Search results for: gradient boosting machine
1114 Evaluation of Computed Tomographic Anatomy of Respiratory System in Caspian Pond Turtle (Mauremys caspica)
Authors: Saghar Karimi, Mohammad Saeed Ahrari Khafi, Amin Abolhasani Foroughi
Abstract:
In recent decades, keeping exotic species as pet animals has become widespread. Turtles are exotic species from chelonians, which are interested by many people. Caspian pond and European pond turtles from Emydidea family are commonly kept as pets in Iran. Presence of the shell in turtles makes achievement to a comprehensive clinical examination impossible. Respiratory system is one of the most important structures to be examined completely. Presence of the air in the respiratory system makes radiography the first modality to think of; however, image quality would be affected by the shell. Computed tomography (CT) as a radiography-based and non-invasive technique provides cross-sectional scans with little superimposition. The aim of this study was to depict normal computed tomographic anatomy of the respiratory system in Caspian Pond Turtle. Five adult Caspian pond turtle were scanned using a 16-detector CT machine. Our results showed that computed tomography is able to well illustrated different parts of respiratory system in turtle and can be used for detecting abnormalities and disorders.Keywords: anatomy, computed tomography, respiratory system, turtle
Procedia PDF Downloads 2001113 Integrating Circular Economy Framework into Life Cycle Analysis: An Exploratory Study Applied to Geothermal Power Generation Technologies
Authors: Jingyi Li, Laurence Stamford, Alejandro Gallego-Schmid
Abstract:
Renewable electricity has become an indispensable contributor to achieving net-zero by the mid-century to tackle climate change. Unlike solar, wind, or hydro, geothermal was stagnant in its electricity production development for decades. However, with the significant breakthrough made in recent years, especially the implementation of enhanced geothermal systems (EGS) in various regions globally, geothermal electricity could play a pivotal role in alleviating greenhouse gas emissions. Life cycle assessment has been applied to analyze specific geothermal power generation technologies, which proposed suggestions to optimize its environmental performance. For instance, selecting a high heat gradient region enables a higher flow rate from the production well and extends the technical lifespan. Although such process-level improvements have been made, the significance of geothermal power generation technologies so far has not explicitly displayed its competitiveness on a broader horizon. Therefore, this review-based study integrates a circular economy framework into life cycle assessment, clarifying the underlying added values for geothermal power plants to complete the sustainability profile. The derived results have provided an enlarged platform to discuss geothermal power generation technologies: (i) recover the heat and electricity from the process to reduce the fossil fuel requirements; (ii) recycle the construction materials, such as copper, steel, and aluminum for future projects; (iii) extract the lithium ions from geothermal brine and make geothermal reservoir become a potential supplier of the lithium battery industry; (iv) repurpose the abandoned oil and gas wells to build geothermal power plants; (v) integrate geothermal energy with other available renewable energies (e.g., solar and wind) to provide heat and electricity as a hybrid system at different weather; (vi) rethink the fluids used in stimulation process (EGS only), replace water with CO2 to achieve negative emissions from the system. These results provided a new perspective to the researchers, investors, and policymakers to rethink the role of geothermal in the energy supply network.Keywords: climate, renewable energy, R strategies, sustainability
Procedia PDF Downloads 1351112 Artificial Intelligence in Management Simulators
Authors: Nuno Biga
Abstract:
Artificial Intelligence (AI) has the potential to transform management into several impactful ways. It allows machines to interpret information to find patterns in big data and learn from context analysis, optimize operations, make predictions sensitive to each specific situation and support data-driven decision making. The introduction of an 'artificial brain' in organization also enables learning through complex information and data provided by those who train it, namely its users. The "Assisted-BIGAMES" version of the Accident & Emergency (A&E) simulator introduces the concept of a "Virtual Assistant" (VA) sensitive to context, that provides users useful suggestions to pursue the following operations such as: a) to relocate workstations in order to shorten travelled distances and minimize the stress of those involved; b) to identify in real time existing bottleneck(s) in the operations system so that it is possible to quickly act upon them; c) to identify resources that should be polyvalent so that the system can be more efficient; d) to identify in which specific processes it may be advantageous to establish partnership with other teams; and e) to assess possible solutions based on the suggested KPIs allowing action monitoring to guide the (re)definition of future strategies. This paper is built on the BIGAMES© simulator and presents the conceptual AI model developed and demonstrated through a pilot project (BIG-AI). Each Virtual Assisted BIGAME is a management simulator developed by the author that guides operational and strategic decision making, providing users with useful information in the form of management recommendations that make it possible to predict the actual outcome of different alternative management strategic actions. The pilot project developed incorporates results from 12 editions of the BIGAME A&E that took place between 2017 and 2022 at AESE Business School, based on the compilation of data that allows establishing causal relationships between decisions taken and results obtained. The systemic analysis and interpretation of data is powered in the Assisted-BIGAMES through a computer application called "BIGAMES Virtual Assistant" (VA) that players can use during the Game. Each participant in the VA permanently asks himself about the decisions he should make during the game to win the competition. To this end, the role of the VA of each team consists in guiding the players to be more effective in their decision making, through presenting recommendations based on AI methods. It is important to note that the VA's suggestions for action can be accepted or rejected by the managers of each team, as they gain a better understanding of the issues along time, reflect on good practice and rely on their own experience, capability and knowledge to support their own decisions. Preliminary results show that the introduction of the VA provides a faster learning of the decision-making process. The facilitator designated as “Serious Game Controller” (SGC) is responsible for supporting the players with further analysis. The recommended actions by the SGC may differ or be similar to the ones previously provided by the VA, ensuring a higher degree of robustness in decision-making. Additionally, all the information should be jointly analyzed and assessed by each player, who are expected to add “Emotional Intelligence”, an essential component absent from the machine learning process.Keywords: artificial intelligence, gamification, key performance indicators, machine learning, management simulators, serious games, virtual assistant
Procedia PDF Downloads 1011111 Grid-Connected Doubly-Fed Induction Generator under Integral Backstepping Control Combined with High Gain Observer
Authors: Oluwaseun Simon Adekanle, M'hammed Guisser, Elhassane Abdelmounim, Mohamed Aboulfatah
Abstract:
In this paper, modeling and control of a grid connected 660KW Doubly-Fed Induction Generator wind turbine is presented. Stator flux orientation is used to realize active-reactive power decoupling to enable independent control of active and reactive power. The recursive Integral Backstepping technique is used to control generator speed to its optimum value and to obtain unity power factor. The controller is combined with High Gain Observer to estimate the mechanical torque of the machine. The most important advantage of this combination of High Gain Observer and the Integral Backstepping controller is the annulation of static error that may occur due to incertitude between the actual value of a parameter and its estimated value by the controller. Simulation results under Matlab/Simulink show the robustness of this control technique in presence of parameter variation.Keywords: doubly-fed induction generator, field orientation control, high gain observer, integral backstepping control
Procedia PDF Downloads 3591110 Shear Strength Characterization of Coal Mine Spoil in Very-High Dumps with Large Scale Direct Shear Testing
Authors: Leonie Bradfield, Stephen Fityus, John Simmons
Abstract:
The shearing behavior of current and planned coal mine spoil dumps up to 400m in height is studied using large-sample-high-stress direct shear tests performed on a range of spoils common to the coalfields of Eastern Australia. The motivation for the study is to address industry concerns that some constructed spoil dump heights ( > 350m) are exceeding the scale ( ≤ 120m) for which reliable design information exists, and because modern geotechnical laboratories are not equipped to test representative spoil specimens at field-scale stresses. For more than two decades, shear strength estimation for spoil dumps has been based on either infrequent, very small-scale tests where oversize particles are scalped to comply with device specimen size capacity such that the influence of prototype-sized particles on shear strength is not captured; or on published guidelines that provide linear shear strength envelopes derived from small-scale test data and verified in practice by slope performance of dumps up to 120m in height. To date, these published guidelines appear to have been reliable. However, in the field of rockfill dam design there is a broad acceptance of a curvilinear shear strength envelope, and if this is applicable to coal mine spoils, then these industry-accepted guidelines may overestimate the strength and stability of dumps at higher stress levels. The pressing need to rationally define the shearing behavior of more representative spoil specimens at field-scale stresses led to the successful design, construction and operation of a large direct shear machine (LDSM) and its subsequent application to provide reliable design information for current and planned very-high dumps. The LDSM can test at a much larger scale, in terms of combined specimen size (720mm x 720mm x 600mm) and stress (σn up to 4.6MPa), than has ever previously been achieved using a direct shear machine for geotechnical testing of rockfill. The results of an extensive LDSM testing program on a wide range of coal-mine spoils are compared to a published framework that widely accepted by the Australian coal mining industry as the standard for shear strength characterization of mine spoil. A critical outcome is that the LDSM data highlights several non-compliant spoils, and stress-dependent shearing behavior, for which the correct application of the published framework will not provide reliable shear strength parameters for design. Shear strength envelopes developed from the LDSM data are also compared with dam engineering knowledge, where failure envelopes of rockfills are curved in a concave-down manner. The LDSM data indicates that shear strength envelopes for coal-mine spoils abundant with rock fragments are not in fact curved and that the shape of the failure envelope is ultimately determined by the strength of rock fragments. Curvilinear failure envelopes were found to be appropriate for soil-like spoils containing minor or no rock fragments, or hard-soil aggregates.Keywords: coal mine, direct shear test, high dump, large scale, mine spoil, shear strength, spoil dump
Procedia PDF Downloads 1591109 Artificial Intelligence for Cloud Computing
Authors: Sandesh Achar
Abstract:
Artificial intelligence is being increasingly incorporated into many applications across various sectors such as health, education, security, and agriculture. Recently, there has been rapid development in cloud computing technology, resulting in AI’s implementation into cloud computing to enhance and optimize the technology service rendered. The deployment of AI in cloud-based applications has brought about autonomous computing, whereby systems achieve stated results without human intervention. Despite the amount of research into autonomous computing, work incorporating AI/ML into cloud computing to enhance its performance and resource allocation remain a fundamental challenge. This paper highlights different manifestations, roles, trends, and challenges related to AI-based cloud computing models. This work reviews and highlights excellent investigations and progress in the domain. Future directions are suggested for leveraging AI/ML in next-generation computing for emerging computing paradigms such as cloud environments. Adopting AI-based algorithms and techniques to increase operational efficiency, cost savings, automation, reducing energy consumption and solving complex cloud computing issues are the major findings outlined in this paper.Keywords: artificial intelligence, cloud computing, deep learning, machine learning, internet of things
Procedia PDF Downloads 1071108 The Analysis of Loss-of-Excitation Algorithm for Synchronous Generators
Authors: Pavle Dakić, Dimitrije Kotur, Zoran Stojanović
Abstract:
This paper presents the results of the study in which the excitation system fault of synchronous generator is simulated. In a case of excitation system fault (loss of field), distance relay is used to prevent further damage. Loss-of-field relay calculates complex impedance using measured voltage and current at the generator terminals. In order to obtain phasors from sampled measured values, discrete Fourier transform is used. All simulations are conducted using Matlab and Simulink software package. The analysis is conducted on the two machine system which supplies equivalent load. While simulating loss of excitation on one generator in different conditions (at idle operation, weakly loaded, and fully loaded), diagrams of active power, reactive power, and measured impedance are analyzed and monitored. Moreover, in the simulations, the effect of generator load on relay tripping time is investigated. In conclusion, the performed tests confirm that the fault in the excitation system can be detected by measuring the impedance.Keywords: loss-of-excitation, synchronous generator, distance protection, Fourier transformation
Procedia PDF Downloads 3291107 An Adaptive Virtual Desktop Service in Cloud Computing Platform
Authors: Shuen-Tai Wang, Hsi-Ya Chang
Abstract:
Cloud computing is becoming more and more matured over the last few years and consequently the demands for better cloud services is increasing rapidly. One of the research topics to improve cloud services is the desktop computing in virtualized environment. This paper aims at the development of an adaptive virtual desktop service in cloud computing platform based on our previous research on the virtualization technology. We implement cloud virtual desktop and application software streaming technology that make it possible for providing Virtual Desktop as a Service (VDaaS). Given the development of remote desktop virtualization, it allows shifting the user’s desktop from the traditional PC environment to the cloud-enabled environment, which is stored on a remote virtual machine rather than locally. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. Users no longer need to burden the platform maintenances and drastically reduces the overall cost of hardware and software licenses. Moreover, this flexible remote desktop service represents the next significant step to the mobile workplace, and it lets users access their desktop environments from virtually anywhere.Keywords: cloud computing, virtualization, virtual desktop, VDaaS
Procedia PDF Downloads 2841106 Enhancing Early Detection of Coronary Heart Disease Through Cloud-Based AI and Novel Simulation Techniques
Authors: Md. Abu Sufian, Robiqul Islam, Imam Hossain Shajid, Mahesh Hanumanthu, Jarasree Varadarajan, Md. Sipon Miah, Mingbo Niu
Abstract:
Coronary Heart Disease (CHD) remains a principal cause of global morbidity and mortality, characterized by atherosclerosis—the build-up of fatty deposits inside the arteries. The study introduces an innovative methodology that leverages cloud-based platforms like AWS Live Streaming and Artificial Intelligence (AI) to early detect and prevent CHD symptoms in web applications. By employing novel simulation processes and AI algorithms, this research aims to significantly mitigate the health and societal impacts of CHD. Methodology: This study introduces a novel simulation process alongside a multi-phased model development strategy. Initially, health-related data, including heart rate variability, blood pressure, lipid profiles, and ECG readings, were collected through user interactions with web-based applications as well as API Integration. The novel simulation process involved creating synthetic datasets that mimic early-stage CHD symptoms, allowing for the refinement and training of AI algorithms under controlled conditions without compromising patient privacy. AWS Live Streaming was utilized to capture real-time health data, which was then processed and analysed using advanced AI techniques. The novel aspect of our methodology lies in the simulation of CHD symptom progression, which provides a dynamic training environment for our AI models enhancing their predictive accuracy and robustness. Model Development: it developed a machine learning model trained on both real and simulated datasets. Incorporating a variety of algorithms including neural networks and ensemble learning model to identify early signs of CHD. The model's continuous learning mechanism allows it to evolve adapting to new data inputs and improving its predictive performance over time. Results and Findings: The deployment of our model yielded promising results. In the validation phase, it achieved an accuracy of 92% in predicting early CHD symptoms surpassing existing models. The precision and recall metrics stood at 89% and 91% respectively, indicating a high level of reliability in identifying at-risk individuals. These results underscore the effectiveness of combining live data streaming with AI in the early detection of CHD. Societal Implications: The implementation of cloud-based AI for CHD symptom detection represents a significant step forward in preventive healthcare. By facilitating early intervention, this approach has the potential to reduce the incidence of CHD-related complications, decrease healthcare costs, and improve patient outcomes. Moreover, the accessibility and scalability of cloud-based solutions democratize advanced health monitoring, making it available to a broader population. This study illustrates the transformative potential of integrating technology and healthcare, setting a new standard for the early detection and management of chronic diseases.Keywords: coronary heart disease, cloud-based ai, machine learning, novel simulation techniques, early detection, preventive healthcare
Procedia PDF Downloads 631105 Mechanical Properties of Enset Fibers Obtained from Different Breeds of Enset Plant
Authors: Diriba T. Balcha, Boris Kulig, Oliver Hensel, Eyassu Woldesenbet
Abstract:
Enset fiber is agricultural waste and available in a surplus amount in Ethiopia. However, the hypothesized variation in properties of this fiber due to diversity of its plant source breed, fiber position within plant stem and chemical treatment duration had not proven that its application for the development of composite products is problematic. Currently, limited data are known on the functional properties of the fiber as a potential functional fiber. Thus, an effort is made in this study to narrow the knowledge gaps by characterizing it. The experimental design was conducted using Design-Expert software and the tensile test was conducted on Enset fiber from 10 breeds: Dego, Dirbo, Gishera, Itine, Siskela, Neciho, Yesherkinke, Tuzuma, Ankogena, and Kucharkia. The effects of 5% Na-OH surface treatment duration and fiber location along and across the plant pseudostem was also investigated. The test result shows that the rupture stress variation is not significant among the fibers from 10 Enset breeds. However, strain variation is significant among the fibers from 10 Enset breeds that breed Dego fiber has the highest strain before failure. Surface treated fibers showed improved rupture strength and elastic modulus per 24 hours of treatment duration. Also, the result showed that chemical treatment can deteriorate the load-bearing capacity of the fiber. The raw fiber has the higher load-bearing capacity than the treated fiber. And, it was noted that both the rupture stress and strain increase in the top to bottom gradient, whereas there is no significant variation across the stem. Elastic modulus variation both along and across the stem was insignificant. The rupture stress, elastic modulus, and strain result of Enset fiber are 360.11 ± 181.86 MPa, 12.80 ± 6.85 GPa and 0.04 ± 0.02 mm/mm, respectively. These results show that Enset fiber is comparable to other natural fibers such as abaca, banana, and sisal fibers and can be used as alternatives natural fiber for composites application. Besides, the insignificant variation of properties among breeds and across stem is essential for all breeds and all leaf sheath of the Enset fiber plant for fiber extraction. The use of short natural fiber over the long is preferable to reduce the significant variation of properties along the stem or fiber direction. In conclusion, Enset fiber application for composite product design and development is mechanically feasible.Keywords: Agricultural waste, Chemical treatment, Fiber characteristics, Natural fiber
Procedia PDF Downloads 2341104 Quantum Chemical Investigation of Hydrogen Isotopes Adsorption on Metal Ion Functionalized Linde Type A and Faujasite Type Zeolites
Authors: Gayathri Devi V, Aravamudan Kannan, Amit Sircar
Abstract:
In the inner fuel cycle system of a nuclear fusion reactor, the Hydrogen Isotopes Removal System (HIRS) plays a pivoted role. It enables the effective extraction of the hydrogen isotopes from the breeder purge gas which helps to maintain the tritium breeding ratio and sustain the fusion reaction. One of the components of HIRS, Cryogenic Molecular Sieve Bed (CMSB) columns with zeolites adsorbents are considered for the physisorption of hydrogen isotopes at 1 bar and 77 K. Even though zeolites have good thermal stability and reduced activation properties making them ideal for use in nuclear reactor applications, their modest capacity for hydrogen isotopes adsorption is a cause of concern. In order to enhance the adsorbent capacity in an informed manner, it is helpful to understand the adsorption phenomena at the quantum electronic structure level. Physicochemical modifications of the adsorbent material enhances the adsorption capacity through the incorporation of active sites. This may be accomplished through the incorporation of suitable metal ions in the zeolite framework. In this work, molecular hydrogen isotopes adsorption on the active sites of functionalized zeolites are investigated in detail using Density Functional Theory (DFT) study. This involves the utilization of hybrid Generalized Gradient Approximation (GGA) with dispersion correction to account for the exchange and correlation functional of DFT. The electronic energies, adsorption enthalpy, adsorption free energy, Highest Occupied Molecular Orbital (HOMO), Lowest Unoccupied Molecular Orbital (LUMO) energies are computed on the stable 8T zeolite clusters as well as the periodic structure functionalized with different active sites. The characteristics of the dihydrogen bond with the active metal sites and the isotopic effects are also studied in detail. Validation studies with DFT will also be presented for adsorption of hydrogen on metal ion functionalized zeolites. The ab-inito screening analysis gave insights regarding the mechanism of hydrogen interaction with the zeolites under study and also the effect of the metal ion on adsorption. This detailed study provides guidelines for selection of the appropriate metal ions that may be incorporated in the zeolites framework for effective adsorption of hydrogen isotopes in the HIRS.Keywords: adsorption enthalpy, functionalized zeolites, hydrogen isotopes, nuclear fusion, physisorption
Procedia PDF Downloads 1791103 Anomaly Detection with ANN and SVM for Telemedicine Networks
Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos
Abstract:
In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.Keywords: anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines
Procedia PDF Downloads 3561102 Evolution of Fashion Design in the Era of High-Tech Culture
Authors: Galina Mihaleva, C. Koh
Abstract:
Fashion, like many other design fields, undergoes numerous evolutions throughout the ages. This paper aims to recognize and evaluate the significance of advance technology in fashion design and examine how it changes the role of modern fashion designers by modifying the creation process. It also touches on how modern culture is involved in such developments and how it affects fashion design in terms of conceptualizing and fabrication. The methodology used is through surveying the various examples of technological applications to fashion design and drawing parallels between what was achievable then and what is achievable now. By comparing case studies, existing fashion design examples and crafting method experimentations; we then spot patterns in which to predict the direction of future developments in the field. A breakdown on the elements of technology in fashion design helps us understand the driving force behind such a trend. The results from explorations in the paper have shown that there is an observed pattern of a distinct increase in interest and progress in the field of fashion technology, which leads to the birth of hybrid crafting methods. In conclusion, it is shown that as fashion technology continues to evolve, their role in clothing crafting becomes more prominent and grows far beyond the humble sewing machine.Keywords: fashion design, functional aesthetics, smart textiles, 3D printing
Procedia PDF Downloads 4081101 Prediction of Structural Response of Reinforced Concrete Buildings Using Artificial Intelligence
Authors: Juan Bojórquez, Henry E. Reyes, Edén Bojórquez, Alfredo Reyes-Salazar
Abstract:
This paper addressed the use of Artificial Intelligence to obtain the structural reliability of reinforced concrete buildings. For this purpose, artificial neuronal networks (ANN) are developed to predict seismic demand hazard curves. In order to have enough input-output data to train the ANN, a set of reinforced concrete buildings (low, mid, and high rise) are designed, then a probabilistic seismic hazard analysis is made to obtain the seismic demand hazard curves. The results are then used as input-output data to train the ANN in a feedforward backpropagation model. The predicted values of the seismic demand hazard curves found by the ANN are then compared. Finally, it is concluded that the computer time analysis is significantly lower and the predictions obtained from the ANN were accurate in comparison to the values obtained from the conventional methods.Keywords: structural reliability, seismic design, machine learning, artificial neural network, probabilistic seismic hazard analysis, seismic demand hazard curves
Procedia PDF Downloads 1951100 Improvement of GVPI Insulation System Characteristics by Curing Process Modification
Authors: M. Shadmand
Abstract:
The curing process of insulation system for electrical machines plays a determinative role for its durability and reliability. Polar structure of insulating resin molecules and used filler of insulation system can be taken as an occasion to leverage it to enhance overall characteristics of insulation system, mechanically and electrically. The curing process regime for insulating system plays an important role for its mechanical and electrical characteristics by arranging the polymerization of chain structure for resin. In this research, the effect of electrical field application on in-curing insulating system for Global Vacuum Pressurized Impregnation (GVPI) system for traction motor was considered by performing the dissipation factor, polarization and de-polarization current (PDC) and voltage endurance (aging) measurements on sample test objects. Outcome results depicted obvious improvement in mechanical strength of the insulation system as well as higher electrical characteristics with routing and long-time (aging) electrical tests. Coming together, polarization of insulation system during curing process would enhance the machine life time.Keywords: insulation system, GVPI, PDC, aging
Procedia PDF Downloads 2671099 The Use of Artificial Intelligence in the Prevention of Micro and Macrovascular Complications in Type Diabetic Patients in Low and Middle-Income Countries
Authors: Ebere Ellison Obisike, Justina N. Adalikwu-Obisike
Abstract:
Artificial intelligence (AI) is progressively transforming health and social care. With the rapid invention of various electronic devices, machine learning, and computing systems, the use of AI istraversing many health and social care practices. In this systematic review of journal and grey literature, this study explores how the applications of AI might promote the prevention of micro and macrovascular complications in type 1 diabetic patients. This review focuses on the use of a digitized blood glucose meter and the application of insulin pumps for the effective management of type 1 diabetes in low and middle-income countries. It is projected that the applications of AI may assist individuals with type 1 diabetes to monitor and control their blood glucose level and prevent the early onset of micro and macrovascular complications.Keywords: artificial intelligence, blood glucose meter, insulin pump, low and middle-income countries, micro and macrovascular complications, type 1 diabetes
Procedia PDF Downloads 1941098 Drug-Drug Interaction Prediction in Diabetes Mellitus
Authors: Rashini Maduka, C. R. Wijesinghe, A. R. Weerasinghe
Abstract:
Drug-drug interactions (DDIs) can happen when two or more drugs are taken together. Today DDIs have become a serious health issue due to adverse drug effects. In vivo and in vitro methods for identifying DDIs are time-consuming and costly. Therefore, in-silico-based approaches are preferred in DDI identification. Most machine learning models for DDI prediction are used chemical and biological drug properties as features. However, some drug features are not available and costly to extract. Therefore, it is better to make automatic feature engineering. Furthermore, people who have diabetes already suffer from other diseases and take more than one medicine together. Then adverse drug effects may happen to diabetic patients and cause unpleasant reactions in the body. In this study, we present a model with a graph convolutional autoencoder and a graph decoder using a dataset from DrugBank version 5.1.3. The main objective of the model is to identify unknown interactions between antidiabetic drugs and the drugs taken by diabetic patients for other diseases. We considered automatic feature engineering and used Known DDIs only as the input for the model. Our model has achieved 0.86 in AUC and 0.86 in AP.Keywords: drug-drug interaction prediction, graph embedding, graph convolutional networks, adverse drug effects
Procedia PDF Downloads 991097 An Efficient Design of Static Synchronous Series Compensator Based Fractional Order PID Controller Using Invasive Weed Optimization Algorithm
Authors: Abdelghani Choucha, Lakhdar Chaib, Salem Arif
Abstract:
This paper treated the problem of power system stability with the aid of Static Synchronous Series Compensator (SSSC) installed in the transmission line of single machine infinite bus (SMIB) power system. A fractional order PID (FOPID) controller has been applied as a robust controller for optimal SSSC design to control the power system characteristics. Additionally, the SSSC based FOPID parameters are smoothly tuned using Invasive Weed Optimization algorithm (IWO). To verify the strength of the proposed controller, SSSC based FOPID controller is validated in a wide range of operating condition and compared with the conventional scheme SSSC-POD controller. The main purpose of the proposed process is greatly enhanced the dynamic states of the tested system. Simulation results clearly prove the superiority and performance of the proposed controller design.Keywords: SSSC-FOPID, SSSC-POD, SMIB power system, invasive weed optimization algorithm
Procedia PDF Downloads 1871096 Effect of Process Variables of Wire Electrical Discharge Machining on Surface Roughness for AA-6063 by Response Surface Methodology
Authors: Deepak
Abstract:
WEDM is an amazingly potential electro-wire process for machining of hard metal compounds and metal grid composites without making contact. Wire electrical machining is a developing noncustomary machining process for machining hard to machine materials that are electrically conductive. It is an exceptionally exact, precise, and one of the most famous machining forms in nontraditional machining. WEDM has turned into the fundamental piece of many assembling process ventures, which require precision, variety, and accuracy. In the present examination, AA-6063 is utilized as a workpiece, and execution investigation is done to discover the critical control factors. Impact of different parameters like a pulse on time, pulse off time, servo voltage, peak current, water pressure, wire tension, wire feed upon surface hardness has been researched while machining on AA-6063. RSM has been utilized to advance the yield variable. A variety of execution measures with input factors was demonstrated by utilizing the response surface methodology.Keywords: AA-6063, response surface methodology, WEDM, surface roughness
Procedia PDF Downloads 1151095 Design of Self-Balancing Bicycle Using Object State Detection in Co-Ordinate System
Authors: Mamta M. Barapatre, V. N. Sahare
Abstract:
Since from long time two wheeled vehicle self-balancing has always been a back-breaking task for both human and robots. Leaning a bicycle driving is long time process and goes through building knowledge base for parameter decision making while balancing robots. In order to create this machine learning phase with embedded system the proposed system is designed. The system proposed aims to construct a bicycle automaton, power-driven by an electric motor, which could balance by itself and move along a specific path. This path could be wavy with bumps and varying widths. The key aim was to construct a cycle which self-balances itself by controlling its handle. In order to take a turn, the mass was transferred to the center. In order to maintain the stability, the bicycle bot automatically turned the handle and a turn. Some problems were faced by the team which were Speed, Steering mechanism through mass- distribution (leaning), Center of mass location and gyroscopic effect of its wheel. The idea proposed have potential applications in automation of transportation system and is most efficient.Keywords: gyroscope-flywheel, accelerometer, servomotor-controller, self stability concept
Procedia PDF Downloads 2761094 Hyperspectral Imagery for Tree Speciation and Carbon Mass Estimates
Authors: Jennifer Buz, Alvin Spivey
Abstract:
The most common greenhouse gas emitted through human activities, carbon dioxide (CO2), is naturally consumed by plants during photosynthesis. This process is actively being monetized by companies wishing to offset their carbon dioxide emissions. For example, companies are now able to purchase protections for vegetated land due-to-be clear cut or purchase barren land for reforestation. Therefore, by actively preventing the destruction/decay of plant matter or by introducing more plant matter (reforestation), a company can theoretically offset some of their emissions. One of the biggest issues in the carbon credit market is validating and verifying carbon offsets. There is a need for a system that can accurately and frequently ensure that the areas sold for carbon credits have the vegetation mass (and therefore for carbon offset capability) they claim. Traditional techniques for measuring vegetation mass and determining health are costly and require many person-hours. Orbital Sidekick offers an alternative approach that accurately quantifies carbon mass and assesses vegetation health through satellite hyperspectral imagery, a technique which enables us to remotely identify material composition (including plant species) and condition (e.g., health and growth stage). How much carbon a plant is capable of storing ultimately is tied to many factors, including material density (primarily species-dependent), plant size, and health (trees that are actively decaying are not effectively storing carbon). All of these factors are capable of being observed through satellite hyperspectral imagery. This abstract focuses on speciation. To build a species classification model, we matched pixels in our remote sensing imagery to plants on the ground for which we know the species. To accomplish this, we collaborated with the researchers at the Teakettle Experimental Forest. Our remote sensing data comes from our airborne “Kato” sensor, which flew over the study area and acquired hyperspectral imagery (400-2500 nm, 472 bands) at ~0.5 m/pixel resolution. Coverage of the entire teakettle experimental forest required capturing dozens of individual hyperspectral images. In order to combine these images into a mosaic, we accounted for potential variations of atmospheric conditions throughout the data collection. To do this, we ran an open source atmospheric correction routine called ISOFIT1 (Imaging Spectrometer Optiman FITting), which converted all of our remote sensing data from radiance to reflectance. A database of reflectance spectra for each of the tree species within the study area was acquired using the Teakettle stem map and the geo-referenced hyperspectral images. We found that a wide variety of machine learning classifiers were able to identify the species within our images with high (>95%) accuracy. For the most robust quantification of carbon mass and the best assessment of the health of a vegetated area, speciation is critical. Through the use of high resolution hyperspectral data, ground-truth databases, and complex analytical techniques, we are able to determine the species present within a pixel to a high degree of accuracy. These species identifications will feed directly into our carbon mass model.Keywords: hyperspectral, satellite, carbon, imagery, python, machine learning, speciation
Procedia PDF Downloads 1241093 Modified Design of Flyer with Reduced Weight for Use in Textile Machinery
Authors: Payal Patel
Abstract:
Textile machinery is one of the fastest evolving areas which has an application of mechanical engineering. The modular approach towards the processing right from the stage of cotton to the fabric, allows us to observe the result of each process on its input. Cost and space being the major constraints. The flyer is a component of roving machine, which is used as a part of spinning process. In the present work using the application of Hyper Works, the flyer arm has been modified which saves the material used for manufacturing the flyer. The size optimization of the flyer is carried out with the objective of reduction in weight under the constraints of standard operating conditions. The new design of the flyer is proposed and validated using the module of HyperWorks which is equally strong, but light weighted compared to the existing design. Dynamic balancing of the optimized model is carried out to align a principal inertia axis with the geometric axis of rotation. For the balanced geometry of flyer, air resistance is obtained theoretically and with Gambit and Fluent. Static analysis of the balanced geometry has been done to verify the constraint of operating condition. Comparison of weight, deflection, and factor of safety has been made for different aluminum alloys.Keywords: flyer, size optimization, textile, weight
Procedia PDF Downloads 2141092 Applying Massively Parallel Sequencing to Forensic Soil Bacterial Profiling
Authors: Hui Li, Xueying Zhao, Ke Ma, Yu Cao, Fan Yang, Qingwen Xu, Wenbin Liu
Abstract:
Soil can often link a person or item to a crime scene, which makes it a valuable evidence in forensic casework. Several techniques have been utilized in forensic soil discrimination in previous studies. Because soil contains a vast number of microbiomes, the analyse of soil microbiomes is expected to be a potential way to characterise soil evidence. In this study, we applied massively parallel sequencing (MPS) to soil bacterial profiling on the Ion Torrent Personal Genome Machine (PGM). Soils from different regions were collected repeatedly. V-region 3 and 4 of Bacterial 16S rRNA gene were detected by MPS. Operational taxonomic units (OTU, 97%) were used to analyse soil bacteria. Several bioinformatics methods (PCoA, NMDS, Metastats, LEfse, and Heatmap) were applied in bacterial profiles. Our results demonstrate that MPS can provide a more detailed picture of the soil microbiomes and the composition of soil bacterial components from different region was individualistic. In conclusion, the utility of soil bacterial profiling via MPS of the 16S rRNA gene has potential value in characterising soil evidences and associating them with their place of origin, which can play an important role in forensic science in the future.Keywords: bacterial profiling, forensic, massively parallel sequencing, soil evidence
Procedia PDF Downloads 5601091 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection
Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim
Abstract:
As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).Keywords: intrusion detection, supervised learning, traffic classification, computer networks
Procedia PDF Downloads 3481090 Determination of Elements and Minerals Present in Harmattan Dust Using Particle Induced X-Ray Emission (PIXE) and X-Ray Fluorescence (XRF) Across Selected Nigerian Stations
Authors: Aweda Francis Olatunbosun, Falaiye Oluwasesan Adeniran
Abstract:
The suspended harmattan dust was collected at seven different stations in Nigeria: Iwo (7º 63'N, 4º 19'E), Oyo (8º 12'N, 3º 42'E), Ilorin (8º36'N, 4º 35'E), Minna (9º36'N, 06º35'E), Abuja (09º 09'N, 07º 11'E), Lafia (08º 49'N, 07º50'E), and Jos (9º55'N, 8º55'E), which were analyzed to determine elements and minerals present in the sample using X-Ray Fluorescence (XRF), and Particle Induced X-Ray Emission (PIXE). The collected sample results show the elemental concentration of the sample in various forms across each station. Cr, Ce, Mo, Zr, Sr, V, Ti, K, As, Ni, Mn, Ca, Pb, Fe, Zn, and Cu were found in the sample using an XRF machine. The minerals discovered in the sample include, but are not limited to, Corundum [Al₂O₃], Periclase [MgO], Rutile [TiO₂], and Quartz [SiO₂] in various proportions. Furthermore, the results revealed the enrichment factor for Iwo (1.3998 μg/m³), Oyo (1.3998 μg/m³), Ilorin (1.79765 μg/m³), Minna (1.737325 μg/m³), Abuja (1.635425 μg/m³), Lafia (1.409695 μg/m³), and Jos (1.787075 μg/m³). The study concluded that the sample contains sixteen (16) elements and minerals in varying percentages and concentrations. It is therefore recommended that appropriate safety procedures be put in place to raise community awareness of the presence of elements in harmattan dust.Keywords: elements, minerals, harmattan dust, XRF, PIXE
Procedia PDF Downloads 3421089 Simulation of Pedestrian Service Time at Different Delay Times
Authors: Imran Badshah
Abstract:
Pedestrian service time reflects the performance of the facility, and it’s a key parameter to analyze the capability of facilities provided to serve pedestrians. The level of service of pedestrians (LOS) mainly depends on pedestrian time and safety. The pedestrian time utilized by taking a service is mainly influenced by the number of available services and the time utilized by each pedestrian in receiving a service; that is called a delay time. In this paper, we analyzed the simulated pedestrian service time with different delay times. A simulation is performed in AnyLogic by developing a model that reflects the real scenario of pedestrian services such as ticket machine gates at rail stations, airports, shopping malls, and cinema halls. The simulated pedestrian time is determined for various delay values. The simulated result shows how pedestrian time changes with the delay pattern. The histogram and time plot graph of a model gives the mean, maximum and minimum values of the pedestrian time. This study helps us to check the behavior of pedestrian time at various services such as subway stations, airports, shopping malls, and cinema halls.Keywords: agent-based simulation, anylogic model, pedestrian behavior, time delay
Procedia PDF Downloads 2081088 Fabrication of Al/Al2O3 Functionally Graded Composites via Centrifugal Method by Using a Polymeric Suspension
Authors: Majid Eslami
Abstract:
Functionally graded materials (FGMs) exhibit heterogeneous microstructures in which the composition and properties gently change in specified directions. The common type of FGMs consist of a metal in which ceramic particles are distributed with a graded concentration. There are many processing routes for FGMs. An important group of these methods is casting techniques (gravity or centrifugal). However, the main problem of casting molten metal slurry with dispersed ceramic particles is a destructive chemical reaction between these two phases which deteriorates the properties of the materials. In order to overcome this problem, in the present investigation a suspension of 6061 aluminum and alumina powders in a liquid polymer was used as the starting material and subjected to centrifugal force for making FGMs. The size rang of these powders was 45-63 and 106-125 μm. The volume percent of alumina in the Al/Al2O3 powder mixture was in the range of 5 to 20%. PMMA (Plexiglas) in different concentrations (20-50 g/lit) was dissolved in toluene and used as the suspension liquid. The glass mold contaning the suspension of Al/Al2O3 powders in the mentioned liquid was rotated at 1700 rpm for different times (4-40 min) while the arm length was kept constant (10 cm) for all the experiments. After curing the polymer, burning out the binder, cold pressing and sintering , cylindrical samples (φ=22 mm h=20 mm) were produced. The density of samples before and after sintering was quantified by Archimedes method. The results indicated that by using the same sized alumina and aluminum powders particles, FGM sample can be produced by rotation times exceeding 7 min. However, by using coarse alumina and fine alumina powders the sample exhibits step concentration. On the other hand, using fine alumina and coarse alumina results in a relatively uniform concentration of Al2O3 along the sample height. These results are attributed to the effects of size and density of different powders on the centrifugal force induced on the powders during rotation. The PMMA concentration and the vol.% of alumina in the suspension did not have any considerable effect on the distribution of alumina particles in the samples. The hardness profiles along the height of samples were affected by both the alumina vol.% and porosity content. The presence of alumina particles increased the hardness while increased porosity reduced the hardness. Therefore, the hardness values did not show the expected gradient in same sample. The sintering resulted in decreased porosity for all the samples investigated.Keywords: FGM, powder metallurgy, centrifugal method, polymeric suspension
Procedia PDF Downloads 2081087 Multimodal Convolutional Neural Network for Musical Instrument Recognition
Authors: Yagya Raj Pandeya, Joonwhoan Lee
Abstract:
The dynamic behavior of music and video makes it difficult to evaluate musical instrument playing in a video by computer system. Any television or film video clip with music information are rich sources for analyzing musical instruments using modern machine learning technologies. In this research, we integrate the audio and video information sources using convolutional neural network (CNN) and pass network learned features through recurrent neural network (RNN) to preserve the dynamic behaviors of audio and video. We use different pre-trained CNN for music and video feature extraction and then fine tune each model. The music network use 2D convolutional network and video network use 3D convolution (C3D). Finally, we concatenate each music and video feature by preserving the time varying features. The long short term memory (LSTM) network is used for long-term dynamic feature characterization and then use late fusion with generalized mean. The proposed network performs better performance to recognize the musical instrument using audio-video multimodal neural network.Keywords: multimodal, 3D convolution, music-video feature extraction, generalized mean
Procedia PDF Downloads 2131086 Knowledge Reactor: A Contextual Computing Work in Progress for Eldercare
Authors: Scott N. Gerard, Aliza Heching, Susann M. Keohane, Samuel S. Adams
Abstract:
The world-wide population of people over 60 years of age is growing rapidly. The explosion is placing increasingly onerous demands on individual families, multiple industries and entire countries. Current, human-intensive approaches to eldercare are not sustainable, but IoT and AI technologies can help. The Knowledge Reactor (KR) is a contextual, data fusion engine built to address this and other similar problems. It fuses and centralizes IoT and System of Record/Engagement data into a reactive knowledge graph. Cognitive applications and services are constructed with its multiagent architecture. The KR can scale-up and scaledown, because it exploits container-based, horizontally scalable services for graph store (JanusGraph) and pub-sub (Kafka) technologies. While the KR can be applied to many domains that require IoT and AI technologies, this paper describes how the KR specifically supports the challenging domain of cognitive eldercare. Rule- and machine learning-based analytics infer activities of daily living from IoT sensor readings. KR scalability, adaptability, flexibility and usability are demonstrated.Keywords: ambient sensing, AI, artificial intelligence, eldercare, IoT, internet of things, knowledge graph
Procedia PDF Downloads 1731085 Bag of Words Representation Based on Fusing Two Color Local Descriptors and Building Multiple Dictionaries
Authors: Fatma Abdedayem
Abstract:
We propose an extension to the famous method called Bag of words (BOW) which proved a successful role in the field of image categorization. Practically, this method based on representing image with visual words. In this work, firstly, we extract features from images using Spatial Pyramid Representation (SPR) and two dissimilar color descriptors which are opponent-SIFT and transformed-color-SIFT. Secondly, we fuse color local features by joining the two histograms coming from these descriptors. Thirdly, after collecting of all features, we generate multi-dictionaries coming from n random feature subsets that obtained by dividing all features into n random groups. Then, by using these dictionaries separately each image can be represented by n histograms which are lately concatenated horizontally and form the final histogram, that allows to combine Multiple Dictionaries (MDBoW). In the final step, in order to classify image we have applied Support Vector Machine (SVM) on the generated histograms. Experimentally, we have used two dissimilar image datasets in order to test our proposition: Caltech 256 and PASCAL VOC 2007.Keywords: bag of words (BOW), color descriptors, multi-dictionaries, MDBoW
Procedia PDF Downloads 296