Search results for: laser line detection
4182 Forming-Free Resistive Switching Effect in ZnₓTiᵧHfzOᵢ Nanocomposite Thin Films for Neuromorphic Systems Manufacturing
Authors: Vladimir Smirnov, Roman Tominov, Vadim Avilov, Oleg Ageev
Abstract:
The creation of a new generation micro- and nanoelectronics elements opens up unlimited possibilities for electronic devices parameters improving, as well as developing neuromorphic computing systems. Interest in the latter is growing up every year, which is explained by the need to solve problems related to the unstructured classification of data, the construction of self-adaptive systems, and pattern recognition. However, for its technical implementation, it is necessary to fulfill a number of conditions for the basic parameters of electronic memory, such as the presence of non-volatility, the presence of multi-bitness, high integration density, and low power consumption. Several types of memory are presented in the electronics industry (MRAM, FeRAM, PRAM, ReRAM), among which non-volatile resistive memory (ReRAM) is especially distinguished due to the presence of multi-bit property, which is necessary for neuromorphic systems manufacturing. ReRAM is based on the effect of resistive switching – a change in the resistance of the oxide film between low-resistance state (LRS) and high-resistance state (HRS) under an applied electric field. One of the methods for the technical implementation of neuromorphic systems is cross-bar structures, which are ReRAM cells, interconnected by cross data buses. Such a structure imitates the architecture of the biological brain, which contains a low power computing elements - neurons, connected by special channels - synapses. The choice of the ReRAM oxide film material is an important task that determines the characteristics of the future neuromorphic system. An analysis of literature showed that many metal oxides (TiO2, ZnO, NiO, ZrO2, HfO2) have a resistive switching effect. It is worth noting that the manufacture of nanocomposites based on these materials allows highlighting the advantages and hiding the disadvantages of each material. Therefore, as a basis for the neuromorphic structures manufacturing, it was decided to use ZnₓTiᵧHfzOᵢ nanocomposite. It is also worth noting that the ZnₓTiᵧHfzOᵢ nanocomposite does not need an electroforming, which degrades the parameters of the formed ReRAM elements. Currently, this material is not well studied, therefore, the study of the effect of resistive switching in forming-free ZnₓTiᵧHfzOᵢ nanocomposite is an important task and the goal of this work. Forming-free nanocomposite ZnₓTiᵧHfzOᵢ thin film was grown by pulsed laser deposition (Pioneer 180, Neocera Co., USA) on the SiO2/TiN (40 nm) substrate. Electrical measurements were carried out using a semiconductor characterization system (Keithley 4200-SCS, USA) with W probes. During measurements, TiN film was grounded. The analysis of the obtained current-voltage characteristics showed a resistive switching from HRS to LRS resistance states at +1.87±0.12 V, and from LRS to HRS at -2.71±0.28 V. Endurance test shown that HRS was 283.21±32.12 kΩ, LRS was 1.32±0.21 kΩ during 100 measurements. It was shown that HRS/LRS ratio was about 214.55 at reading voltage of 0.6 V. The results can be useful for forming-free nanocomposite ZnₓTiᵧHfzOᵢ films in neuromorphic systems manufacturing. This work was supported by RFBR, according to the research project № 19-29-03041 mk. The results were obtained using the equipment of the Research and Education Center «Nanotechnologies» of Southern Federal University.Keywords: nanotechnology, nanocomposites, neuromorphic systems, RRAM, pulsed laser deposition, resistive switching effect
Procedia PDF Downloads 1324181 A Critique of the Neo-Liberal Model of Economic Governance and Its Application to the Electricity Market Industry: Some Lessons and Learning Points from Nigeria
Authors: Kabiru Adamu
Abstract:
The Nigerian electricity industry was deregulated and privatized in 2005 and 2014 in line with global trend and practice. International and multilateral lending institutions advised developing countries, Nigeria inclusive, to adopt deregulation and privatization as part of reforms in their electricity sectors. The ideological basis of these reforms are traceable to neoliberalism. Neoliberalism is an ideology that believes in the supremacy of free market and strong non-interventionist competition law as against government ownership of the electricity market. This ideology became a state practice and a blue print for the deregulation and privatization of the electricity markets in many parts of the world. The blue print was used as a template for the privatization of the Nigerian electricity industry. In this wise, this paper, using documentary analysis and review of academic literatures, examines neoliberalism as an ideology and model of economic governance for the electricity supply industry in Nigeria. The paper examines the origin of the ideology, it features and principles and how it was used as the blue print in designing policies for electricity reforms in both developed and developing countries. The paper found out that there is gap between the ideology in theory and in practice because although the theory is rational in thinking it is difficult to be implemented in practice. The paper argues that the ideology has a mismatched effect and this has made its application in the electricity industry in many developing countries problematic and unsuccessful. In the case of Nigeria, the article argues that the template is also not working. The article concludes that the electricity sectors in Nigeria have failed to develop into competitive market for the benefit of consumers in line with the assumptions and promises of the ideology. The paper therefore recommends the democratization of the electricity sectors in Nigeria through a new system of public ownership as the solution to the failure of the neoliberal policies; but this requires the design of a more democratic and participatory system of ownership with communities and state governments in charge of the administration, running and operation of the sector.Keywords: electricity, energy governance, neo-liberalism, regulation
Procedia PDF Downloads 1674180 Correlation Analysis between Sensory Processing Sensitivity (SPS), Meares-Irlen Syndrome (MIS) and Dyslexia
Authors: Kaaryn M. Cater
Abstract:
Students with sensory processing sensitivity (SPS), Meares-Irlen Syndrome (MIS) and dyslexia can become overwhelmed and struggle to thrive in traditional tertiary learning environments. An estimated 50% of tertiary students who disclose learning related issues are dyslexic. This study explores the relationship between SPS, MIS and dyslexia. Baseline measures will be analysed to establish any correlation between these three minority methods of information processing. SPS is an innate sensitivity trait found in 15-20% of the population and has been identified in over 100 species of animals. Humans with SPS are referred to as Highly Sensitive People (HSP) and the measure of HSP is a 27 point self-test known as the Highly Sensitive Person Scale (HSPS). A 2016 study conducted by the author established base-line data for HSP students in a tertiary institution in New Zealand. The results of the study showed that all participating HSP students believed the knowledge of SPS to be life-changing and useful in managing life and study, in addition, they believed that all tutors and in-coming students should be given information on SPS. MIS is a visual processing and perception disorder that is found in approximately 10% of the population and has a variety of symptoms including visual fatigue, headaches and nausea. One way to ease some of these symptoms is through the use of colored lenses or overlays. Dyslexia is a complex phonological based information processing variation present in approximately 10% of the population. An estimated 50% of dyslexics are thought to have MIS. The study exploring possible correlations between these minority forms of information processing is due to begin in February 2017. An invitation will be extended to all first year students enrolled in degree programmes across all faculties and schools within the institution. An estimated 900 students will be eligible to participate in the study. Participants will be asked to complete a battery of on-line questionnaires including the Highly Sensitive Person Scale, the International Dyslexia Association adult self-assessment and the adapted Irlen indicator. All three scales have been used extensively in literature and have been validated among many populations. All participants whose score on any (or some) of the three questionnaires suggest a minority method of information processing will receive an invitation to meet with a learning advisor, and given access to counselling services if they choose. Meeting with a learning advisor is not mandatory, and some participants may choose not to receive help. Data will be collected using the Question Pro platform and base-line data will be analysed using correlation and regression analysis to identify relationships and predictors between SPS, MIS and dyslexia. This study forms part of a larger three year longitudinal study and participants will be required to complete questionnaires at annual intervals in subsequent years of the study until completion of (or withdrawal from) their degree. At these data collection points, participants will be questioned on any additional support received relating to their minority method(s) of information processing. Data from this study will be available by April 2017.Keywords: dyslexia, highly sensitive person (HSP), Meares-Irlen Syndrome (MIS), minority forms of information processing, sensory processing sensitivity (SPS)
Procedia PDF Downloads 2484179 Detection of Patient Roll-Over Using High-Sensitivity Pressure Sensors
Authors: Keita Nishio, Takashi Kaburagi, Yosuke Kurihara
Abstract:
Recent advances in medical technology have served to enhance average life expectancy. However, the total time for which the patients are prescribed complete bedrest has also increased. With patients being required to maintain a constant lying posture- also called bedsore- development of a system to detect patient roll-over becomes imperative. For this purpose, extant studies have proposed the use of cameras, and favorable results have been reported. Continuous on-camera monitoring, however, tends to violate patient privacy. We have proposed unconstrained bio-signal measurement system that could detect body-motion during sleep and does not violate patient’s privacy. Therefore, in this study, we propose a roll-over detection method by the date obtained from the bi-signal measurement system. Signals recorded by the sensor were assumed to comprise respiration, pulse, body motion, and noise components. Compared the body-motion and respiration, pulse component, the body-motion, during roll-over, generate large vibration. Thus, analysis of the body-motion component facilitates detection of the roll-over tendency. The large vibration associated with the roll-over motion has a great effect on the Root Mean Square (RMS) value of time series of the body motion component calculated during short 10 s segments. After calculation, the RMS value during each segment was compared to a threshold value set in advance. If RMS value in any segment exceeded the threshold, corresponding data were considered to indicate occurrence of a roll-over. In order to validate the proposed method, we conducted experiment. A bi-directional microphone was adopted as a high-sensitivity pressure sensor and was placed between the mattress and bedframe. Recorded signals passed through an analog Band-pass Filter (BPF) operating over the 0.16-16 Hz bandwidth. BPF allowed the respiration, pulse, and body-motion to pass whilst removing the noise component. Output from BPF was A/D converted with the sampling frequency 100Hz, and the measurement time was 480 seconds. The number of subjects and data corresponded to 5 and 10, respectively. Subjects laid on a mattress in the supine position. During data measurement, subjects—upon the investigator's instruction—were asked to roll over into four different positions—supine to left lateral, left lateral to prone, prone to right lateral, and right lateral to supine. Recorded data was divided into 48 segments with 10 s intervals, and the corresponding RMS value for each segment was calculated. The system was evaluated by the accuracy between the investigator’s instruction and the detected segment. As the result, an accuracy of 100% was achieved. While reviewing the time series of recorded data, segments indicating roll-over tendencies were observed to demonstrate a large amplitude. However, clear differences between decubitus and the roll-over motion could not be confirmed. Extant researches possessed a disadvantage in terms of patient privacy. The proposed study, however, demonstrates more precise detection of patient roll-over tendencies without violating their privacy. As a future prospect, decubitus estimation before and after roll-over could be attempted. Since in this paper, we could not confirm the clear differences between decubitus and the roll-over motion, future studies could be based on utilization of the respiration and pulse components.Keywords: bedsore, high-sensitivity pressure sensor, roll-over, unconstrained bio-signal measurement
Procedia PDF Downloads 1224178 Effect of Crystallographic Characteristics on Toughness of Coarse Grain Heat Affected Zone for Different Heat Inputs
Authors: Trishita Ray, Ashok Perka, Arnab Karani, M. Shome, Saurabh Kundu
Abstract:
Line pipe steels are used for long distance transportation of crude oil and gas under extreme environmental conditions. Welding is necessary to lay large scale pipelines. Coarse Grain Heat Affected Zone (CGHAZ) of a welded joint exhibits worst toughness because of excessive grain growth and brittle microstructures like bainite and martensite, leading to early failure. Therefore, it is necessary to investigate microstructures and properties of the CGHAZ for different welding heat inputs. In the present study, CGHAZ for two heat inputs of 10 kJ/cm and 50 kJ/cm were simulated in Gleeble 3800, and the microstructures were investigated in detail by means of Scanning Electron Microscopy (SEM) and Electron Backscattered Diffraction (EBSD). Charpy Impact Tests were also done to evaluate the impact properties. High heat input was characterized with very low toughness and massive prior austenite grains. With the crystallographic information from EBSD, the area of a single prior austenite grain was traced out for both the welding conditions. Analysis of the prior austenite grains showed the formation of high angle boundaries between the crystallographic packets. Effect of these packet boundaries on secondary cleavage crack propagation was discussed. It was observed that in the low heat input condition, formation of finer packets with a criss-cross morphology inside prior austenite grains was effective in crack arrest whereas, in the high heat input condition, formation of larger packets with higher volume of low angle boundaries failed to resist crack propagation resulting in a brittle fracture. Thus, the characteristics in a crystallographic packet and impact properties are related and should be controlled to obtain optimum properties.Keywords: coarse grain heat affected zone, crystallographic packet, toughness, line pipe steel
Procedia PDF Downloads 2454177 Cancer Stem Cell-Associated Serum Proteins Obtained by Maldi TOF/TOF Mass Spectrometry in Women with Triple-Negative Breast Cancer
Authors: Javier Enciso-Benavides, Fredy Fabian, Carlos Castaneda, Luis Alfaro, Alex Choque, Aparicio Aguilar, Javier Enciso
Abstract:
Background: The use of biomarkers in breast cancer diagnosis, therapy, and prognosis has gained increasing interest. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and may cause relapse. Therefore, due to the importance of diagnosis, therapy, and prognosis, several biomarkers that characterize CSCs have been identified; however, in treatment-naïve triple-negative breast tumors, there is an urgent need to identify new biomarkers and therapeutic targets. According to this, the aim of this study was to identify serum proteins associated with cancer stem cells and pluripotency in women with triple-negative breast tumors in order to subsequently identify a biomarker for this type of breast tumor. Material and Methods: Whole blood samples from 12 women with histopathologically diagnosed triple-negative breast tumors were used after obtaining informed consent from the patient. Blood serum was obtained by conventional procedure and frozen at -80ºC. Identification of cancer stem cell-associated proteins was performed by matrix-assisted laser desorption/ionisation-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS), protein analysis was obtained using the AB Sciex TOF/TOF™ 5800 system (AB Sciex, USA). Sequences not aligned by ProteinPilot™ software were analyzed by Protein BLAST. Results: The following proteins related to pluripotency and cancer stem cells were identified by MALDI TOF/TOF mass spectrometry: A-chain, Serpin A12 [Homo sapiens], AIEBP [Homo sapiens], Alpha-one antitrypsin, AT {internal fragment} [human, partial peptide, 20 aa] [Homo sapiens], collagen alpha 1 chain precursor variant [Homo sapiens], retinoblastoma-associated protein variant [Homo sapiens], insulin receptor, CRA_c isoform [Homo sapiens], Hydroxyisourate hydrolase [Streptomyces scopuliridis], MUCIN-6 [Macaca mulatta], Alpha-actinin-3 [Chrysochloris asiatica], Polyprotein M, CRA_d isoform, partial [Homo sapiens], Transcription factor SOX-12 [Homo sapiens]. Recommendations: The serum proteins identified in this study should be investigated in the exosome of triple-negative breast cancer stem cells and in the blood serum of women without breast cancer. Subsequently, proteins found only in the blood serum of women with triple-negative breast cancer should be identified in situ in triple-negative breast cancer tissue in order to identify a biomarker to study the evolution of this type of cancer, or that could be a therapeutic target. Conclusions: Eleven cancer stem cell-related serum proteins were identified in 12 women with triple-negative breast cancer, of which MUCIN-6, retinoblastoma-associated protein variant, transcription factor SOX-12, and collagen alpha 1 chain are the most representative and have not been studied so far in this type of breast tumor. Acknowledgement: This work was supported by Proyecto CONCYTEC–Banco Mundial “Mejoramiento y Ampliacion de los Servicios del Sistema Nacional de Ciencia Tecnología e Innovacion Tecnologica” 8682-PE (104-2018-FONDECYT-BM-IADT-AV).Keywords: triple-negative breast cancer, MALDI TOF/TOF MS, serum proteins, cancer stem cells
Procedia PDF Downloads 2184176 Detection and Quantification of Ochratoxin A in Food by Aptasensor
Authors: Moez Elsaadani, Noel Durand, Brice Sorli, Didier Montet
Abstract:
Governments and international instances are trying to improve the food safety system to prevent, reduce or avoid the increase of food borne diseases. This food risk is one of the major concerns for the humanity. The contamination by mycotoxins is a threat to the health and life of humans and animals. One of the most common mycotoxin contaminating feed and foodstuffs is Ochratoxin A (OTA), which is a secondary metabolite, produced by Aspergillus and Penicillium strains. OTA has a chronic toxic effect and proved to be mutagenic, nephrotoxic, teratogenic, immunosuppressive, and carcinogenic. On the other side, because of their high stability, specificity, affinity, and their easy chemical synthesis, aptamer based methods are applied to OTA biosensing as alternative to traditional analytical technique. In this work, five aptamers have been tested to confirm qualitatively and quantitatively their binding with OTA. In the same time, three different analytical methods were tested and compared based on their ability to detect and quantify the OTA. The best protocol that was established to quantify free OTA from linked OTA involved an ultrafiltration method in green coffee solution with. OTA was quantified by HPLC-FLD to calculate the binding percentage of all five aptamers. One aptamer (The most effective with 87% binding with OTA) has been selected to be our biorecognition element to study its electrical response (variation of electrical properties) in the presence of OTA in order to be able to make a pairing with a radio frequency identification (RFID). This device, which is characterized by its low cost, speed, and a simple wireless information transmission, will implement the knowledge on the mycotoxins molecular sensors (aptamers), an electronic device that will link the information, the quantification and make it available to operators.Keywords: aptamer, aptasensor, detection, Ochratoxin A
Procedia PDF Downloads 1834175 Telemedicine Services in Ophthalmology: A Review of Studies
Authors: Nasim Hashemi, Abbas Sheikhtaheri
Abstract:
Telemedicine is the use of telecommunication and information technologies to provide health care services that would often not be consistently available in distant rural communities to people at these remote areas. Teleophthalmology is a branch of telemedicine that delivers eye care through digital medical equipment and telecommunications technology. Thus, teleophthalmology can overcome geographical barriers and improve quality, access, and affordability of eye health care services. Since teleophthalmology has been widespread applied in recent years, the aim of this study was to determine the different applications of teleophthalmology in the world. To this end, three bibliographic databases (Medline, ScienceDirect, Scopus) were comprehensively searched with these keywords: eye care, eye health care, primary eye care, diagnosis, detection, and screening of different eye diseases in conjunction with telemedicine, telehealth, teleophthalmology, e-services, and information technology. All types of papers were included in the study with no time restriction. We conducted the search strategies until 2015. Finally 70 articles were surveyed. We classified the results based on the’type of eye problems covered’ and ‘the type of telemedicine services’. Based on the review, from the ‘perspective of health care levels’, there are three level for eye health care as primary, secondary and tertiary eye care. From the ‘perspective of eye care services’, the main application of teleophthalmology in primary eye care was related to the diagnosis of different eye diseases such as diabetic retinopathy, macular edema, strabismus and aged related macular degeneration. The main application of teleophthalmology in secondary and tertiary eye care was related to the screening of eye problems i.e. diabetic retinopathy, astigmatism, glaucoma screening. Teleconsultation between health care providers and ophthalmologists and also education and training sessions for patients were other types of teleophthalmology in world. Real time, store–forward and hybrid methods were the main forms of the communication from the perspective of ‘teleophthalmology mode’ which is used based on IT infrastructure between sending and receiving centers. In aspect of specialists, early detection of serious aged-related ophthalmic disease in population, screening of eye disease processes, consultation in an emergency cases and comprehensive eye examination were the most important benefits of teleophthalmology. Cost-effectiveness of teleophthalmology projects resulted from reducing transportation and accommodation cost, access to affordable eye care services and receiving specialist opinions were also the main advantages of teleophthalmology for patients. Teleophthalmology brings valuable secondary and tertiary care to remote areas. So, applying teleophthalmology for detection, treatment and screening purposes and expanding its use in new applications such as eye surgery will be a key tool to promote public health and integrating eye care to primary health care.Keywords: applications, telehealth, telemedicine, teleophthalmology
Procedia PDF Downloads 3754174 Treatment of Non-Small Cell Lung Cancer (NSCLC) With Activating Mutations Considering ctDNA Fluctuations
Authors: Moiseenko F. V., Volkov N. M., Zhabina A. S., Stepanova E. O., Kirillov A. V., Myslik A. V., Artemieva E. V., Agranov I. R., Oganesyan A. P., Egorenkov V. V., Abduloeva N. H., Aleksakhina S. Yu., Ivantsov A. O., Kuligina E. S., Imyanitov E. N., Moiseyenko V. M.
Abstract:
Analysis of ctDNA in patients with NSCLC is an emerging biomarker. Multiple research efforts of quantitative or at least qualitative analysis before and during the first periods of treatment with TKI showed the prognostic value of ctDNA clearance. Still, these important results are not incorporated in clinical standards. We evaluated the role of ctDNA in EGFR-mutated NSCLC receiving first-line TKI. Firstly, we analyzed sequential plasma samples from 30 patients that were collected before intake of the first tablet (at baseline) and at 6, 12, 24, 36, and 48 hours after the “starting point.” EGFR-M+ allele was measured by ddPCR. Afterward, we included sequential qualitative analysis of ctDNA with cobas® EGFR Mutation Test v2 from 99 NSCLC patients before the first dose, after 2 and 4 months of treatment, and on progression. Early response analysis showed the decline of EGFR-M+ level in plasma within the first 48 hours of treatment in 11 subjects. All these patients showed objective tumor response. 10 patients showed either elevation of EGFR-M+ plasma concentration (n = 5) or stable content of circulating EGFR-M+ after the start of the therapy (n = 5); only 3 of these patients achieved an objective response (p = 0.026) when compared to the former group). The rapid decline of plasma EGFR-M+ DNA concentration also predicted for longer PFS (13.7 vs. 11.4 months, p = 0.030). Long-term ctDNA monitoring showed clinically significant heterogeneity of EGFR-mutated NSCLC treated with 1st line TKIs in terms of progression-free and overall survival. Patients without detectable ctDNA at baseline (N = 32) possess the best prognosis on the duration of treatment (PFS: 24.07 [16.8-31.3] and OS: 56.2 [21.8-90.7] months). Those who achieve clearance after two months of TKI (N = 42) have indistinguishably good PFS (19.0 [13.7 – 24.2]). Individuals who retain ctDNA after 2 months (N = 25) have the worst prognosis (PFS: 10.3 [7.0 – 13.5], p = 0.000). 9/25 patients did not develop ctDNA clearance at 4 months with no statistical difference in PFS from those without clearance at 2 months. Prognostic heterogeneity of EGFR-mutated NSCLC should be taken into consideration in planning further clinical trials and optimizing the outcomes of patients.Keywords: NSCLC, EGFR, targeted therapy, ctDNA, prognosis
Procedia PDF Downloads 564173 Event Data Representation Based on Time Stamp for Pedestrian Detection
Authors: Yuta Nakano, Kozo Kajiwara, Atsushi Hori, Takeshi Fujita
Abstract:
In association with the wave of electric vehicles (EV), low energy consumption systems have become more and more important. One of the key technologies to realize low energy consumption is a dynamic vision sensor (DVS), or we can call it an event sensor, neuromorphic vision sensor and so on. This sensor has several features, such as high temporal resolution, which can achieve 1 Mframe/s, and a high dynamic range (120 DB). However, the point that can contribute to low energy consumption the most is its sparsity; to be more specific, this sensor only captures the pixels that have intensity change. In other words, there is no signal in the area that does not have any intensity change. That is to say, this sensor is more energy efficient than conventional sensors such as RGB cameras because we can remove redundant data. On the other side of the advantages, it is difficult to handle the data because the data format is completely different from RGB image; for example, acquired signals are asynchronous and sparse, and each signal is composed of x-y coordinate, polarity (two values: +1 or -1) and time stamp, it does not include intensity such as RGB values. Therefore, as we cannot use existing algorithms straightforwardly, we have to design a new processing algorithm to cope with DVS data. In order to solve difficulties caused by data format differences, most of the prior arts make a frame data and feed it to deep learning such as Convolutional Neural Networks (CNN) for object detection and recognition purposes. However, even though we can feed the data, it is still difficult to achieve good performance due to a lack of intensity information. Although polarity is often used as intensity instead of RGB pixel value, it is apparent that polarity information is not rich enough. Considering this context, we proposed to use the timestamp information as a data representation that is fed to deep learning. Concretely, at first, we also make frame data divided by a certain time period, then give intensity value in response to the timestamp in each frame; for example, a high value is given on a recent signal. We expected that this data representation could capture the features, especially of moving objects, because timestamp represents the movement direction and speed. By using this proposal method, we made our own dataset by DVS fixed on a parked car to develop an application for a surveillance system that can detect persons around the car. We think DVS is one of the ideal sensors for surveillance purposes because this sensor can run for a long time with low energy consumption in a NOT dynamic situation. For comparison purposes, we reproduced state of the art method as a benchmark, which makes frames the same as us and feeds polarity information to CNN. Then, we measured the object detection performances of the benchmark and ours on the same dataset. As a result, our method achieved a maximum of 7 points greater than the benchmark in the F1 score.Keywords: event camera, dynamic vision sensor, deep learning, data representation, object recognition, low energy consumption
Procedia PDF Downloads 1014172 Towards the Prediction of Aesthetic Requirements for Women’s Apparel Product
Authors: Yu Zhao, Min Zhang, Yuanqian Wang, Qiuyu Yu
Abstract:
The prediction of aesthetics of apparel is helpful for the development of a new type of apparel. This study is to build the quantitative relationship between the aesthetics and its design parameters. In particular, women’s pants have been preliminarily studied. This aforementioned relationship has been carried out by statistical analysis. The contributions of this study include the development of a more personalized apparel design mechanism and the provision of some empirical knowledge for the development of other products in the aspect of aesthetics.Keywords: aesthetics, crease line, cropped straight leg pants, knee width
Procedia PDF Downloads 1874171 A Visual Analytics Tool for the Structural Health Monitoring of an Aircraft Panel
Authors: F. M. Pisano, M. Ciminello
Abstract:
Aerospace, mechanical, and civil engineering infrastructures can take advantages from damage detection and identification strategies in terms of maintenance cost reduction and operational life improvements, as well for safety scopes. The challenge is to detect so called “barely visible impact damage” (BVID), due to low/medium energy impacts, that can progressively compromise the structure integrity. The occurrence of any local change in material properties, that can degrade the structure performance, is to be monitored using so called Structural Health Monitoring (SHM) systems, in charge of comparing the structure states before and after damage occurs. SHM seeks for any "anomalous" response collected by means of sensor networks and then analyzed using appropriate algorithms. Independently of the specific analysis approach adopted for structural damage detection and localization, textual reports, tables and graphs describing possible outlier coordinates and damage severity are usually provided as artifacts to be elaborated for information extraction about the current health conditions of the structure under investigation. Visual Analytics can support the processing of monitored measurements offering data navigation and exploration tools leveraging the native human capabilities of understanding images faster than texts and tables. Herein, a SHM system enrichment by integration of a Visual Analytics component is investigated. Analytical dashboards have been created by combining worksheets, so that a useful Visual Analytics tool is provided to structural analysts for exploring the structure health conditions examined by a Principal Component Analysis based algorithm.Keywords: interactive dashboards, optical fibers, structural health monitoring, visual analytics
Procedia PDF Downloads 1254170 N-Type GaN Thinning for Enhancing Light Extraction Efficiency in GaN-Based Thin-Film Flip-Chip Ultraviolet (UV) Light Emitting Diodes (LED)
Authors: Anil Kawan, Soon Jae Yu, Jong Min Park
Abstract:
GaN-based 365 nm wavelength ultraviolet (UV) light emitting diodes (LED) have various applications: curing, molding, purification, deodorization, and disinfection etc. However, their usage is limited by very low output power, because of the light absorption in the GaN layers. In this study, we demonstrate a method utilizing removal of 365 nm absorption layer buffer GaN and thinning the n-type GaN so as to improve the light extraction efficiency of the GaN-based 365 nm UV LED. The UV flip chip LEDs of chip size 1.3 mm x 1.3 mm were fabricated using GaN epilayers on a sapphire substrate. Via-hole n-type contacts and highly reflective Ag metal were used for efficient light extraction. LED wafer was aligned and bonded to AlN carrier wafer. To improve the extraction efficiency of the flip chip LED, sapphire substrate and absorption layer buffer GaN were removed by using laser lift-off and dry etching, respectively. To further increase the extraction efficiency of the LED, exposed n-type GaN thickness was reduced by using inductively coupled plasma etching.Keywords: extraction efficiency, light emitting diodes, n-GaN thinning, ultraviolet
Procedia PDF Downloads 4274169 Non-Revenue Water Management in Palestine
Authors: Samah Jawad Jabari
Abstract:
Water is the most important and valuable resource not only for human life but also for all living things on the planet. The water supply utilities should fulfill the water requirement quantitatively and qualitatively. Drinking water systems are exposed to both natural (hurricanes and flood) and manmade hazards (risks) that are common in Palestine. Non-Revenue Water (NRW) is a manmade risk which remains a major concern in Palestine, as the NRW levels are estimated to be at a high level. In this research, Hebron city water distribution network was taken as a case study to estimate and audit the NRW levels. The research also investigated the state of the existing water distribution system in the study area by investigating the water losses and obtained more information on NRW prevention and management practices. Data and information have been collected from the Palestinian Water Authority (PWA) and Hebron Municipality (HM) archive. In addition to that, a questionnaire has been designed and administered by the researcher in order to collect the necessary data for water auditing. The questionnaire also assessed the views of stakeholder in PWA and HM (staff) on the current status of the NRW in the Hebron water distribution system. The important result obtained by this research shows that NRW in Hebron city was high and in excess of 30%. The main factors that contribute to NRW were the inaccuracies in billing volumes, unauthorized consumption, and the method of estimating consumptions through faulty meters. Policy for NRW reduction is available in Palestine; however, it is clear that the number of qualified staff available to carry out the activities related to leak detection is low, and that there is a lack of appropriate technologies to reduce water losses and undertake sufficient system maintenance, which needs to be improved to enhance the performance of the network and decrease the level of NRW losses.Keywords: non-revenue water, water auditing, leak detection, water meters
Procedia PDF Downloads 3004168 Non-Destructive Technique for Detection of Voids in the IC Package Using Terahertz-Time Domain Spectrometer
Authors: Sung-Hyeon Park, Jin-Wook Jang, Hak-Sung Kim
Abstract:
In recent years, Terahertz (THz) time-domain spectroscopy (TDS) imaging method has been received considerable interest as a promising non-destructive technique for detection of internal defects. In comparison to other non-destructive techniques such as x-ray inspection method, scanning acoustic tomograph (SAT) and microwave inspection method, THz-TDS imaging method has many advantages: First, it can measure the exact thickness and location of defects. Second, it doesn’t require the liquid couplant while it is very crucial to deliver that power of ultrasonic wave in SAT method. Third, it didn’t damage to materials and be harmful to human bodies while x-ray inspection method does. Finally, it exhibits better spatial resolution than microwave inspection method. However, this technology couldn’t be applied to IC package because THz radiation can penetrate through a wide variety of materials including polymers and ceramics except of metals. Therefore, it is difficult to detect the defects in IC package which are composed of not only epoxy and semiconductor materials but also various metals such as copper, aluminum and gold. In this work, we proposed a special method for detecting the void in the IC package using THz-TDS imaging system. The IC package specimens for this study are prepared by Packaging Engineering Team in Samsung Electronics. Our THz-TDS imaging system has a special reflection mode called pitch-catch mode which can change the incidence angle in the reflection mode from 10 o to 70 o while the others have transmission and the normal reflection mode or the reflection mode fixed at certain angle. Therefore, to find the voids in the IC package, we investigated the appropriate angle as changing the incidence angle of THz wave emitter and detector. As the results, the voids in the IC packages were successfully detected using our THz-TDS imaging system.Keywords: terahertz, non-destructive technique, void, IC package
Procedia PDF Downloads 4754167 Problems and Solutions in the Application of ICP-MS for Analysis of Trace Elements in Various Samples
Authors: Béla Kovács, Éva Bódi, Farzaneh Garousi, Szilvia Várallyay, Áron Soós, Xénia Vágó, Dávid Andrási
Abstract:
In agriculture for analysis of elements in different food and food raw materials, moreover environmental samples generally flame atomic absorption spectrometers (FAAS), graphite furnace atomic absorption spectrometers (GF-AAS), inductively coupled plasma optical emission spectrometers (ICP-OES) and inductively coupled plasma mass spectrometers (ICP-MS) are routinely applied. An inductively coupled plasma mass spectrometer (ICP-MS) is capable for analysis of 70-80 elements in multielemental mode, from 1-5 cm3 volume of a sample, moreover the detection limits of elements are in µg/kg-ng/kg (ppb-ppt) concentration range. All the analytical instruments have different physical and chemical interfering effects analysing the above types of samples. The smaller the concentration of an analyte and the larger the concentration of the matrix the larger the interfering effects. Nowadays there is very important to analyse growingly smaller concentrations of elements. From the above analytical instruments generally the inductively coupled plasma mass spectrometer is capable of analysing the smallest concentration of elements. The applied ICP-MS instrument has Collision Cell Technology (CCT) also. Using CCT mode certain elements have better (smaller) detection limits with 1-3 magnitudes comparing to a normal ICP-MS analytical method. The CCT mode has better detection limits mainly for analysis of selenium, arsenic, germanium, vanadium and chromium. To elaborate an analytical method for trace elements with an inductively coupled plasma mass spectrometer the most important interfering effects (problems) were evaluated: 1) Physical interferences; 2) Spectral interferences (elemental and molecular isobaric); 3) Effect of easily ionisable elements; 4) Memory interferences. Analysing food and food raw materials, moreover environmental samples an other (new) interfering effect emerged in ICP-MS, namely the effect of various matrixes having different evaporation and nebulization effectiveness, moreover having different quantity of carbon content of food and food raw materials, moreover environmental samples. In our research work the effect of different water-soluble compounds furthermore the effect of various quantity of carbon content (as sample matrix) were examined on changes of intensity of the applied elements. So finally we could find “opportunities” to decrease or eliminate the error of the analyses of applied elements (Cr, Co, Ni, Cu, Zn, Ge, As, Se, Mo, Cd, Sn, Sb, Te, Hg, Pb, Bi). To analyse these elements in the above samples, the most appropriate inductively coupled plasma mass spectrometer is a quadrupole instrument applying a collision cell technique (CCT). The extent of interfering effect of carbon content depends on the type of compounds. The carbon content significantly affects the measured concentration (intensities) of the above elements, which can be corrected using different internal standards.Keywords: elements, environmental and food samples, ICP-MS, interference effects
Procedia PDF Downloads 5044166 South African Breast Cancer Mutation Spectrum: Pitfalls to Copy Number Variation Detection Using Internationally Designed Multiplex Ligation-Dependent Probe Amplification and Next Generation Sequencing Panels
Authors: Jaco Oosthuizen, Nerina C. Van Der Merwe
Abstract:
The National Health Laboratory Services in Bloemfontien has been the diagnostic testing facility for 1830 patients for familial breast cancer since 1997. From the cohort, 540 were comprehensively screened using High-Resolution Melting Analysis or Next Generation Sequencing for the presence of point mutations and/or indels. Approximately 90% of these patients stil remain undiagnosed as they are BRCA1/2 negative. Multiplex ligation-dependent probe amplification was initially added to screen for copy number variation detection, but with the introduction of next generation sequencing in 2017, was substituted and is currently used as a confirmation assay. The aim was to investigate the viability of utilizing internationally designed copy number variation detection assays based on mostly European/Caucasian genomic data for use within a South African context. The multiplex ligation-dependent probe amplification technique is based on the hybridization and subsequent ligation of multiple probes to a targeted exon. The ligated probes are amplified using conventional polymerase chain reaction, followed by fragment analysis by means of capillary electrophoresis. The experimental design of the assay was performed according to the guidelines of MRC-Holland. For BRCA1 (P002-D1) and BRCA2 (P045-B3), both multiplex assays were validated, and results were confirmed using a secondary probe set for each gene. The next generation sequencing technique is based on target amplification via multiplex polymerase chain reaction, where after the amplicons are sequenced parallel on a semiconductor chip. Amplified read counts are visualized as relative copy numbers to determine the median of the absolute values of all pairwise differences. Various experimental parameters such as DNA quality, quantity, and signal intensity or read depth were verified using positive and negative patients previously tested internationally. DNA quality and quantity proved to be the critical factors during the verification of both assays. The quantity influenced the relative copy number frequency directly whereas the quality of the DNA and its salt concentration influenced denaturation consistency in both assays. Multiplex ligation-dependent probe amplification produced false positives due to ligation failure when ligation was inhibited due to a variant present within the ligation site. Next generation sequencing produced false positives due to read dropout when primer sequences did not meet optimal multiplex binding kinetics due to population variants in the primer binding site. The analytical sensitivity and specificity for the South African population have been proven. Verification resulted in repeatable reactions with regards to the detection of relative copy number differences. Both multiplex ligation-dependent probe amplification and next generation sequencing multiplex panels need to be optimized to accommodate South African polymorphisms present within the genetically diverse ethnic groups to reduce the false copy number variation positive rate and increase performance efficiency.Keywords: familial breast cancer, multiplex ligation-dependent probe amplification, next generation sequencing, South Africa
Procedia PDF Downloads 2334165 A Review of Optomechatronic Ecosystem
Authors: Sam Zhang
Abstract:
The landscape of Opto mechatronics is viewed along the line of light vs. matter, photonics vs. semiconductors, and optics vs. mechatronics. Optomechatronics is redefined as the integration of light and matter from the atom, device, and system to the application. The markets and megatrends in Opto mechatronics are further listed. The author then focuses on Opto mechatronic technology in the semiconductor industry as an example and reviews the practical systems, characteristics, and trends. Opto mechatronics, together with photonics and semiconductor, will continue producing the computational and smart infrastructure required for the 4th industrial revolution.Keywords: photonics, semiconductor, optomechatronics, 4th industrial revolution
Procedia PDF Downloads 1324164 Effects of Nano-Coating on the Mechanical Behavior of Nanoporous Metals
Authors: Yunus Onur Yildiz, Mesut Kirca
Abstract:
In this study, mechanical properties of a nanoporous metal coated with a different metallic material are studied through a new atomistic modelling technique and molecular dynamics (MD) simulations. This new atomistic modelling technique is based on the Voronoi tessellation method for the purpose of geometric representation of the ligaments. With the proposed technique, atomistic models of nanoporous metals which have randomly oriented ligaments with non-uniform mass distribution along the ligament axis can be generated by enabling researchers to control both ligament length and diameter. Furthermore, by the utilization of this technique, atomistic models of coated nanoporous materials can be numerically obtained for further mechanical or thermal characterization. In general, this study consists of two stages. At the first stage, we use algorithms developed for generating atomic coordinates of the coated nanoporous material. In this regard, coordinates of randomly distributed points are determined in a controlled way to be employed in the establishment of the Voronoi tessellation, which results in randomly oriented and intersected line segments. Then, line segment representation of the Voronoi tessellation is transformed to atomic structure by a special process. This special process includes generation of non-uniform volumetric core region in which atoms can be generated based on a specific crystal structure. As an extension, this technique can be used for coating of nanoporous structures by creating another volumetric region encapsulating the core region in which atoms for the coating material are generated. The ultimate goal of the study at this stage is to generate atomic coordinates that can be employed in the MD simulations of randomly organized coated nanoporous structures. At the second stage of the study, mechanical behavior of the coated nanoporous models is investigated by examining deformation mechanisms through MD simulations. In this way, the effect of coating on the mechanical behavior of the selected material couple is investigated.Keywords: atomistic modelling, molecular dynamic, nanoporous metals, voronoi tessellation
Procedia PDF Downloads 2784163 Coagulase Negative Staphylococci: Phenotypic Characterization and Antimicrobial Susceptibility Pattern
Authors: Lok Bahadur Shrestha, Narayan Raj Bhattarai, Basudha Khanal
Abstract:
Introduction: Coagulase-negative staphylococci (CoNS) are the normal commensal of human skin and mucous membranes. The study was carried out to study the prevalence of CoNS among clinical isolates, to characterize them up to species level and to compare the three conventional methods for detection of biofilm formation. Objectives: to characterize the clinically significant coagulase-negative staphylococci up to species level, to compare the three phenotypic methods for the detection of biofilm formation and to study the antimicrobial susceptibility pattern of the isolates. Methods: CoNS isolates were obtained from various clinical samples during the period of 1 year. Characterization up to species level was done using biochemical test and study of biofilm formation was done by tube adherence, congo red agar, and tissue culture plate method. Results: Among 71 CoNS isolates, seven species were identified. S. epidermidis was the most common species followed by S. saprophyticus, S. haemolyticus. Antimicrobial susceptibility pattern of CoNS documented resistance of 90% to ampicillin. Resistance to cefoxitin and ceftriaxone was observed in 55% of the isolates. We detected biofilm formation in 71.8% of isolates. The sensitivity of tube adherence method was 82% while that of congo red agar method was 78%. Conclusion: Among 71 CoNS isolated, S. epidermidis was the most common isolates followed by S. saprophyticus and S. haemolyticus. Biofilm formation was detected in 71.8% of the isolates. All of the methods were effective at detecting biofilm-producing CoNS strains. Biofilm former strains are more resistant to antibiotics as compared to biofilm non-formers.Keywords: CoNS, congo red agar, bloodstream infections, foreign body-related infections, tissue culture plate
Procedia PDF Downloads 2004162 MR Imaging Spectrum of Intracranial Infections: An Experience of 100 Cases in a Tertiary Hospital in Northern India
Authors: Avik Banerjee, Kavita Saggar
Abstract:
Infections of the nervous system and adjacent structures are often life-threatening conditions. Despite the recent advances in neuroimaging evaluation, the diagnosis of unclear infectious CNS disease remains a challenge. Our aim is to evaluate the typical and atypical neuro-imaging features of the various routinely encountered CNS infected patients so as to form guidelines for their imaging recognition and differentiation from tumoral, vascular and other entities that warrant a different line of therapy.Keywords: central nervous system (CNS), Cerebro Spinal Fluid (Csf), Creutzfeldt Jakob Disease (CJD), progressive multifocal leukoencephalopathy (PML)
Procedia PDF Downloads 3024161 Design of a Novel Fractal Multiband Planar Antenna with a CPW-Feed
Authors: T. Benyetho, L. El Abdellaoui, J. Terhzaz, H. Bennis, N. Ababssi, A. Tajmouati, A. Tribak, M. Latrach
Abstract:
This work presents a new planar multiband antenna based on fractal geometry. This structure is optimized and validated into simulation by using CST-MW Studio. To feed this antenna we have used a CPW line which makes it easy to be incorporated with integrated circuits. The simulation results presents a good matching input impedance and radiation pattern in the GSM band at 900 MHz and ISM band at 2.4 GHz. The final structure is a dual band fractal antenna with 70 x 70 mm² as a total area by using an FR4 substrate.Keywords: Antenna, CPW, fractal, GSM, multiband
Procedia PDF Downloads 3894160 A Visualization Classification Method for Identifying the Decayed Citrus Fruit Infected by Fungi Based on Hyperspectral Imaging
Authors: Jiangbo Li, Wenqian Huang
Abstract:
Early detection of fungal infection in citrus fruit is one of the major problems in the postharvest commercialization process. The automatic and nondestructive detection of infected fruits is still a challenge for the citrus industry. At present, the visual inspection of rotten citrus fruits is commonly performed by workers through the ultraviolet induction fluorescence technology or manual sorting in citrus packinghouses to remove fruit subject with fungal infection. However, the former entails a number of problems because exposing people to this kind of lighting is potentially hazardous to human health, and the latter is very inefficient. Orange is used as a research object. This study would focus on this problem and proposed an effective method based on Vis-NIR hyperspectral imaging in the wavelength range of 400-1000 nm with a spectroscopic resolution of 2.8 nm. In this work, three normalization approaches are applied prior to analysis to reduce the effect of sample curvature on spectral profiles, and it is found that mean normalization was the most effective pretreatment for decreasing spectral variability due to curvature. Then, principal component analysis (PCA) was applied to a dataset composing of average spectra from decayed and normal tissue to reduce the dimensionality of data and observe the ability of Vis-NIR hyper-spectra to discriminate data from two classes. In this case, it was observed that normal and decayed spectra were separable along the resultant first principal component (PC1) axis. Subsequently, five wavelengths (band) centered at 577, 702, 751, 808, and 923 nm were selected as the characteristic wavelengths by analyzing the loadings of PC1. A multispectral combination image was generated based on five selected characteristic wavelength images. Based on the obtained multispectral combination image, the intensity slicing pseudocolor image processing method is used to generate a 2-D visual classification image that would enhance the contrast between normal and decayed tissue. Finally, an image segmentation algorithm for detection of decayed fruit was developed based on the pseudocolor image coupled with a simple thresholding method. For the investigated 238 independent set samples including infected fruits infected by Penicillium digitatum and normal fruits, the total success rate is 100% and 97.5%, respectively, and, the proposed algorithm also used to identify the orange infected by penicillium italicum with a 100% identification accuracy, indicating that the proposed multispectral algorithm here is an effective method and it is potential to be applied in citrus industry.Keywords: citrus fruit, early rotten, fungal infection, hyperspectral imaging
Procedia PDF Downloads 3044159 Digital Holographic Interferometric Microscopy for the Testing of Micro-Optics
Authors: Varun Kumar, Chandra Shakher
Abstract:
Micro-optical components such as microlenses and microlens array have numerous engineering and industrial applications for collimation of laser diodes, imaging devices for sensor system (CCD/CMOS, document copier machines etc.), for making beam homogeneous for high power lasers, a critical component in Shack-Hartmann sensor, fiber optic coupling and optical switching in communication technology. Also micro-optical components have become an alternative for applications where miniaturization, reduction of alignment and packaging cost are necessary. The compliance with high-quality standards in the manufacturing of micro-optical components is a precondition to be compatible on worldwide markets. Therefore, high demands are put on quality assurance. For quality assurance of these lenses, an economical measurement technique is needed. For cost and time reason, technique should be fast, simple (for production reason), and robust with high resolution. The technique should provide non contact, non-invasive and full field information about the shape of micro- optical component under test. The interferometric techniques are noncontact type and non invasive and provide full field information about the shape of the optical components. The conventional interferometric technique such as holographic interferometry or Mach-Zehnder interferometry is available for characterization of micro-lenses. However, these techniques need more experimental efforts and are also time consuming. Digital holography (DH) overcomes the above described problems. Digital holographic microscopy (DHM) allows one to extract both the amplitude and phase information of a wavefront transmitted through the transparent object (microlens or microlens array) from a single recorded digital hologram by using numerical methods. Also one can reconstruct the complex object wavefront at different depths due to numerical reconstruction. Digital holography provides axial resolution in nanometer range while lateral resolution is limited by diffraction and the size of the sensor. In this paper, Mach-Zehnder based digital holographic interferometric microscope (DHIM) system is used for the testing of transparent microlenses. The advantage of using the DHIM is that the distortions due to aberrations in the optical system are avoided by the interferometric comparison of reconstructed phase with and without the object (microlens array). In the experiment, first a digital hologram is recorded in the absence of sample (microlens array) as a reference hologram. Second hologram is recorded in the presence of microlens array. The presence of transparent microlens array will induce a phase change in the transmitted laser light. Complex amplitude of object wavefront in presence and absence of microlens array is reconstructed by using Fresnel reconstruction method. From the reconstructed complex amplitude, one can evaluate the phase of object wave in presence and absence of microlens array. Phase difference between the two states of object wave will provide the information about the optical path length change due to the shape of the microlens. By the knowledge of the value of the refractive index of microlens array material and air, the surface profile of microlens array is evaluated. The Sag of microlens and radius of curvature of microlens are evaluated and reported. The sag of microlens agrees well within the experimental limit as provided in the specification by the manufacturer.Keywords: micro-optics, microlens array, phase map, digital holographic interferometric microscopy
Procedia PDF Downloads 5014158 Horse Exposition to Coxiella burnetii in France: Antibody Dynamics in Serum, Environmental Risk Assessment and Potential Links with Symptomatology
Authors: Joulié Aurélien, Isabelle Desjardins, Elsa Jourdain, Sophie Pradier, Dufour Philippe, Elodie Rousset, Agnès Leblond
Abstract:
Q fever is a worldwide zoonosis caused by the bacterium Coxiella burnetii. It may infect a broad range of host species, including horses. Although the role of horses in C. burnetii infections remains unknown, their use as sentinel species may be interesting to better assess the human risk exposure. Thus, we aimed to assess the C. burnetii horse exposition in a French endemic area by describing the antibody dynamics detected in serum; investigating the pathogen circulation in the horse environment, and exploring potential links with unexplained syndromes. Blood samples were collected in 2015 and 2016 on 338 and 294 horses, respectively and analyzed by ELISA. Ticks collected on horses were identified, and C. burnetii DNA detection was performed by qPCR targeting the IS1111 gene. Blood sample analyses revealed a significant increase of the seroprevalence in horses between both years, from 11% [7.67; 14.43] to 25% [20.06; 29.94]. On 36 seropositive horses in 2015 and 73 in 2016, 5 and four respectively showed clinical signs compatible with a C. burnetii infection (i.e., chronic fever or respiratory disorders, unfitness and unexplained weight loss). DNA was detected in almost 40% of ticks (n=59/148 in 2015 and n=103/305 in 2016) and exceptionally in dust samples (n=2/46 in 2015 and n=1/14 in 2016) every year. The C. burnetti detection in both the serum and the environment of horses confirm their exposure to the bacterium. Therefore, consideration should be given to target a relevant sentinel species to better assess the Q fever surveillance depending on the epidemiological context.Keywords: ELISA, Q fever, qPCR, syndromic surveillance
Procedia PDF Downloads 2724157 Machine Learning Based Anomaly Detection in Hydraulic Units of Governors in Hydroelectric Power Plants
Authors: Mehmet Akif Bütüner, İlhan Koşalay
Abstract:
Hydroelectric power plants (HEPPs) are renewable energy power plants with the highest installed power in the world. While the control systems operating in these power plants ensure that the system operates at the desired operating point, it is also responsible for stopping the relevant unit safely in case of any malfunction. While these control systems are expected not to miss signals that require stopping, on the other hand, it is desired not to cause unnecessary stops. In traditional control systems including modern systems with SCADA infrastructure, alarm conditions to create warnings or trip conditions to put relevant unit out of service automatically are usually generated with predefined limits regardless of different operating conditions. This approach results in alarm/trip conditions to be less likely to detect minimal changes which may result in serious malfunction scenarios in near future. With the methods proposed in this research, routine behavior of the oil circulation of hydraulic governor of a HEPP will be modeled with machine learning methods using historical data obtained from SCADA system. Using the created model and recently gathered data from control system, oil pressure of hydraulic accumulators will be estimated. Comparison of this estimation with the measurements made and recorded instantly by the SCADA system will help to foresee failure before becoming worse and determine remaining useful life. By using model outputs, maintenance works will be made more planned, so that undesired stops are prevented, and in case of any malfunction, the system will be stopped or several alarms are triggered before the problem grows.Keywords: hydroelectric, governor, anomaly detection, machine learning, regression
Procedia PDF Downloads 994156 Oxalate Method for Assessing the Electrochemical Surface Area for Ni-Based Nanoelectrodes Used in Formaldehyde Sensing Applications
Authors: S. Trafela, X. Xua, K. Zuzek Rozmana
Abstract:
In this study, we used an accurate and precise method to measure the electrochemically active surface areas (Aecsa) of nickel electrodes. Calculated Aecsa is really important for the evaluation of an electro-catalyst’s activity in electrochemical reaction of different organic compounds. The method involves the electrochemical formation of Ni(OH)₂ and NiOOH in the presence of adsorbed oxalate in alkaline media. The studies were carried out using cyclic voltammetry with polycrystalline nickel as a reference material and electrodeposited nickel nanowires, homogeneous and heterogeneous nickel films. From cyclic voltammograms, the charge (Q) values for the formation of Ni(OH)₂ and NiOOH surface oxides were calculated under various conditions. At sufficiently fast potential scan rates (200 mV s⁻¹), the adsorbed oxalate limits the growth of the surface hydroxides to a monolayer. Although the Ni(OH)₂/NiOOH oxidation peak overlaps with the oxygen evolution reaction, in the reverse scan, the NiOOH/ Ni(OH)₂ reduction peak is well-separated from other electrochemical processes and can be easily integrated. The values of these integrals were used to correlate experimentally measured charge density with an electrochemically active surface layer. The Aecsa of the nickel nanowires, homogeneous and heterogeneous nickel films were calculated to be Aecsa-NiNWs = 4.2066 ± 0.0472 cm², Aecsa-homNi = 1.7175 ± 0.0503 cm² and Aecsa-hetNi = 2.1862 ± 0.0154 cm². These valuable results were expanded and used in electrochemical studies of formaldehyde oxidation. As mentioned nickel nanowires, heterogeneous and homogeneous nickel films were used as simple and efficient sensor for formaldehyde detection. For this purpose, electrodeposited nickel electrodes were modified in 0.1 mol L⁻¹ solution of KOH in order to expect electrochemical activity towards formaldehyde. The investigation of the electrochemical behavior of formaldehyde oxidation in 0.1 mol L⁻¹ NaOH solution at the surface of modified nickel nanowires, homogeneous and heterogeneous nickel films were carried out by means of electrochemical techniques such as cyclic voltammetric and chronoamperometric methods. From investigations of effect of different formaldehyde concentrations (from 0.001 to 0.1 mol L⁻¹) on electrochemical signal - current we provided catalysis mechanism of formaldehyde oxidation, detection limit and sensitivity of nickel electrodes. The results indicated that nickel electrodes participate directly in the electrocatalytic oxidation of formaldehyde. In the overall reaction, formaldehyde in alkaline aqueous solution exists predominantly in form of CH₂(OH)O⁻, which is oxidized to CH₂(O)O⁻. Taking into account the determined (Aecsa) values we have been able to calculate the sensitivities: 7 mA mol L⁻¹ cm⁻² for nickel nanowires, 3.5 mA mol L⁻¹ cm⁻² for heterogeneous nickel film and 2 mA mol L⁻¹ cm⁻² for heterogeneous nickel film. The detection limit was 0.2 mM for nickel nanowires, 0.5 mM for porous Ni film and 0.8 mM for homogeneous Ni film. All of these results make nickel electrodes capable for further applications.Keywords: electrochemically active surface areas, nickel electrodes, formaldehyde, electrocatalytic oxidation
Procedia PDF Downloads 1624155 Characterization of the Groundwater Aquifers at El Sadat City by Joint Inversion of VES and TEM Data
Authors: Usama Massoud, Abeer A. Kenawy, El-Said A. Ragab, Abbas M. Abbas, Heba M. El-Kosery
Abstract:
Vertical Electrical Sounding (VES) and Transient Electro Magnetic (TEM) survey have been applied for characterizing the groundwater aquifers at El Sadat industrial area. El-Sadat city is one of the most important industrial cities in Egypt. It has been constructed more than three decades ago at about 80 km northwest of Cairo along the Cairo–Alexandria desert road. Groundwater is the main source of water supplies required for domestic, municipal, and industrial activities in this area due to the lack of surface water sources. So, it is important to maintain this vital resource in order to sustain the development plans of this city. In this study, VES and TEM data were identically measured at 24 stations along three profiles trending NE–SW with the elongation of the study area. The measuring points were arranged in a grid like pattern with both inter-station spacing and line–line distance of about 2 km. After performing the necessary processing steps, the VES and TEM data sets were inverted individually to multi-layer models, followed by a joint inversion of both data sets. Joint inversion process has succeeded to overcome the model-equivalence problem encountered in the inversion of individual data set. Then, the joint models were used for the construction of a number of cross sections and contour maps showing the lateral and vertical distribution of the geo-electrical parameters in the subsurface medium. Interpretation of the obtained results and correlation with the available geological and hydrogeological information revealed TWO aquifer systems in the area. The shallow Pleistocene aquifer consists of sand and gravel saturated with fresh water and exhibits large thickness exceeding 200 m. The deep Pliocene aquifer is composed of clay and sand and shows low resistivity values. The water bearing layer of the Pleistocene aquifer and the upper surface of Pliocene aquifer are continuous and no structural features have cut this continuity through the investigated area.Keywords: El Sadat city, joint inversion, VES, TEM
Procedia PDF Downloads 3704154 Flexible Technologies of Granulated Complex Fertilizers
Authors: Andrey M. Norov, Denis A. Pagaleshkin, Pavel S. Fedotov, Viacheslav M. Kolpakov, Konstantin G. Gorbovskiy
Abstract:
The article focuses on the latest research and developments (R&D) aimed at the development of plants for production of complex phosphorus-containing fertilizers which are in line with the principles of the best available techniques (BAT). The advantages of the implemented technical solutions are given. The paper describes developed options of flexible technologies for schemes with DGD (drum granulator dryer) and for schemes with AG-DD (ammoniator-granulator and dryer drum).Keywords: ammoniator-granulator drier drum, phosphorus-containing fertilizer technology, PK, PKS and NPKS-fertilizers, WPA
Procedia PDF Downloads 2054153 Solar-Blind Ni-Schottky Photodetector Based on MOCVD Grown ZnGa₂O₄
Authors: Taslim Khan, Ray Hua Horng, Rajendra Singh
Abstract:
This study presents a comprehensive analysis of the design, fabrication, and performance evaluation of a solar-blind Schottky photodetector based on ZnGa₂O₄ grown via MOCVD, utilizing Ni/Au as the Schottky electrode. ZnGa₂O₄, with its wide bandgap of 5.2 eV, is well-suited for high-performance solar-blind photodetection applications. The photodetector demonstrates an impressive responsivity of 280 A/W, indicating its exceptional sensitivity within the solar-blind ultraviolet band. One of the device's notable attributes is its high rejection ratio of 10⁵, which effectively filters out unwanted background signals, enhancing its reliability in various environments. The photodetector also boasts a photodetector responsivity contrast ratio (PDCR) of 10⁷, showcasing its ability to detect even minor changes in incident UV light. Additionally, the device features an outstanding detective of 10¹⁸ Jones, underscoring its capability to precisely detect faint UV signals. It exhibits a fast response time of 80 ms and an ON/OFF ratio of 10⁵, making it suitable for real-time UV sensing applications. The noise-equivalent power (NEP) of 10^-17 W/Hz further highlights its efficiency in detecting low-intensity UV signals. The photodetector also achieves a high forward-to-backward current rejection ratio of 10⁶, ensuring high selectivity. Furthermore, the device maintains an extremely low dark current of approximately 0.1 pA. These findings position the ZnGa₂O₄-based Schottky photodetector as a leading candidate for solar-blind UV detection applications. It offers a compelling combination of sensitivity, selectivity, and operational efficiency, making it a highly promising tool for environments requiring precise and reliable UV detection.Keywords: wideband gap, solar blind photodetector, MOCVD, zinc gallate
Procedia PDF Downloads 41