Search results for: geotechnical methods
13101 Fractal Nature of Granular Mixtures of Different Concretes Formulated with Different Methods of Formulation
Authors: Fatima Achouri, Kaddour Chouicha, Abdelwahab Khatir
Abstract:
It is clear that concrete of quality must be made with selected materials chosen in optimum proportions that remain after implementation, a minimum of voids in the material produced. The different methods of formulations what we use, are based for the most part on a granular curve which describes an ‘optimal granularity’. Many authors have engaged in fundamental research on granular arrangements. A comparison of mathematical models reproducing these granular arrangements with experimental measurements of compactness have to verify that the minimum porosity P according to the following extent granular exactly a power law. So the best compactness in the finite medium are obtained with power laws, such as Furnas, Fuller or Talbot, each preferring a particular setting between 0.20 and 0.50. These considerations converge on the assumption that the optimal granularity Caquot approximates by a power law. By analogy, it can then be analyzed as a granular structure of fractal-type since the properties that characterize the internal similarity fractal objects are reflected also by a power law. Optimized mixtures may be described as a series of installments falling granular stuff to better the tank on a regular hierarchical distribution which would give at different scales, by cascading effects, the same structure to the mix. Likely this model may be appropriate for the entire extent of the size distribution of the components, since the cement particles (and silica fume) correctly deflocculated, micrometric dimensions, to chippings sometimes several tens of millimeters. As part of this research, the aim is to give an illustration of the application of fractal analysis to characterize the granular concrete mixtures optimized for a so-called fractal dimension where different concretes were studying that we proved a fractal structure of their granular mixtures regardless of the method of formulation or the type of concrete.Keywords: concrete formulation, fractal character, granular packing, method of formulation
Procedia PDF Downloads 26313100 Text Mining of Veterinary Forums for Epidemiological Surveillance Supplementation
Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves
Abstract:
Web scraping and text mining are popular computer science methods deployed by public health researchers to augment traditional epidemiological surveillance. However, within veterinary disease surveillance, such techniques are still in the early stages of development and have not yet been fully utilised. This study presents an exploration into the utility of incorporating internet-based data to better understand the smallholder farming communities within Scotland by using online text extraction and the subsequent mining of this data. Web scraping of the livestock fora was conducted in conjunction with text mining of the data in search of common themes, words, and topics found within the text. Results from bi-grams and topic modelling uncover four main topics of interest within the data pertaining to aspects of livestock husbandry: feeding, breeding, slaughter, and disposal. These topics were found amongst both the poultry and pig sub-forums. Topic modeling appears to be a useful method of unsupervised classification regarding this form of data, as it has produced clusters that relate to biosecurity and animal welfare. Internet data can be a very effective tool in aiding traditional veterinary surveillance methods, but the requirement for human validation of said data is crucial. This opens avenues of research via the incorporation of other dynamic social media data, namely Twitter and Facebook/Meta, in addition to time series analysis to highlight temporal patterns.Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, smallholding, social media, web scraping, sentiment analysis, geolocation, text mining, NLP
Procedia PDF Downloads 10413099 A Quantitative Study on the Effects of School Development on Character Development
Authors: Merve Gücen
Abstract:
One of the aims of education is to educate individuals who have embraced universal moral principles and transform universal moral principles into moral values. Character education aims to educate behaviors of individuals in their mental activities to transform moral principles into moral values in their lives. As the result of this education, individuals are expected to develop positive character traits and become morally indifferent individuals. What are the characteristics of the factors that influence character education at this stage? How should character education help individuals develop positive character traits? Which methods are more effective? These questions come to mind when studying character education. Our research was developed within the framework of these questions. The aim of our study is to provide the most effective use of the education factor that affects character. In this context, we tried to explain character definition, character development, character education and the factors affecting character education using qualitative research methods. At this stage, character education programs applied in various countries were examined and a character education program consisting of Islamic values was prepared and implemented in an International Imam Hatip High School in Istanbul. Our application was carried out with the collaboration of school and families. Various seminars were organized in the school and participation of families was ensured. In the last phase of our study, we worked with the students and their families on the effectiveness of the events held during the program. In this study, it was found that activities such as storytelling and theater in character education programs were effective in recognizing wrong behaviors in individuals. It was determined that our program had a positive effect on the quality of education. It was seen that applications of this educational program affected the behavior of the employees in the educational institution.Keywords: character development, family activities, values education, education program
Procedia PDF Downloads 17413098 Efficient Chess Board Representation: A Space-Efficient Protocol
Authors: Raghava Dhanya, Shashank S.
Abstract:
This paper delves into the intersection of chess and computer science, specifically focusing on the efficient representation of chess game states. We propose two methods: the Static Method and the Dynamic Method, each offering unique advantages in terms of space efficiency and computational complexity. The Static Method aims to represent the game state using a fixedlength encoding, allocating 192 bits to capture the positions of all pieces on the board. This method introduces a protocol for ordering and encoding piece positions, ensuring efficient storage and retrieval. However, it faces challenges in representing pieces no longer in play. In contrast, the Dynamic Method adapts to the evolving game state by dynamically adjusting the encoding length based on the number of pieces in play. By incorporating Alive Bits for each piece kind, this method achieves greater flexibility and space efficiency. Additionally, it includes provisions for encoding additional game state information such as castling rights and en passant squares. Our findings demonstrate that the Dynamic Method offers superior space efficiency compared to traditional Forsyth-Edwards Notation (FEN), particularly as the game progresses and pieces are captured. However, it comes with increased complexity in encoding and decoding processes. In conclusion, this study provides insights into optimizing the representation of chess game states, offering potential applications in chess engines, game databases, and artificial intelligence research. The proposed methods offer a balance between space efficiency and computational overhead, paving the way for further advancements in the field.Keywords: chess, optimisation, encoding, bit manipulation
Procedia PDF Downloads 5313097 Development and Validation of a Green Analytical Method for the Analysis of Daptomycin Injectable by Fourier-Transform Infrared Spectroscopy (FTIR)
Authors: Eliane G. Tótoli, Hérida Regina N. Salgado
Abstract:
Daptomycin is an important antimicrobial agent used in clinical practice nowadays, since it is very active against some Gram-positive bacteria that are particularly challenges for the medicine, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). The importance of environmental preservation has receiving special attention since last years. Considering the evident need to protect the natural environment and the introduction of strict quality requirements regarding analytical procedures used in pharmaceutical analysis, the industries must seek environmentally friendly alternatives in relation to the analytical methods and other processes that they follow in their routine. In view of these factors, green analytical chemistry is prevalent and encouraged nowadays. In this context, infrared spectroscopy stands out. This is a method that does not use organic solvents and, although it is formally accepted for the identification of individual compounds, also allows the quantitation of substances. Considering that there are few green analytical methods described in literature for the analysis of daptomycin, the aim of this work was the development and validation of a green analytical method for the quantification of this drug in lyophilized powder for injectable solution, by Fourier-transform infrared spectroscopy (FT-IR). Method: Translucent potassium bromide pellets containing predetermined amounts of the drug were prepared and subjected to spectrophotometric analysis in the mid-infrared region. After obtaining the infrared spectrum and with the assistance of the IR Solution software, quantitative analysis was carried out in the spectral region between 1575 and 1700 cm-1, related to a carbonyl band of the daptomycin molecule, and this band had its height analyzed in terms of absorbance. The method was validated according to ICH guidelines regarding linearity, precision (repeatability and intermediate precision), accuracy and robustness. Results and discussion: The method showed to be linear (r = 0.9999), precise (RSD% < 2.0), accurate and robust, over a concentration range from 0.2 to 0.6 mg/pellet. In addition, this technique does not use organic solvents, which is one great advantage over the most common analytical methods. This fact contributes to minimize the generation of organic solvent waste by the industry and thereby reduces the impact of its activities on the environment. Conclusion: The validated method proved to be adequate to quantify daptomycin in lyophilized powder for injectable solution and can be used for its routine analysis in quality control. In addition, the proposed method is environmentally friendly, which is in line with the global trend.Keywords: daptomycin, Fourier-transform infrared spectroscopy, green analytical chemistry, quality control, spectrometry in IR region
Procedia PDF Downloads 38213096 Shark Detection and Classification with Deep Learning
Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti
Abstract:
Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.Keywords: classification, data mining, Instagram, remote monitoring, sharks
Procedia PDF Downloads 12413095 Vision Zero for the Caribbean Using the Systemic Approach for Road Safety: A Case Study Analyzing Jamaican Road Crash Data (Ongoing)
Authors: Rachelle McFarlane
Abstract:
The Second Decade of Action Road Safety has begun with increased focus on countries who are disproportionately affected by road fatalities. Researchers highlight the low effectiveness of road safety campaigns in Latin America and the Caribbean (LAC) still reporting approximately 130,000 deaths and six million injuries annually. The regional fatality rate 19.2 per 100,000 with heightened concern for persons 15 to 44 years. In 2021, 483 Jamaicans died in 435 crashes, with 33% of these fatalities occurring during Covid-19 curfew hours. The study objective is to conduct a systemic safety review of Jamaican road crashes and provide a framework for its use in complementing traditional methods. The methodology involves the use of the FHWA Systemic Safety Project Selection Tool for analysis. This tool reviews systemwide data in order to identify risk factors across the network associated with severe and fatal crashes, rather that only hotspots. A total of 10,379 crashes with 745 fatalities and serious injuries were reviewed. Of the focus crash types listed, 50% of ‘Pedestrian Accidents’ resulted in fatalities and serious injuries, followed by 32% ‘Bicycle’, 24% ‘Single’ and 12% of ‘Head-on’. This study seeks to understand the associated risk factors with these priority crash types across the network and recommend cost-effective countermeasures across common sites. As we press towards Vision Zero, the inclusion of the systemic safety review method, complementing traditional methods, may create a wider impact in reducing road fatalities and serious injury by targeting issues across network with similarities; focus crash types and contributing factors.Keywords: systemic safety review, risk factors, road crashes, crash types
Procedia PDF Downloads 9413094 Decision Support System Based On GIS and MCDM to Identify Land Suitability for Agriculture
Authors: Abdelkader Mendas
Abstract:
The integration of MultiCriteria Decision Making (MCDM) approaches in a Geographical Information System (GIS) provides a powerful spatial decision support system which offers the opportunity to efficiently produce the land suitability maps for agriculture. Indeed, GIS is a powerful tool for analyzing spatial data and establishing a process for decision support. Because of their spatial aggregation functions, MCDM methods can facilitate decision making in situations where several solutions are available, various criteria have to be taken into account and decision-makers are in conflict. The parameters and the classification system used in this work are inspired from the FAO (Food and Agriculture Organization) approach dedicated to a sustainable agriculture. A spatial decision support system has been developed for establishing the land suitability map for agriculture. It incorporates the multicriteria analysis method ELECTRE Tri (ELimitation Et Choix Traduisant la REalité) in a GIS within the GIS program package environment. The main purpose of this research is to propose a conceptual and methodological framework for the combination of GIS and multicriteria methods in a single coherent system that takes into account the whole process from the acquisition of spatially referenced data to decision-making. In this context, a spatial decision support system for developing land suitability maps for agriculture has been developed. The algorithm of ELECTRE Tri is incorporated into a GIS environment and added to the other analysis functions of GIS. This approach has been tested on an area in Algeria. A land suitability map for durum wheat has been produced. Through the obtained results, it appears that ELECTRE Tri method, integrated into a GIS, is better suited to the problem of land suitability for agriculture. The coherence of the obtained maps confirms the system effectiveness.Keywords: multicriteria decision analysis, decision support system, geographical information system, land suitability for agriculture
Procedia PDF Downloads 64413093 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management
Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran
Abstract:
Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities
Procedia PDF Downloads 7713092 COVID-19 Detection from Computed Tomography Images Using UNet Segmentation, Region Extraction, and Classification Pipeline
Authors: Kenan Morani, Esra Kaya Ayana
Abstract:
This study aimed to develop a novel pipeline for COVID-19 detection using a large and rigorously annotated database of computed tomography (CT) images. The pipeline consists of UNet-based segmentation, lung extraction, and a classification part, with the addition of optional slice removal techniques following the segmentation part. In this work, a batch normalization was added to the original UNet model to produce lighter and better localization, which is then utilized to build a full pipeline for COVID-19 diagnosis. To evaluate the effectiveness of the proposed pipeline, various segmentation methods were compared in terms of their performance and complexity. The proposed segmentation method with batch normalization outperformed traditional methods and other alternatives, resulting in a higher dice score on a publicly available dataset. Moreover, at the slice level, the proposed pipeline demonstrated high validation accuracy, indicating the efficiency of predicting 2D slices. At the patient level, the full approach exhibited higher validation accuracy and macro F1 score compared to other alternatives, surpassing the baseline. The classification component of the proposed pipeline utilizes a convolutional neural network (CNN) to make final diagnosis decisions. The COV19-CT-DB dataset, which contains a large number of CT scans with various types of slices and rigorously annotated for COVID-19 detection, was utilized for classification. The proposed pipeline outperformed many other alternatives on the dataset.Keywords: classification, computed tomography, lung extraction, macro F1 score, UNet segmentation
Procedia PDF Downloads 13713091 Time Pressure and Its Effect at Tactical Level of Disaster Management
Authors: Agoston Restas
Abstract:
Introduction: In case of managing disasters decision makers can face many times such a special situation where any pre-sign of the drastically change is missing therefore the improvised decision making can be required. The complexity, ambiguity, uncertainty or the volatility of the situation can require many times the improvisation as decision making. It can be taken at any level of the management (strategic, operational and tactical) but at tactical level the main reason of the improvisation is surely time pressure. It is certainly the biggest problem during the management. Methods: The author used different tools and methods to achieve his goals; one of them was the study of the relevant literature, the other one was his own experience as a firefighting manager. Other results come from two surveys that are referred to; one of them was an essay analysis, the second one was a word association test, specially created for the research. Results and discussion: This article proves that, in certain situations, the multi-criteria, evaluating decision-making processes simply cannot be used or only in a limited manner. However, it can be seen that managers, directors or commanders are many times in situations that simply cannot be ignored when making decisions which should be made in a short time. The functional background of decisions made in a short time, their mechanism, which is different from the conventional, was studied lately and this special decision procedure was given the name recognition-primed decision. In the article, author illustrates the limits of the possibilities of analytical decision-making, presents the general operating mechanism of recognition-primed decision-making, elaborates on its special model relevant to managers at tactical level, as well as explore and systemize the factors that facilitate (catalyze) the processes with an example with fire managers.Keywords: decision making, disaster managers, recognition primed decision, model for making decisions in emergencies
Procedia PDF Downloads 26213090 Determination of Identification and Antibiotic Resistance Rates of Pseudomonas aeruginosa Strains from Various Clinical Specimens in a University Hospital for Two Years, 2013-2015
Authors: Recep Kesli, Gulsah Asik, Cengiz Demir, Onur Turkyilmaz
Abstract:
Objective: Pseudomonas aeruginosa (P. aeruginosa) is an important nosocomial pathogen which causes serious hospital infections and is resistant to many commonly used antibiotics. P. aeruginosa can develop resistance during therapy and also it is very resistant to disinfectant chemicals. It may be found in respiratory support devices in hospitals. In this study, the antibiotic resistance of P. aeruginosa strains isolated from bronchial aspiration samples was evaluated retrospectively. Methods: Between October 2013 and September 2015, a total of 318 P. aeruginosa were isolated from clinical samples obtained from various intensive care units and inpatient patients hospitalized at Afyon Kocatepe University, ANS Practice and Research Hospital. Isolated bacteria identified by using both the conventional methods and automated identification system-VITEK 2 (bioMerieux, Marcy l’etoile France). Antibacterial resistance tests were performed by using Kirby-Bauer disc (Oxoid, Hampshire, England) diffusion method following the recommendations of CLSI. Results: Antibiotic resistance rates of identified 318 P. aeruginosa strains were found as follows for tested antibiotics; 32 % amikacin, 42% gentamicin, 43% imipenem, 43% meropenem, 50% ciprofloxacin, 57% levofloxacin, 38% cefepime, 63% ceftazidime, and 85% piperacillin/tazobactam. Conclusion: Resistance profiles change according to years and provinces for P. aeruginosa, so these findings should be considered empirical treatment choices. In this study, the highest and lowest resistance rates found against piperacillin/tazobactam % 85, and amikacin %32.Keywords: Pseudomonas aeruginosa, antibiotic resistance rates, intensive care unit, Pseudomonas spp.
Procedia PDF Downloads 29313089 Simultaneous Bilateral Patella Tendon Rupture: A Systematic Review
Authors: André Rui Coelho Fernandes, Mariana Rufino, Divakar Hamal, Amr Sousa, Emma Fossett, Kamalpreet Cheema
Abstract:
Aim: A single patella tendon rupture is relatively uncommon, but a simultaneous bilateral event is a rare occurrence and has been scarcely reviewed in the literature. This review was carried out to analyse the existing literature on this event, with the aim of proposing a standardised approach to the diagnosis and management of this injury. Methods: A systematic review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Three independent reviewers conducted searches in PubMed, OvidSP for Medline and Embase, as well as Cochrane Library using the same search strategy. From a total of 183 studies, 45 were included, i.e. 90 patellas. Results: 46 patellas had a Type 1 Rupture equating to 51%, with Type 3 being the least common, with only 7 patellas sustaining this injury. The mean Insall-Salvio ratio for each knee was 1.62 (R) and 1.60 (L) Direct Primary Repair was the most common surgical technique compared to Tendon Reconstruction, with End to End and Transosseous techniques split almost equally. Brace immobilisation was preferred over cast, with a mean start to weight-bearing of 3.23 weeks post-op. Conclusions: Bilateral patellar tendon rupture is a rare injury that should be considered in patients with knee extensor mechanism disruption. The key limitation of this study was the low number of patients encompassed by the eligible literature. There is space for a higher level of evidence study, specifically regarding surgical treatment choice and methods, as well as post-operative management, which could potentially improve the outcomes in the management of this injury.Keywords: trauma and orthopaedic surgery, bilateral patella, tendon rupture, trauma
Procedia PDF Downloads 14113088 Endoscopic Treatment of Esophageal Injuries Using Vacuum Therapy
Authors: Murad Gasanov, Shagen Danielyan, Ali Gasanov, Yuri Teterin, Peter Yartsev
Abstract:
Background: Despite the advances made in modern surgery, the treatment of patients with esophageal injuries remains one of the most topical and complex issues. In recent years, high-technology minimally invasive methods, such as endoscopic vacuum therapy (EVT) in the treatment of esophageal injuries. The effectiveness of EVT has been sufficiently studied in case of failure of esophageal anastomoses, however the application of this method in case of mechanical esophageal injuries is limited by a small series of observations, indicating the necessity of additional study. Aim: The aim was to аnalyzed of own experience in the use of endoscopic vacuum therapy (EVT) in a comprehensive examination of patients with esophageal injuries. Methods: We analyzed the results of treatment of 24 patients with mechanical injuries of the esophagus for the period 2019-2021. Complex treatment of patients included the use of minimally invasive technologies, including percutaneous endoscopic gastrostomy (PEG), EVT and video-assisted thoracoscopic debridement. Evaluation of the effectiveness of treatment was carried out using multislice computed tomography (MSCT), endoscopy and laboratory tests. The duration of inpatient treatment and the duration of EVT, the number of system replacements, complications and mortality were taken into account. Result: EVT in patients with mechanical injuries of the esophagus allowed to achieve epithelialization of the esophageal defect in 21 patients (87.5%) in the form of linear scar on the site of perforation or pseudodiverticulum. Complications were noted in 4 patients (16.6%), including bleeding (2) and and esophageal stenosis in the perforation area (2). Lethal outcome was in one observation (4.2%). Conclusion. EVT may be the method of choice in complex treatment in patients with esophageal lesions.Keywords: esophagus injuries, damage to the esophagus, perforation of the esophagus, spontaneous perforation of the esophagus, mediastinitis, endoscopic vacuum therapy
Procedia PDF Downloads 11013087 Sustainability of Heritage Management in Aksum: Focus on Heritage Conservation and Interpretation
Authors: Gebrekiros Welegebriel Asfaw
Abstract:
The management of the fragile, unique and irreplaceable cultural heritage from different perspectives is becoming a major challenge as important elements of culture are vanishing throughout the globe. The major purpose of this study is to assess how the cultural heritages of Aksum are managed for their future sustainability from heritage conservation and interpretation perspectives. Descriptive type of research design inculcating both quantitative and qualitative research methods is employed. Primary quantitative data was collected from 189 respondents (19 professionals, 88 tourism service providers and 82 tourists) and interview was conducted with 33 targeted informants from heritage and related professions, security employees, local community, service providers and church representatives by applying probability and non probability sampling methods. Findings of the study reveal that the overall sustainable management status of the cultural heritage of Aksum is below average. It is found that the sustainability of cultural heritage management in Aksum is facing a lot of unfavorable factors like lack of long term planning, incompatible system of heritage administration, limited capacity and number of professionals, scant attention to community based heritage and tourism development, dirtiness and drainage problems, problems with stakeholder involvement and cooperation, lack of organized interpretation and presentation systems and others. So, re-organization of the management system, creating platform for coordination among stakeholders and developing appropriate interpretation system can be good remedies. Introducing community based heritage and tourism development concept is also recommendable for a long term win-win success in Aksum.Keywords: Aksum, conservation, interpretation, Sustainable Cultural Heritage Management
Procedia PDF Downloads 32713086 Investigating the Effects of Two Functional and Extra-Functional Stretching Methods of the Leg Muscles on a Selection of Kinematical and Kinetic Indicators in Women with Ankle Instability
Authors: Parvin Malhami
Abstract:
The purpose of the present study was to investigate the effects of two functional and functional stretching methods of the leg muscles on a selection of kinematical and kinetic indicators among women with ankle instability. Twenty-four persons were targeted and randomly divided into the functional exercise (8 persons), extra-functional exercise (8 persons) and control (8 persons) groups on the basis of inclusion and exclusion criteria. The experimental groups received stretching for eight weeks, 3 sessions each week, and the control group merely performed its daily activities. Then, in order to measure the pre -test and post -test variables, the dorsi flexion, Plantar flexion and ground reaction force were investigated and measured. Data were analyzed using paired T-test and independent T-tests at a significant level of 0.05. All statistical analyses were conducted using SPSS 25 software. The results of the T-test showed the significant effect of eight weeks of functional and Extra functional exercises on dorsi Flexion, Plantar Flexion and ground reaction force. (P≤ 0/001). The results of this study showed that the implementation of the functional and Extra-functional exercise protocol had an impact on the amount of Ankle dorsi Flexion and the Plantar felxion of women with an ankle instability. It was also found that muscle flexibility following the stretch ability of the gastrocnemius muscles facilitates the walking of the wrist installation by affecting the amount of wrist flexion, so these people are recommended to use the functional and extra-functional exercise protocol.Keywords: functional stretching, extra functional stretching, dorsi flexion, plantar flexion
Procedia PDF Downloads 7513085 Multi-Dimensional (Quantatative and Qualatative) Longitudinal Research Methods for Biomedical Research of Post-COVID-19 (“Long Covid”) Symptoms
Authors: Steven G. Sclan
Abstract:
Background: Since December 2019, the world has been afflicted by the spread of the Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), which is responsible for the condition referred to as Covid-19. The illness has had a cataclysmic impact on the political, social, economic, and overall well-being of the population of the entire globe. While Covid-19 has had a substantial universal fatality impact, it may have an even greater effect on the socioeconomic, medical well-being, and healthcare planning for remaining societies. Significance: As these numbers illustrate, many more persons survive the infection than die from it, and many of those patients have noted ongoing, persistent symptoms after successfully enduring the acute phase of the illness. Recognition and understanding of these symptoms are crucial for developing and arranging efficacious models of care for all patients (whether or not having been hospitalized) surviving acute covid illness and plagued by post-acute symptoms. Furthermore, regarding Covid infection in children (< 18 y/o), although it may be that Covid “+” children are not major vectors of infective transmission, it now appears that many more children than initially thought are carrying the virus without accompanying obvious symptomatic expression. It seems reasonable to wonder whether viral effects occur in children – those children who are Covid “+” and now asymptomatic – and if, over time, they might also experience similar symptoms. An even more significant question is whether Covid “+” asymptomatic children might manifest increased multiple health problems as they grow – i.e., developmental complications (e.g., physical/medical, metabolic, neurobehavioral, etc.) – in comparison to children who had been consistently Covid “ - ” during the pandemic. Topics Addressed and Theoretical Importance: This review is important because of the description of both quantitative and qualitative methods for clinical and biomedical research. Topics reviewed will consider the importance of well-designed, comprehensive (i.e., quantitative and qualitative methods) longitudinal studies of Post Covid-19 symptoms in both adults and children. Also reviewed will be general characteristics of longitudinal studies and a presentation of a model for a proposed study. Also discussed will be the benefit of longitudinal studies for the development of efficacious interventions and for the establishment of cogent, practical, and efficacious community healthcare service planning for post-acute covid patients. Conclusion: Results of multi-dimensional, longitudinal studies will have important theoretical implications. These studies will help to improve our understanding of the pathophysiology of long COVID and will aid in the identification of potential targets for treatment. Such studies can also provide valuable insights into the long-term impact of COVID-19 on public health and socioeconomics.Keywords: COVID-19, post-COVID-19, long COVID, longitudinal research, quantitative research, qualitative research
Procedia PDF Downloads 6213084 Improving Healthcare Readiness to Respond to Human Trafficking: A Case Study
Authors: Traci A. Hefner
Abstract:
Limited research exists on the readiness of emergency departments to respond to human trafficking (HT). The purpose of this qualitative case study was to improve the readiness of a Department of Emergency Medicine (ED), located in the southeast region of the United States, in identifying, assessing, and responding to trafficked individuals. The research objectives were to 1) provide an organizing framework to understand the ED’s readiness to respond to HT, using the Transtheoretical Model’s stages of change construct, 2) explain the readiness of the ED through a three-pronged contextual approach that included policies and procedures, patient data collection processes, and clinical practice methods, and 3) develop recommendations to respond to HT. Content analysis was used for document reviews and on-site observations, while thematic analysis identified themes of staff perceptions of the ED’s readiness in interviews of over 30 clinical and non-clinical healthcare professionals. Results demonstrated low levels of readiness to identify HT through the ED’s policies and procedures, data collection processes, and clinical practice methods. Clinical practice-related factors consisted of limited awareness of HT warning signs and low-levels of knowledge about community resources for possible HT referrals. Policy and practice recommendations to increase the ED’s readiness to respond to HT included: developing staff trainings across the ED system to enhance awareness of HT warning signs, incorporating HT into current policies and procedures for vulnerable patient populations as well as creating a HT protocol that addresses policies and procedures, screening tools, and community referrals.Keywords: emergency medicine, human trafficking, organizational assessment, stages of change
Procedia PDF Downloads 15113083 Numerical Iteration Method to Find New Formulas for Nonlinear Equations
Authors: Kholod Mohammad Abualnaja
Abstract:
A new algorithm is presented to find some new iterative methods for solving nonlinear equations F(x)=0 by using the variational iteration method. The efficiency of the considered method is illustrated by example. The results show that the proposed iteration technique, without linearization or small perturbation, is very effective and convenient.Keywords: variational iteration method, nonlinear equations, Lagrange multiplier, algorithms
Procedia PDF Downloads 54913082 Geophysical Approach in the Geological Characterization of a Dam Site: Case of the Chebabta-Dam, Meskiana, Oum El-Bouaghi
Authors: Benhammadi Hocine, Djamel Boubaya, Chaffai Hicham
Abstract:
Meskiana Area is characterized by a semi-arid climate where the water supply for irrigation and industry is not sufficient as the priority goes for domestic use. To meet the increasing population growth and development, the authorities have considered building a new water retaining structure on some major temporary water streams. For this purpose Chebabta site on Oued Meskiana was chosen as the future dam site. It is large enough to store the desired volume of water. This study comes to investigate the conditions of the site and the adequacy of the ground as a foundation for the projected dam. The conditions of the site include the geological structure and mainly the presence of discontinuities in the formation on which the dam will be built, the nature of the lithologies under the foundation and the future lake, and the presence of any hazard. This site characterization is usually carried out using different methods in order to highlight any underground buried problematic structure. In this context, the different geophysical technics remain the most used ones. Three geophysical methods were used in the case of the Chebabta dam site, namely, electric survey, seismic refraction, and tomography. The choice of the technics and the location of the scan line was made on the basis of the available geological data. In this sense, profiles have been established on both banks of Oued Meskiana. The obtained results have allowed a better characterization of the geological structure, defining the limit between the surface cover and the bedrock, which is, in other words, the limit between the weathered zone and the bedrock. Their respective thicknesses were also determined by seismic refraction and electrical resistivity sounding. However, the tomography imaging technic has succeeded in positioning a fault structure passing through the right bank of the wadi.Keywords: dam site, fault, geophysic, investigation, Meskiana
Procedia PDF Downloads 9313081 Defining Priority Areas for Biodiversity Conservation to Support for Zoning Protected Areas: A Case Study from Vietnam
Authors: Xuan Dinh Vu, Elmar Csaplovics
Abstract:
There has been an increasing need for methods to define priority areas for biodiversity conservation since the effectiveness of biodiversity conservation in protected areas largely depends on the availability of material resources. The identification of priority areas requires the integration of biodiversity data together with social data on human pressures and responses. However, the deficit of comprehensive data and reliable methods becomes a key challenge in zoning where the demand for conservation is most urgent and where the outcomes of conservation strategies can be maximized. In order to fill this gap, the study applied an environmental model Condition–Pressure–Response to suggest a set of criteria to identify priority areas for biodiversity conservation. Our empirical data has been compiled from 185 respondents, categorizing into three main groups: governmental administration, research institutions, and protected areas in Vietnam by using a well - designed questionnaire. Then, the Analytic Hierarchy Process (AHP) theory was used to identify the weight of all criteria. Our results have shown that priority level for biodiversity conservation could be identified by three main indicators: condition, pressure, and response with the value of the weight of 26%, 41%, and 33%, respectively. Based on the three indicators, 7 criteria and 15 sub-criteria were developed to support for defining priority areas for biodiversity conservation and zoning protected areas. In addition, our study also revealed that the groups of governmental administration and protected areas put a focus on the 'Pressure' indicator while the group of Research Institutions emphasized the importance of 'Response' indicator in the evaluation process. Our results provided recommendations to apply the developed criteria for identifying priority areas for biodiversity conservation in Vietnam.Keywords: biodiversity conservation, condition–pressure–response model, criteria, priority areas, protected areas
Procedia PDF Downloads 17613080 A Review of Research on Pre-training Technology for Natural Language Processing
Authors: Moquan Gong
Abstract:
In recent years, with the rapid development of deep learning, pre-training technology for natural language processing has made great progress. The early field of natural language processing has long used word vector methods such as Word2Vec to encode text. These word vector methods can also be regarded as static pre-training techniques. However, this context-free text representation brings very limited improvement to subsequent natural language processing tasks and cannot solve the problem of word polysemy. ELMo proposes a context-sensitive text representation method that can effectively handle polysemy problems. Since then, pre-training language models such as GPT and BERT have been proposed one after another. Among them, the BERT model has significantly improved its performance on many typical downstream tasks, greatly promoting the technological development in the field of natural language processing, and has since entered the field of natural language processing. The era of dynamic pre-training technology. Since then, a large number of pre-trained language models based on BERT and XLNet have continued to emerge, and pre-training technology has become an indispensable mainstream technology in the field of natural language processing. This article first gives an overview of pre-training technology and its development history, and introduces in detail the classic pre-training technology in the field of natural language processing, including early static pre-training technology and classic dynamic pre-training technology; and then briefly sorts out a series of enlightening technologies. Pre-training technology, including improved models based on BERT and XLNet; on this basis, analyze the problems faced by current pre-training technology research; finally, look forward to the future development trend of pre-training technology.Keywords: natural language processing, pre-training, language model, word vectors
Procedia PDF Downloads 6613079 Structure Clustering for Milestoning Applications of Complex Conformational Transitions
Authors: Amani Tahat, Serdal Kirmizialtin
Abstract:
Trajectory fragment methods such as Markov State Models (MSM), Milestoning (MS) and Transition Path sampling are the prime choice of extending the timescale of all atom Molecular Dynamics simulations. In these approaches, a set of structures that covers the accessible phase space has to be chosen a priori using cluster analysis. Structural clustering serves to partition the conformational state into natural subgroups based on their similarity, an essential statistical methodology that is used for analyzing numerous sets of empirical data produced by Molecular Dynamics (MD) simulations. Local transition kernel among these clusters later used to connect the metastable states using a Markovian kinetic model in MSM and a non-Markovian model in MS. The choice of clustering approach in constructing such kernel is crucial since the high dimensionality of the biomolecular structures might easily confuse the identification of clusters when using the traditional hierarchical clustering methodology. Of particular interest, in the case of MS where the milestones are very close to each other, accurate determination of the milestone identity of the trajectory becomes a challenging issue. Throughout this work we present two cluster analysis methods applied to the cis–trans isomerism of dinucleotide AA. The choice of nucleic acids to commonly used proteins to study the cluster analysis is two fold: i) the energy landscape is rugged; hence transitions are more complex, enabling a more realistic model to study conformational transitions, ii) Nucleic acids conformational space is high dimensional. A diverse set of internal coordinates is necessary to describe the metastable states in nucleic acids, posing a challenge in studying the conformational transitions. Herein, we need improved clustering methods that accurately identify the AA structure in its metastable states in a robust way for a wide range of confused data conditions. The single linkage approach of the hierarchical clustering available in GROMACS MD-package is the first clustering methodology applied to our data. Self Organizing Map (SOM) neural network, that also known as a Kohonen network, is the second data clustering methodology. The performance comparison of the neural network as well as hierarchical clustering method is studied by means of computing the mean first passage times for the cis-trans conformational rates. Our hope is that this study provides insight into the complexities and need in determining the appropriate clustering algorithm for kinetic analysis. Our results can improve the effectiveness of decisions based on clustering confused empirical data in studying conformational transitions in biomolecules.Keywords: milestoning, self organizing map, single linkage, structure clustering
Procedia PDF Downloads 22513078 Exploring the Role of Data Mining in Crime Classification: A Systematic Literature Review
Authors: Faisal Muhibuddin, Ani Dijah Rahajoe
Abstract:
This in-depth exploration, through a systematic literature review, scrutinizes the nuanced role of data mining in the classification of criminal activities. The research focuses on investigating various methodological aspects and recent developments in leveraging data mining techniques to enhance the effectiveness and precision of crime categorization. Commencing with an exposition of the foundational concepts of crime classification and its evolutionary dynamics, this study details the paradigm shift from conventional methods towards approaches supported by data mining, addressing the challenges and complexities inherent in the modern crime landscape. Specifically, the research delves into various data mining techniques, including K-means clustering, Naïve Bayes, K-nearest neighbour, and clustering methods. A comprehensive review of the strengths and limitations of each technique provides insights into their respective contributions to improving crime classification models. The integration of diverse data sources takes centre stage in this research. A detailed analysis explores how the amalgamation of structured data (such as criminal records) and unstructured data (such as social media) can offer a holistic understanding of crime, enriching classification models with more profound insights. Furthermore, the study explores the temporal implications in crime classification, emphasizing the significance of considering temporal factors to comprehend long-term trends and seasonality. The availability of real-time data is also elucidated as a crucial element in enhancing responsiveness and accuracy in crime classification.Keywords: data mining, classification algorithm, naïve bayes, k-means clustering, k-nearest neigbhor, crime, data analysis, sistematic literature review
Procedia PDF Downloads 7513077 Characterization and Degradation of 3D Printed Polycaprolactone-Freeze Dried Bone Matrix Constructs for Use in Critical Sized Bone Defects
Authors: Samantha Meyr, Eman Mirdamadi, Martha Wang, Tao Lowe, Ryan Smith, Quinn Burke
Abstract:
Critical-sized bone defects (CSD) treatment options remain a major clinical orthopedic challenge. They are uniquely contoured diseased or damaged bones and can be defined as those that will not heal spontaneously and require surgical intervention. Autografts are the current gold standard CSD treatment, which are histocompatible and provoke a minimal immunogenic response; however, they can cause donor site morbidity and will not suffice for the size required for replacement. As an alternative to traditional surgical methods, bone tissue engineering will be implemented via 3D printing methods. A freeze-dried bone matrix (FDBM) is a type of graft material available but will only function as desired when in the presence of bone growth factors. Polycaprolactone (PCL) is a known biodegradable material with good biocompatibility that has been proven manageable in 3D printing as a medical device. A 3D-extrusion printing strategy is introduced to print these materials into scaffolds for bone grafting purposes, which could be more accessible and rapid than the current standard. Mechanical, thermal, cytotoxic, and physical properties were investigated throughout a degradation period of 6 months using fibroblasts and dental pulp stem cells. PCL-FDBM scaffolds were successfully printed with high print fidelity in their respective pore sizes and allograft content. Additionally, we have created a method for evaluating PCL using differential scanning calorimetry (DSC) and have evaluated PCL degradation over roughly 6 months.Keywords: 3D printing, bone tissue engineering, cytotoxicity, degradation, scaffolds
Procedia PDF Downloads 11113076 Electrochemical Coordination Polymers of Copper(II) Synthesis by Using Rigid and Felexible Ligands
Authors: P. Mirahmadpour, M. H. Banitaba, D. Nematollahi
Abstract:
The chemistry of coordination polymers in recent years has grown exponentially not only because of their interesting architectures but also due to their various technical applications in many fields including ion exchange, chemical catalysis, small molecule separations, and drug release. The use of bridging ligands for the controlled self-assembly of one, two or three dimensional metallo-supramolecular species is the subject of serious study in last decade. Numerous different synthetic methods have been offered for the preparation of coordination polymers such as (a) diffusion from the gas phase, (b) slow diffusion of the reactants into a polymeric matrix, (c) evaporation of the solvent at ambient or reduced temperatures, (d) temperature controlled cooling, (e) precipitation or recrystallisation from a mixture of solvents and (f) hydrothermal synthesis. The electrosynthetic process suggested several advantages over conventional approaches. A general advantage of electrochemical synthesis is that it allows synthesis under milder conditions than typical solvothermal or microwave synthesis. In this work we have introduced a simple electrochemical method for growing metal coordination polymers based on copper with a flexible 2,2’-thiodiacetic acid (TDA) and rigid 1,2,4,5-benzenetetracarboxylate (BTC) ligands. The structure of coordination polymers were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), elemental analysis, thermal gravimetric (TG) and differential thermal analyses (DTA). The single-crystal X-ray diffraction analysis revealed that different conformations of the ligands and different coordination modes of the carboxylate group as well as different coordination geometries of the copper atoms. Electrochemical synthesis of coordination polymers has different advantages such as faster synthesis at lower temperature in compare with conventional chemical methods and crystallization of desired materials in a single synthetic step.Keywords: 1, 2, 4, 5-benzenetetracarboxylate, coordination polymer, copper, 2, 2’-thiodiacetic acid
Procedia PDF Downloads 21213075 Free Radical Scavenging, Antioxidant Activity, Phenolic, Alkaloids Contents and Inhibited Properties against α-Amylase and Invertase Enzymes of Stem Bark Extracts Coula edulis B
Authors: Eric Beyegue, Boris Azantza, Judith Laure Ngondi, Julius E. Oben
Abstract:
Background: It is clearly that phytochemical constituents of plants in relation exhibit free radical scavenging, antioxidant and glycosylation properties. This study investigated the in vitro antioxidant and free radical scavenging, inhibited activities against α-amylase and invertase enzymes of stem bark extracts C. edulis (Olacaceae). Methods: Four extracts (hexane, dichloromethane, ethanol and aqueous) from the barks of C. edulis were used in this study. Colorimetric in vitro methods were using for evaluate free radical scavenging activity DPPH, ABTS, NO, OH, antioxidant capacity, glycosylation activity, inhibition of α-amylase and invertase activities, phenolic, flavonoid and alkaloid contents. Results: C. edulis extracts (CEE) had a higher scavenging potential on the 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl (OH), nitrite oxide (NO), 2, 2-azinobis (3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radicals and glucose scavenging with the IC50 varied between 41.95 and 36694.43 µg/ml depending on the solvent of extraction. The ethanol extract of C. edulis stem bark (CE EtOH) showed the highest polyphenolic (289.10 + 30.32), flavonoid (1.12 + 0.09) and alkaloids (18.47 + 0.16) content. All the tested extracts demonstrated a relative high inhibition potential against α-amylase and invertase digestive enzymes activities. Conclusion: This study suggests that CEE exhibited higher antioxidant potential and significant inhibition potential against digestive enzymes.Keywords: Coula edulis, antioxidant, scavenging activity, amylase, invertase
Procedia PDF Downloads 35413074 Study of Methods to Reduce Carbon Emissions in Structural Engineering
Authors: Richard Krijnen, Alan Wang
Abstract:
As the world is aiming to reach net zero around 2050, structural engineers must begin finding solutions to contribute to this global initiative. Approximately 40% of global energy-related emissions are due to buildings and construction, and a building’s structure accounts for 50% of its embodied carbon, which indicates that structural engineers are key contributors to finding solutions to reach carbon neutrality. However, this task presents a multifaceted challenge as structural engineers must navigate technical, safety and economic considerations while striving to reduce emissions. This study reviews several options and considerations to reduce carbon emissions that structural engineers can use in their future designs without compromising the structural integrity of their proposed design. Low-carbon structures should adhere to several guiding principles. Firstly, prioritize the selection of materials with low carbon footprints, such as recyclable or alternative materials. Optimization of design and engineering methods is crucial to minimize material usage. Encouraging the use of recyclable and renewable materials reduces dependency on natural resources. Energy efficiency is another key consideration involving the design of structures to minimize energy consumption across various systems. Choosing local materials and minimizing transportation distances help in reducing carbon emissions during transport. Innovation, such as pre-fabrication and modular design or low-carbon concrete, can further cut down carbon emissions during manufacturing and construction. Collaboration among stakeholders and sharing experiences and resources are essential for advancing the development and application of low-carbon structures. This paper identifies current available tools and solutions to reduce embodied carbon in structures, which can be used as part of daily structural engineering practice.Keywords: efficient structural design, embodied carbon, low-carbon material, sustainable structural design
Procedia PDF Downloads 4713073 The Development of Traffic Devices Using Natural Rubber in Thailand
Authors: Weeradej Cheewapattananuwong, Keeree Srivichian, Godchamon Somchai, Wasin Phusanong, Nontawat Yoddamnern
Abstract:
Natural rubber used for traffic devices in Thailand has been developed and researched for several years. When compared with Dry Rubber Content (DRC), the quality of Rib Smoked Sheet (RSS) is better. However, the cost of admixtures, especially CaCO₃ and sulphur, is higher than the cost of RSS itself. In this research, Flexible Guideposts and Rubber Fender Barriers (RFB) are taken into consideration. In case of flexible guideposts, the materials used are both RSS and DRC60%, but for RFB, only RSS is used due to the controlled performance tests. The objective of flexible guideposts and RFB is to decrease a number of accidents, fatal rates, and serious injuries. Functions of both devices are to save road users and vehicles as well as to absorb impact forces from vehicles so as to decrease of serious road accidents. This leads to the mitigation methods to remedy the injury of motorists, form severity to moderate one. The solution is to find the best practice of traffic devices using natural rubber under the engineering concepts. In addition, the performances of materials, such as tensile strength and durability, are calculated for the modulus of elasticity and properties. In the laboratory, the simulation of crashes, finite element of materials, LRFD, and concrete technology methods are taken into account. After calculation, the trials' compositions of materials are mixed and tested in the laboratory. The tensile test, compressive test, and weathering or durability test are followed and based on ASTM. Furthermore, the Cycle-Repetition Test of Flexible Guideposts will be taken into consideration. The final decision is to fabricate all materials and have a real test section in the field. In RFB test, there will be 13 crash tests, 7 Pickup Truck tests, and 6 Motorcycle Tests. The test of vehicular crashes happens for the first time in Thailand, applying the trial and error methods; for example, the road crash test under the standard of NCHRP-TL3 (100 kph) is changed to the MASH 2016. This is owing to the fact that MASH 2016 is better than NCHRP in terms of speed, types, and weight of vehicles and the angle of crash. In the processes of MASH, Test Level 6 (TL-6), which is composed of 2,270 kg Pickup Truck, 100 kph, and 25 degree of crash-angle is selected. The final test for real crash will be done, and the whole system will be evaluated again in Korea. The researchers hope that the number of road accidents will decrease, and Thailand will be no more in the top tenth ranking of road accidents in the world.Keywords: LRFD, load and resistance factor design, ASTM, american society for testing and materials, NCHRP, national cooperation highway research program, MASH, manual for assessing safety hardware
Procedia PDF Downloads 13213072 Determination of the Informativeness of Instrumental Research Methods in Assessing Risk Factors for the Development of Renal Dysfunction in Elderly Patients with Chronic Ischemic Heart Disease
Authors: Aksana N. Popel, Volha A. Sujayeva, Olga V. Kоshlataja, Irеna S. Karpava
Abstract:
Introduction: It is a known fact that cardiovascular pathology and its complications cause a more severe course and worse prognosis in patients with comorbid kidney pathology. Chronic kidney disease (CKD) is associated with inflammation, endothelial dysfunction, and increased activity of the sympathoadrenal system. This circumstance increases the risk of cardiovascular diseases and the progression of kidney pathology. The above determines the need to identify cardiorenal changes at early stages to reduce the risks of cardiovascular complications and the progression of CKD. Objective: To identify risk factors (RF) for the development of CKD in elderly patients with chronic ischemic heart disease (CIHD). Methods: The study included 64 patients (40 women and 24 men) with a mean age of 74.4±4.5 years with coronary heart disease, without a history of structural kidney pathology and CKD. All patients underwent transthoracic echocardiography (TTE) and kidney ultrasound (KU) using GE Vivid 9 equipment (GE HealthCare, USA), and cardiac computed tomography (CCT) using Siemens Somatom Force equipment (Siemens Healthineers AG, Germany) in 3 months and in 1 year. Data obtained were analyzed using multiple regression analysis and nonparametric Mann-Whitney test. Statistical analysis was performed using the STATISTICA 12.0 program (StatSoft Inc.). Results: Initially, CKD was not diagnosed in all patients. In 3 months, CKD was diagnosed: stage C1 had 11 people (18%), stage C2 had 4 people (6%), stage C3A had 11 people (18%), stage C3B had 2 people (3%). After 1 year, CKD was diagnosed: stage C1 had 22 people (35%), stage C2 had 5 people (8%), stage C3A had 17 people (27%), stage C3B had 10 people (15%). In 3 months, statistically significant (p<0.05) risk factors were: 1) according to TTE: mitral peak E-wave velocity (U=678, p=0.039), mitral E-velocity DT (U=514, p=0.0168), mitral peak A-wave velocity (U=682, p=0.013). In 1 year, statistically significant (p<0.05) risk factors were: according to TTE: left ventricular (LV) end-systolic volume in B-mode (U=134, p=0.006), LV end-diastolic volume in B-mode (U=177, p=0.04), LV ejection fraction in B-mode (U=135, p=0.006), left atrial volume (U=178, p=0.021), LV hypertrophy (U=294, p=0.04), mitral valve (MV) fibrosis (U=328, p=0.01); according CCT: epicardial fat thickness (EFT) on the right ventricle (U=8, p=0.015); according to KU: interlobar renal artery resistance index (RI) (U=224, p=0.02), segmental renal artery RI (U=409, p=0.016). Conclusions: Both TTE and KU are very informative methods to determine the additional risk factors of CKD development and progression. The most informative risk factors were LV global systolic and diastolic functions, LV and LA volumes. LV hypertrophy, MV fibrosis, interlobar renal artery and segmental renal artery RIs, EFT.Keywords: chronic kidney disease, ischemic heart disease, prognosis, risk factors
Procedia PDF Downloads 30