADT) is, therefore, a first-line treatment approach and works well initially, but resistance inevitably develops. Abiraterone and Enzalutamide are drugs widely used in ADT and are androgen synthesis and androgen receptor signaling inhibitors, respectively. The shortage of other treatment options means acquired resistance to these drugs is a major clinical problem. MicroRNAs (miRs) are important mediators of post-transcriptional gene regulation and show altered expression in cancer. Several have been linked to the development of resistance to ADT. Manipulation of such miRs may be a pathway to breakthrough treatments for advanced prostate cancer. This study aimed to validate ADT resistance-implicated miRs and their clinically relevant targets. MATERIAL AND METHOD: Small RNA-sequencing of Abiraterone- and Enzalutamide-resistant C42 prostate cancer cells identified subsets of miRs dysregulated as compared to parental cells. Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) was used to validate altered expression of candidate ADT resistance-implicated miRs 195-5p, 497-5p and 29a-5p in ADT-resistant and -responsive prostate cancer cell lines, patient-derived xenografts (PDXs) and primary prostate cancer explants. RESULTS AND DISCUSSION: This study suggests a possible role for miR-497-5p in the development of ADT resistance in prostate cancer. MiR-497-5p expression was increased in ADT-resistant versus ADT-responsive prostate cancer cells. Importantly, miR-497-5p expression was also increased in Enzalutamide-treated, castrated (ADT-mimicking) PDXs versus intact PDXs. MiR-195-5p was also elevated in ADT-resistant versus -responsive prostate cancer cells, while there was a drop in miR-29a-5p expression. Candidate clinically relevant targets of miR-497-5p in prostate cancer were identified by mining AGO-PAR-CLIP-seq data sets and may include AVL9 and FZD6. CONCLUSION: In summary, this study identified microRNAs that are implicated in prostate cancer resistance to androgen deprivation therapy and could represent novel therapeutic targets for advanced disease.

Keywords: microRNA, androgen deprivation therapy, Enzalutamide, abiraterone, patient-derived xenograft

Procedia PDF Downloads 146
5951 Cytotoxic Activity against Hepatocarcinoma and Cholangiocarcinoma Cells of Four Cathartic Herbal Medicines

Authors: Pranporn Kuropakornpong, Srisopa Ruangnoo, Arunporn Itharat

Abstract:

Liver cancer has the highest prevalence rate in the North and Northeast of Thailand. Four Thai medicinal plants such as resin of Ferula asafoetida Regel, latex of Aloe barbadensis Miller leaves, roots of Baliospermum manotanum, and latex of Garcinia hanburyi Hook are used in Thai traditional medicine as cathartic drug and detoxification in liver cancer patients. Thus, this research aimed to evaluate the cytotoxic activity of these plants against hepatocarcinoma (HepG2) and cholangiocarcinoma (KKU-M156) cells by SRB assay. These plants were macerated in 95% ethanol. The results showed that roots of Baliospermum manotanum and latex of Garcinia hanburyi Hook showed the strongest cytotoxicity against HepG2 (IC50 = 3.03+0.91 and 0.62+0.01µg/ml, respectively) and KKU-M156 (IC50 = 0.978+0.663 and 0.006+0.005 µg/ml, respectively). Latex of Garcinia hanburyi Hook also showed high cytotoxicity against normal cell line (IC50=8.86+0.31 µg/ml), and even though its selective values are high, dose of this herb should be limited.

Keywords: cholangiocarcinoma, cytotoxic activity, Garcinia hanburyi Hook, hepatocarcinoma

Procedia PDF Downloads 454
5950 Multi-Modal Film Boiling Simulations on Adaptive Octree Grids

Authors: M. Wasy Akhtar

Abstract:

Multi-modal film boiling simulations are carried out on adaptive octree grids. The liquid-vapor interface is captured using the volume-of-fluid framework adjusted to account for exchanges of mass, momentum, and energy across the interface. Surface tension effects are included using a volumetric source term in the momentum equations. The phase change calculations are conducted based on the exact location and orientation of the interface; however, the source terms are calculated using the mixture variables to be consistent with the one field formulation used to represent the entire fluid domain. The numerical model on octree representation of the computational grid is first verified using test cases including advection tests in severely deforming velocity fields, gravity-based instabilities and bubble growth in uniformly superheated liquid under zero gravity. The model is then used to simulate both single and multi-modal film boiling simulations. The octree grid is dynamically adapted in order to maintain the highest grid resolution on the instability fronts using markers of interface location, volume fraction, and thermal gradients. The method thus provides an efficient platform to simulate fluid instabilities with or without phase change in the presence of body forces like gravity or shear layer instabilities.

Keywords: boiling flows, dynamic octree grids, heat transfer, interface capturing, phase change

Procedia PDF Downloads 247
5949 Combining ASTER Thermal Data and Spatial-Based Insolation Model for Identification of Geothermal Active Areas

Authors: Khalid Hussein, Waleed Abdalati, Pakorn Petchprayoon, Khaula Alkaabi

Abstract:

In this study, we integrated ASTER thermal data with an area-based spatial insolation model to identify and delineate geothermally active areas in Yellowstone National Park (YNP). Two pairs of L1B ASTER day- and nighttime scenes were used to calculate land surface temperature. We employed the Emissivity Normalization Algorithm which separates temperature from emissivity to calculate surface temperature. We calculated the incoming solar radiation for the area covered by each of the four ASTER scenes using an insolation model and used this information to compute temperature due to solar radiation. We then identified the statistical thermal anomalies using land surface temperature and the residuals calculated from modeled temperatures and ASTER-derived surface temperatures. Areas that had temperatures or temperature residuals greater than 2σ and between 1σ and 2σ were considered ASTER-modeled thermal anomalies. The areas identified as thermal anomalies were in strong agreement with the thermal areas obtained from the YNP GIS database. Also the YNP hot springs and geysers were located within areas identified as anomalous thermal areas. The consistency between our results and known geothermally active areas indicate that thermal remote sensing data, integrated with a spatial-based insolation model, provides an effective means for identifying and locating areas of geothermal activities over large areas and rough terrain.

Keywords: thermal remote sensing, insolation model, land surface temperature, geothermal anomalies

Procedia PDF Downloads 372
5948 Study into the Interactions of Primary Limbal Epithelial Stem Cells and HTCEPI Using Tissue Engineered Cornea

Authors: Masoud Sakhinia, Sajjad Ahmad

Abstract:

Introduction: Though knowledge of the compositional makeup and structure of the limbal niche has progressed exponentially during the past decade, much is yet to be understood. Identifying the precise profile and role of the stromal makeup which spans the ocular surface may inform researchers of the most optimum conditions needed to effectively expand LESCs in vitro, whilst preserving their differentiation status and phenotype. Limbal fibroblasts, as opposed to corneal fibroblasts are thought to form an important component of the microenvironment where LESCs reside. Methods: The corneal stroma was tissue engineered in vitro using both limbal and corneal fibroblasts embedded within a tissue engineered 3D collagen matrix. The effect of these two different fibroblasts on LESCs and hTCEpi corneal epithelial cell line were then subsequently determined using phase contrast microscopy, histolological analysis and PCR for specific stem cell markers. The study aimed to develop an in vitro model which could be used to determine whether limbal, as opposed to corneal fibroblasts, maintained the stem cell phenotype of LESCs and hTCEpi cell line. Results: Tissue culture analysis was inconclusive and required further quantitative analysis for remarks on cell proliferation within the varying stroma. Histological analysis of the tissue-engineered cornea showed a comparable structure to that of the human cornea, though with limited epithelial stratification. PCR results for epithelial cell markers of cells cultured on limbal fibroblasts showed reduced expression of CK3, a negative marker for LESC’s, whilst also exhibiting a relatively low expression level of P63, a marker for undifferentiated LESCs. Conclusion: We have shown the potential for the construction of a tissue engineered human cornea using a 3D collagen matrix and described some preliminary results in the analysis of the effects of varying stroma consisting of limbal and corneal fibroblasts, respectively, on the proliferation of stem cell phenotype of primary LESCs and hTCEpi corneal epithelial cells. Although no definitive marker exists to conclusively illustrate the presence of LESCs, the combination of positive and negative stem cell markers in our study were inconclusive. Though it is less traslational to the human corneal model, the use of conditioned medium from that of limbal and corneal fibroblasts may provide a more simple avenue. Moreover, combinations of extracellular matrices could be used as a surrogate in these culture models.

Keywords: cornea, Limbal Stem Cells, tissue engineering, PCR

Procedia PDF Downloads 281
5947 Delivery of Doxorubicin to Glioblastoma Multiforme Using Solid Lipid Nanoparticles with Surface Aprotinin and Melanotransferrin Antibody for Enhanced Chemotherapy

Authors: Yung-Chih Kuo, I-Hsuan Lee

Abstract:

Solid lipid nanoparticles (SLNs) conjugated with aprotinin (Apr) and melanotransferrin antibody (Anti-MTf) were used to carry doxorubicin (Dox) across the blood–brain barrier (BBB) for glioblastoma multiforme (GBM) chemotherapy. Dox-entrapped SLNs with grafted Apr and Anti-MTf (Apr-Anti-MTf-Dox-SLNs) were applied to a cultured monolayer comprising human brain-microvascular endothelial cells (HBMECs) with regulation of human astrocyte (HAs) and to a proliferated colony of U87MG cells. Based on the average particle diameter, zeta potential, entrapping efficiency of Dox, and grafting efficiency of Apr and Anti-MTf, we found that 40% (w/w) 1,2-dipalmitoyl-sn-glycero-3-phosphocholine in lipids were appropriate for fabricating Apr-Anti-MTf-Dox-SLNs. In addition, Apr-Anti-MTf-Dox-SLNs could prevent Dox from fast dissolution and did not induce a serious cytotoxicity to HBMECs and HAs when compared with free Dox. Moreover, the treatments with Apr-Anti-MTf-Dox-SLNs enhanced the ability of Dox to infuse the BBB and to inhibit the growth of GBM. The current Apr-Anti-MTf-Dox-SLNs can be a promising pharmacotherapeutic preparation to penetrate the BBB for malignant brain tumor treatment.

Keywords: solid lipid nanoparticle, glioblastoma multiforme, blood–brain barrier, doxorubicin

Procedia PDF Downloads 362
5946 Anticipation of Bending Reinforcement Based on Iranian Concrete Code Using Meta-Heuristic Tools

Authors: Seyed Sadegh Naseralavi, Najmeh Bemani

Abstract:

In this paper, different concrete codes including America, New Zealand, Mexico, Italy, India, Canada, Hong Kong, Euro Code and Britain are compared with the Iranian concrete design code. First, by using Adaptive Neuro Fuzzy Inference System (ANFIS), the codes having the most correlation with the Iranian ninth issue of the national regulation are determined. Consequently, two anticipated methods are used for comparing the codes: Artificial Neural Network (ANN) and Multi-variable regression. The results show that ANN performs better. Predicting is done by using only tensile steel ratio and with ignoring the compression steel ratio.

Keywords: adaptive neuro fuzzy inference system, anticipate method, artificial neural network, concrete design code, multi-variable regression

Procedia PDF Downloads 287
5945 Coastalization and Urban Sprawl in the Mediterranean: Using High-Resolution Multi-Temporal Data to Identify Typologies of Spatial Development

Authors: Apostolos Lagarias, Anastasia Stratigea

Abstract:

Coastal urbanization is heavily affecting the Mediterranean, taking the form of linear urban sprawl along the coastal zone. This process is posing extreme pressure on ecosystems, leading to an unsustainable model of growth. The aim of this research is to analyze coastal urbanization patterns in the Mediterranean using High-resolution multi-temporal data provided by the Global Human Settlement Layer (GHSL) database. Methodology involves the estimation of a set of spatial metrics characterizing the density, aggregation/clustering and dispersion of built-up areas. As case study areas, the Spanish Coast and the Adriatic Italian Coast are examined. Coastalization profiles are examined and selected sub-areas massively affected by tourism development and suburbanization trends (Costa Blanca/Murcia, Costa del Sol, Puglia, Emilia-Romagna Coast) are analyzed and compared. Results show that there are considerable differences between the Spanish and the Italian typologies of spatial development, related to the land use structure and planning policies applied in each case. Monitoring and analyzing spatial patterns could inform integrated Mediterranean strategies for coastal areas and redirect spatial/environmental policies towards a more sustainable model of growth

Keywords: coastalization, Mediterranean, multi-temporal, urban sprawl, spatial metrics

Procedia PDF Downloads 141
5944 Comprehensive Risk Assessment Model in Agile Construction Environment

Authors: Jolanta Tamošaitienė

Abstract:

The article focuses on a developed comprehensive model to be used in an agile environment for the risk assessment and selection based on multi-attribute methods. The model is based on a multi-attribute evaluation of risk in construction, and the determination of their optimality criterion values are calculated using complex Multiple Criteria Decision-Making methods. The model may be further applied to risk assessment in an agile construction environment. The attributes of risk in a construction project are selected by applying the risk assessment condition to the construction sector, and the construction process efficiency in the construction industry accounts for the agile environment. The paper presents the comprehensive risk assessment model in an agile construction environment. It provides a background and a description of the proposed model and the developed analysis of the comprehensive risk assessment model in an agile construction environment with the criteria.

Keywords: assessment, environment, agile, model, risk

Procedia PDF Downloads 256
5943 Modeling Competition Between Subpopulations with Variable DNA Content in Resource-Limited Microenvironments

Authors: Parag Katira, Frederika Rentzeperis, Zuzanna Nowicka, Giada Fiandaca, Thomas Veith, Jack Farinhas, Noemi Andor

Abstract:

Resource limitations shape the outcome of competitions between genetically heterogeneous pre-malignant cells. One example of such heterogeneity is in the ploidy (DNA content) of pre-malignant cells. A whole-genome duplication (WGD) transforms a diploid cell into a tetraploid one and has been detected in 28-56% of human cancers. If a tetraploid subclone expands, it consistently does so early in tumor evolution, when cell density is still low, and competition for nutrients is comparatively weak – an observation confirmed for several tumor types. WGD+ cells need more resources to synthesize increasing amounts of DNA, RNA, and proteins. To quantify resource limitations and how they relate to ploidy, we performed a PAN cancer analysis of WGD, PET/CT, and MRI scans. Segmentation of >20 different organs from >900 PET/CT scans were performed with MOOSE. We observed a strong correlation between organ-wide population-average estimates of Oxygen and the average ploidy of cancers growing in the respective organ (Pearson R = 0.66; P= 0.001). In-vitro experiments using near-diploid and near-tetraploid lineages derived from a breast cancer cell line supported the hypothesis that DNA content influences Glucose- and Oxygen-dependent proliferation-, death- and migration rates. To model how subpopulations with variable DNA content compete in the resource-limited environment of the human brain, we developed a stochastic state-space model of the brain (S3MB). The model discretizes the brain into voxels, whereby the state of each voxel is defined by 8+ variables that are updated over time: stiffness, Oxygen, phosphate, glucose, vasculature, dead cells, migrating cells and proliferating cells of various DNA content, and treat conditions such as radiotherapy and chemotherapy. Well-established Fokker-Planck partial differential equations govern the distribution of resources and cells across voxels. We applied S3MB on sequencing and imaging data obtained from a primary GBM patient. We performed whole genome sequencing (WGS) of four surgical specimens collected during the 1ˢᵗ and 2ⁿᵈ surgeries of the GBM and used HATCHET to quantify its clonal composition and how it changes between the two surgeries. HATCHET identified two aneuploid subpopulations of ploidy 1.98 and 2.29, respectively. The low-ploidy clone was dominant at the time of the first surgery and became even more dominant upon recurrence. MRI images were available before and after each surgery and registered to MNI space. The S3MB domain was initiated from 4mm³ voxels of the MNI space. T1 post and T2 flair scan acquired after the 1ˢᵗ surgery informed tumor cell densities per voxel. Magnetic Resonance Elastography scans and PET/CT scans informed stiffness and Glucose access per voxel. We performed a parameter search to recapitulate the GBM’s tumor cell density and ploidy composition before the 2ⁿᵈ surgery. Results suggest that the high-ploidy subpopulation had a higher Glucose-dependent proliferation rate (0.70 vs. 0.49), but a lower Glucose-dependent death rate (0.47 vs. 1.42). These differences resulted in spatial differences in the distribution of the two subpopulations. Our results contribute to a better understanding of how genomics and microenvironments interact to shape cell fate decisions and could help pave the way to therapeutic strategies that mimic prognostically favorable environments.

Keywords: tumor evolution, intra-tumor heterogeneity, whole-genome doubling, mathematical modeling

Procedia PDF Downloads 76
5942 Dietary Gluten and the Balance of Gut Microbiota in the Dextran Sulphate Sodium Induced Colitis Model

Authors: Austin Belfiori, Kevin Rinek, Zach Barcroft, Jennifer Berglind

Abstract:

Diet influences the composition of the gut microbiota and host's health. Disruption of the balance among the microbiota, epithelial cells, and resident immune cells in the intestine is involved in the pathogenesis of inflammatory bowel disease (IBD). To study the role of gut microbiota in intestinal inflammation, the microbiome of control mice (C57BL6) given a gluten-containing standard diet versus C57BL6 mice given the gluten-free (GF) feed (n=10 in each group) was examined. All mice received the 3% DSS for 5 days. Throughout the study, feces were collected and processed for DNA extraction and MiSeq Illumina sequencing of V4 region of bacterial 16S rRNA gene. Alpha and beta diversities and compositional differences at phylum and genus levels were determined in intestinal microbiota. The mice receiving the GF diet showed a significantly increased abundance of Firmicutes and a decrease of Bacteroides and Lactobacillus at phylum level. Therefore, the gluten free diet led to reductions in beneficial gut bacteria populations. These findings indicate a role of wheat gluten in dysbiosis of the intestinal microbiota.

Keywords: gluten, colitis, microbiota, DSS, dextran sulphate sodium

Procedia PDF Downloads 213