Search results for: control and optimization techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19097

Search results for: control and optimization techniques

16547 A QoE-driven Cross-layer Resource Allocation Scheme for High Traffic Service over Open Wireless Network Downlink

Authors: Liya Shan, Qing Liao, Qinyue Hu, Shantao Jiang, Tao Wang

Abstract:

In this paper, a Quality of Experience (QoE)-driven cross-layer resource allocation scheme for high traffic service over Open Wireless Network (OWN) downlink is proposed, and the related problem about the users in the whole cell including the users in overlap region of different cells has been solved.A method, in which assess models of the BestEffort service and the no-reference assess algorithm for video service are adopted, to calculate the Mean Opinion Score (MOS) value for high traffic service has been introduced. The cross-layer architecture considers the parameters in application layer, media access control layer and physical layer jointly. Based on this architecture and the MOS value, the Binary Constrained Particle Swarm Optimization (B_CPSO) algorithm is used to solve the cross-layer resource allocation problem. In addition,simulationresults show that the proposed scheme significantly outperforms other schemes in terms of maximizing average users’ MOS value for the whole system as well as maintaining fairness among users.

Keywords: high traffic service, cross-layer resource allocation, QoE, B_CPSO, OWN

Procedia PDF Downloads 541
16546 Investigation of the Density and Control Methods of Weed Species That Are a Problem in Broad Bean (Vicia Faba L.) Cultivation

Authors: Tamer Üstüner, Sena Nur Arı

Abstract:

This study was carried out at Kahramanmaras Sutcu Imam University, trial area Faculty of Agriculture and ÜSKİM laboratory in 2022. Many problems are encountered in broad bean (Vicia faba L.) cultivation. One of these problems is weeds. In this study, weed species, families, and densities of weeds that are a problem in broad beans were determined. A total of 47 weed species belonging to 20 different families were determined in the experimental area. Weed species found very densely in control 1 plots of the broad bean experimental area were Sinapis arvensis 11.50 pieces/m², Lolium temulentum L. 11.20, Ranunculus arvensis L. 10.95, Galium tricornutum Dany. 10.81, Avena sterilis 10.60, Bupleurum lancifolium 10.40, Convolvulus arvensis 10.25 ve Cynodon dactylon 10.14 pieces/m². The weed species Cuscuta campestris Yunck. which is very common in the control plots of the broad bean experimental area, was calculated as 11.94 units/m². It was determined that C. campestris alone caused significant yield and quality loss in broad beans. In this study, it was determined that the most effective method in reducing the weed population was hand hoeing, followed by pre-emergence pendimethalin and post-emergence herbicide with Imazamox active substance. In terms of the effect of these control applications on the pod yield, the hand hoeing application ranked first, the pendimethalin application ranked second, the Imazamox application ranked third, and the control 2 and control 1 plot took the last place.

Keywords: broad bean, weed, struggle, yield

Procedia PDF Downloads 95
16545 Effect of Packaging Treatment and Storage Condition on Stability of Low Fat Chicken Burger

Authors: Mohamed Ahmed Kenawi Abdallah

Abstract:

Chemical composition, cooking loss, shrinkage value, texture coefficient indices, Feder value, microbial examination, and sensory evaluation were done in order to examine the effect of adding 15% germinated quinoa seeds flour as extender to chicken wings meat to produce low fat chicken burger, packaged in two different packing materials and stored frozen for nine months. The data indicated reduction in the moisture content, crude either extract, and increase in the ash content, pH value, and total acidity for the samples extended by quinoa flour compared with the control one. The data showed that the extended samples with quinoa flour had the lowest values of TBA, cooking loss, and shrinkage value compared with the control ones. The data also revealed that, the sample contained quinoa flour had total bacterial count and psychrophilic bacterial count lower than the control sample. In addition, it has higher evaluation values for overall acceptability than the control one.

Keywords: chicken wings, low fat chicken burger, quinoa flour, vacuum packaging.

Procedia PDF Downloads 102
16544 An Adiabatic Quantum Optimization Approach for the Mixed Integer Nonlinear Programming Problem

Authors: Maxwell Henderson, Tristan Cook, Justin Chan Jin Le, Mark Hodson, YoungJung Chang, John Novak, Daniel Padilha, Nishan Kulatilaka, Ansu Bagchi, Sanjoy Ray, John Kelly

Abstract:

We present a method of using adiabatic quantum optimization (AQO) to solve a mixed integer nonlinear programming (MINLP) problem instance. The MINLP problem is a general form of a set of NP-hard optimization problems that are critical to many business applications. It requires optimizing a set of discrete and continuous variables with nonlinear and potentially nonconvex constraints. Obtaining an exact, optimal solution for MINLP problem instances of non-trivial size using classical computation methods is currently intractable. Current leading algorithms leverage heuristic and divide-and-conquer methods to determine approximate solutions. Creating more accurate and efficient algorithms is an active area of research. Quantum computing (QC) has several theoretical benefits compared to classical computing, through which QC algorithms could obtain MINLP solutions that are superior to current algorithms. AQO is a particular form of QC that could offer more near-term benefits compared to other forms of QC, as hardware development is in a more mature state and devices are currently commercially available from D-Wave Systems Inc. It is also designed for optimization problems: it uses an effect called quantum tunneling to explore all lowest points of an energy landscape where classical approaches could become stuck in local minima. Our work used a novel algorithm formulated for AQO to solve a special type of MINLP problem. The research focused on determining: 1) if the problem is possible to solve using AQO, 2) if it can be solved by current hardware, 3) what the currently achievable performance is, 4) what the performance will be on projected future hardware, and 5) when AQO is likely to provide a benefit over classical computing methods. Two different methods, integer range and 1-hot encoding, were investigated for transforming the MINLP problem instance constraints into a mathematical structure that can be embedded directly onto the current D-Wave architecture. For testing and validation a D-Wave 2X device was used, as well as QxBranch’s QxLib software library, which includes a QC simulator based on simulated annealing. Our results indicate that it is mathematically possible to formulate the MINLP problem for AQO, but that currently available hardware is unable to solve problems of useful size. Classical general-purpose simulated annealing is currently able to solve larger problem sizes, but does not scale well and such methods would likely be outperformed in the future by improved AQO hardware with higher qubit connectivity and lower temperatures. If larger AQO devices are able to show improvements that trend in this direction, commercially viable solutions to the MINLP for particular applications could be implemented on hardware projected to be available in 5-10 years. Continued investigation into optimal AQO hardware architectures and novel methods for embedding MINLP problem constraints on to those architectures is needed to realize those commercial benefits.

Keywords: adiabatic quantum optimization, mixed integer nonlinear programming, quantum computing, NP-hard

Procedia PDF Downloads 526
16543 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.

Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes

Procedia PDF Downloads 43
16542 An Implementation Direct Torque Control Strategy of Induction Machine Using DSPACE TMS 320F2812

Authors: Hamid Chaikhy, Mouna Essaadi, Aziz El Afia

Abstract:

This paper presents an experimental implementation of a new direct torque control strategy of induction machine called twelve sectors direct torque control strategy (12_DTC) using DSPACE TMS 320F2812.The aim of this work is to give an experimental performance analysis of 12_DTC in term of torque, currents distortions and stator flux, to validate simulation results obtained in previous works.

Keywords: 12_DTC, DSPACE TMS 320F2812 torque, stator flux, currents distortions, experimental performance analysis

Procedia PDF Downloads 394
16541 A Multi Function Myocontroller for Upper Limb Prostheses

Authors: Ayad Asaad Ibrahim

Abstract:

Myoelectrically controlled prostheses are becoming more and more popular, for below-elbow amputation, the wrist flexor and extensor muscle group, while for above-elbow biceps and triceps brachii muscles are used for control of the prosthesis. A two site multi-function controller is presented. Two stainless steel bipolar electrode pairs are used to monitor the activities in both muscles. The detected signals are processed by new pre-whitening technique to identify the accurate tension estimation in these muscles. These estimates will activate the relevant prosthesis control signal, with a time constant of 200 msec. It is ensured that the tension states in the control muscle to activate a particular prosthesis function are similar to those used to activate normal functions in the natural hand. This facilitates easier training.

Keywords: prosthesis, biosignal processing, pre-whitening, myoelectric controller

Procedia PDF Downloads 363
16540 Recombination Center Levels in Gold and Platinum Doped N-Type Silicon

Authors: Nam Chol Yu, Kyong Il Chu

Abstract:

Using DLTS measurement techniques, we determined the dominant recombination center levels (defects of both A and B) in gold and platinum doped n-type silicon. Also, the injection and temperature dependence of the Shockley-Read-Hall (SRH) carrier lifetime was studied under low-level injection and high-level injection. Here measurements show that the dominant level under low-level injection located at EC-0.25eV(A) correlated to the Pt+G1 and the dominant level under high-level injection located at EC-0.54eV(B) correlated to the Au+G4. Finally, A and B are the same dominant levels for controlling the lifetime in gold-platinum doped n-silicon.

Keywords: recombination center level, lifetime, carrier lifetime control, gold, platinum, silicon

Procedia PDF Downloads 157
16539 A Comparison between Underwater Image Enhancement Techniques

Authors: Ouafa Benaida, Abdelhamid Loukil, Adda Ali Pacha

Abstract:

In recent years, the growing interest of scientists in the field of image processing and analysis of underwater images and videos has been strengthened following the emergence of new underwater exploration techniques, such as the emergence of autonomous underwater vehicles and the use of underwater image sensors facilitating the exploration of underwater mineral resources as well as the search for new species of aquatic life by biologists. Indeed, underwater images and videos have several defects and must be preprocessed before their analysis. Underwater landscapes are usually darkened due to the interaction of light with the marine environment: light is absorbed as it travels through deep waters depending on its wavelength. Additionally, light does not follow a linear direction but is scattered due to its interaction with microparticles in water, resulting in low contrast, low brightness, color distortion, and restricted visibility. The improvement of the underwater image is, therefore, more than necessary in order to facilitate its analysis. The research presented in this paper aims to implement and evaluate a set of classical techniques used in the field of improving the quality of underwater images in several color representation spaces. These methods have the particularity of being simple to implement and do not require prior knowledge of the physical model at the origin of the degradation.

Keywords: underwater image enhancement, histogram normalization, histogram equalization, contrast limited adaptive histogram equalization, single-scale retinex

Procedia PDF Downloads 89
16538 Modeling and Temperature Control of Water-cooled PEMFC System Using Intelligent Algorithm

Authors: Chen Jun-Hong, He Pu, Tao Wen-Quan

Abstract:

Proton exchange membrane fuel cell (PEMFC) is the most promising future energy source owing to its low operating temperature, high energy efficiency, high power density, and environmental friendliness. In this paper, a comprehensive PEMFC system control-oriented model is developed in the Matlab/Simulink environment, which includes the hydrogen supply subsystem, air supply subsystem, and thermal management subsystem. Besides, Improved Artificial Bee Colony (IABC) is used in the parameter identification of PEMFC semi-empirical equations, making the maximum relative error between simulation data and the experimental data less than 0.4%. Operation temperature is essential for PEMFC, both high and low temperatures are disadvantageous. In the thermal management subsystem, water pump and fan are both controlled with the PID controller to maintain the appreciate operation temperature of PEMFC for the requirements of safe and efficient operation. To improve the control effect further, fuzzy control is introduced to optimize the PID controller of the pump, and the Radial Basis Function (RBF) neural network is introduced to optimize the PID controller of the fan. The results demonstrate that Fuzzy-PID and RBF-PID can achieve a better control effect with 22.66% decrease in Integral Absolute Error Criterion (IAE) of T_st (Temperature of PEMFC) and 77.56% decrease in IAE of T_in (Temperature of inlet cooling water) compared with traditional PID. In the end, a novel thermal management structure is proposed, which uses the cooling air passing through the main radiator to continue cooling the secondary radiator. In this thermal management structure, the parasitic power dissipation can be reduced by 69.94%, and the control effect can be improved with a 52.88% decrease in IAE of T_in under the same controller.

Keywords: PEMFC system, parameter identification, temperature control, Fuzzy-PID, RBF-PID, parasitic power

Procedia PDF Downloads 85
16537 Optimization and Evaluation of Different Pathways to Produce Biofuel from Biomass

Authors: Xiang Zheng, Zhaoping Zhong

Abstract:

In this study, Aspen Plus was used to simulate the whole process of biomass conversion to liquid fuel in different ways, and the main results of material and energy flow were obtained. The process optimization and evaluation were carried out on the four routes of cellulosic biomass pyrolysis gasification low-carbon olefin synthesis olefin oligomerization, biomass water pyrolysis and polymerization to jet fuel, biomass fermentation to ethanol, and biomass pyrolysis to liquid fuel. The environmental impacts of three biomass species (poplar wood, corn stover, and rice husk) were compared by the gasification synthesis pathway. The global warming potential, acidification potential, and eutrophication potential of the three biomasses were the same as those of rice husk > poplar wood > corn stover. In terms of human health hazard potential and solid waste potential, the results were poplar > rice husk > corn stover. In the popular pathway, 100 kg of poplar biomass was input to obtain 11.9 kg of aviation coal fraction and 6.3 kg of gasoline fraction. The energy conversion rate of the system was 31.6% when the output product energy included only the aviation coal product. In the basic process of hydrothermal depolymerization process, 14.41 kg aviation kerosene was produced per 100 kg biomass. The energy conversion rate of the basic process was 33.09%, which can be increased to 38.47% after the optimal utilization of lignin gasification and steam reforming for hydrogen production. The total exergy efficiency of the system increased from 30.48% to 34.43% after optimization, and the exergy loss mainly came from the concentration of precursor dilute solution. Global warming potential in environmental impact is mostly affected by the production process. Poplar wood was used as raw material in the process of ethanol production from cellulosic biomass. The simulation results showed that 827.4 kg of pretreatment mixture, 450.6 kg of fermentation broth, and 24.8 kg of ethanol were produced per 100 kg of biomass. The power output of boiler combustion reached 94.1 MJ, the unit power consumption in the process was 174.9 MJ, and the energy conversion rate was 33.5%. The environmental impact was mainly concentrated in the production process and agricultural processes. On the basis of the original biomass pyrolysis to liquid fuel, the enzymatic hydrolysis lignin residue produced by cellulose fermentation to produce ethanol was used as the pyrolysis raw material, and the fermentation and pyrolysis processes were coupled. In the coupled process, 24.8 kg ethanol and 4.78 kg upgraded liquid fuel were produced per 100 kg biomass with an energy conversion rate of 35.13%.

Keywords: biomass conversion, biofuel, process optimization, life cycle assessment

Procedia PDF Downloads 70
16536 NFC Communications with Mutual Authentication Based on Limited-Use Session Keys

Authors: Chalee Thammarat

Abstract:

Mobile phones are equipped with increased short-range communication functionality called Near Field Communication (or NFC for short). NFC needs no pairing between devices but suitable for little amounts of data in a very restricted area. A number of researchers presented authentication techniques for NFC communications, however, they still lack necessary authentication, particularly mutual authentication and security qualifications. This paper suggests a new authentication protocol for NFC communication that gives mutual authentication between devices. The mutual authentication is a one of property, of security that protects replay and man-in-the-middle (MitM) attack. The proposed protocols deploy a limited-use offline session key generation and use of distribution technique to increase security and make our protocol lightweight. There are four sub-protocols: NFCAuthv1 is suitable for identification and access control and NFCAuthv2 is suitable for the NFC-enhanced phone by a POS terminal for digital and physical goods and services.

Keywords: cryptographic protocols, NFC, near field communications, security protocols, mutual authentication, network security

Procedia PDF Downloads 430
16535 Multiscale Entropy Analysis of Electroencephalogram (EEG) of Alcoholic and Control Subjects

Authors: Lal Hussain, Wajid Aziz, Imtiaz Ahmed Awan, Sharjeel Saeed

Abstract:

Multiscale entropy analysis (MSE) is a useful technique recently developed to quantify the dynamics of physiological signals at different time scales. This study is aimed at investigating the electroencephalogram (EEG) signals to analyze the background activity of alcoholic and control subjects by inspecting various coarse-grained sequences formed at different time scales. EEG recordings of alcoholic and control subjects were taken from the publically available machine learning repository of University of California (UCI) acquired using 64 electrodes. The MSE analysis was performed on the EEG data acquired from all the electrodes of alcoholic and control subjects. Mann-Whitney rank test was used to find significant differences between the groups and result were considered statistically significant for p-values<0.05. The area under receiver operator curve was computed to find the degree separation between the groups. The mean ranks of MSE values at all the times scales for all electrodes were higher control subject as compared to alcoholic subjects. Higher mean ranks represent higher complexity and vice versa. The finding indicated that EEG signals acquired through electrodes C3, C4, F3, F7, F8, O1, O2, P3, T7 showed significant differences between alcoholic and control subjects at time scales 1 to 5. Moreover, all electrodes exhibit significance level at different time scales. Likewise, the highest accuracy and separation was obtained at the central region (C3 and C4), front polar regions (P3, O1, F3, F7, F8 and T8) while other electrodes such asFp1, Fp2, P4 and F4 shows no significant results.

Keywords: electroencephalogram (EEG), multiscale sample entropy (MSE), Mann-Whitney test (MMT), Receiver Operator Curve (ROC), complexity analysis

Procedia PDF Downloads 376
16534 Optimize Data Evaluation Metrics for Fraud Detection Using Machine Learning

Authors: Jennifer Leach, Umashanger Thayasivam

Abstract:

The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, though, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate people. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease this advancement. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent data, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which testing split and technique would lead to the most optimal results.

Keywords: data science, fraud detection, machine learning, supervised learning

Procedia PDF Downloads 196
16533 Cognitive Control Moderates the Concurrent Effect of Autistic and Schizotypal Traits on Divergent Thinking

Authors: Julie Ramain, Christine Mohr, Ahmad Abu-Akel

Abstract:

Divergent thinking—a cognitive component of creativity—and particularly the ability to generate unique and novel ideas, has been linked to both autistic and schizotypal traits. However, to our knowledge, the concurrent effect of these trait dimensions on divergent thinking has not been investigated. Moreover, it has been suggested that creativity is associated with different types of attention and cognitive control, and consequently how information is processed in a given context. Intriguingly, consistent with the diametric model, autistic and schizotypal traits have been associated with contrasting attentional and cognitive control styles. Positive schizotypal traits have been associated with reactive cognitive control and attentional flexibility, while autistic traits have been associated with proactive cognitive control and the increased focus of attention. The current study investigated the relationship between divergent thinking, autistic and schizotypal traits and cognitive control in a non-clinical sample of 83 individuals (Males = 42%; Mean age = 22.37, SD = 2.93), sufficient to detect a medium effect size. Divergent thinking was evaluated in an adapted version of-of the Figural Torrance Test of Creative Thinking. Crucially, since we were interested in testing divergent thinking productivity across contexts, participants were asked to generate items from basic shapes in four different contexts. The variance of the proportion of unique to total responses across contexts represented a measure of context adaptability, with lower variance indicating increased context adaptability. Cognitive control was estimated with the Behavioral Proactive Index of the AX-CPT task, with higher scores representing the ability to actively maintain goal-relevant information in a sustained/anticipatory manner. Autistic and schizotypal traits were assessed with the Autism Quotient (AQ) and the Community Assessment of Psychic Experiences (CAPE-42). Generalized linear models revealed a 3-way interaction of autistic and positive schizotypal traits, and proactive cognitive control, associated with increased context adaptability. Specifically, the concurrent effect of autistic and positive schizotypal traits on increased context adaptability was moderated by the level of proactive control and was only significant when proactive cognitive control was high. Our study reveals that autistic and positive schizotypal traits interactively facilitate the capacity to generate unique ideas across various contexts. However, this effect depends on cognitive control mechanisms indicative of the ability to proactively maintain attention when needed. The current results point to a unique profile of divergent thinkers who have the ability to respectively tap both systematic and flexible processing modes within and across contexts. This is particularly intriguing as such combination of phenotypes has been proposed to explain the genius of Beethoven, Nash, and Newton.

Keywords: autism, schizotypy, creativity, cognitive control

Procedia PDF Downloads 137
16532 Daylightophil Approach towards High-Performance Architecture for Hybrid-Optimization of Visual Comfort and Daylight Factor in BSk

Authors: Mohammadjavad Mahdavinejad, Hadi Yazdi

Abstract:

The greatest influence we have from the world is shaped through the visual form, thus light is an inseparable element in human life. The use of daylight in visual perception and environment readability is an important issue for users. With regard to the hazards of greenhouse gas emissions from fossil fuels, and in line with the attitudes on the reduction of energy consumption, the correct use of daylight results in lower levels of energy consumed by artificial lighting, heating and cooling systems. Windows are usually the starting points for analysis and simulations to achieve visual comfort and energy optimization; therefore, attention should be paid to the orientation of buildings to minimize electrical energy and maximize the use of daylight. In this paper, by using the Design Builder Software, the effect of the orientation of an 18m2(3m*6m) room with 3m height in city of Tehran has been investigated considering the design constraint limitations. In these simulations, the dimensions of the building have been changed with one degree and the window is located on the smaller face (3m*3m) of the building with 80% ratio. The results indicate that the orientation of building has a lot to do with energy efficiency to meet high-performance architecture and planning goals and objectives.

Keywords: daylight, window, orientation, energy consumption, design builder

Procedia PDF Downloads 234
16531 Exploratory Study of the Influencing Factors for Hotels' Competitors

Authors: Asma Ameur, Dhafer Malouche

Abstract:

Hotel competitiveness research is an essential phase of the marketing strategy for any hotel. Certainly, knowing the hotels' competitors helps the hotelier to grasp its position in the market and the citizen to make the right choice in picking a hotel. Thus, competitiveness is an important indicator that can be influenced by various factors. In fact, the issue of competitiveness, this ability to cope with competition, remains a difficult and complex concept to define and to exploit. Therefore, the purpose of this article is to make an exploratory study to calculate a competitiveness indicator for hotels. Further on, this paper makes it possible to determine the criteria of direct or indirect effect on the image and the perception of a hotel. The actual research is used to look into the right model for hotel ‘competitiveness. For this reason, we exploit different theoretical contributions in the field of machine learning. Thus, we use some statistical techniques such as the Principal Component Analysis (PCA) to reduce the dimensions, as well as other techniques of statistical modeling. This paper presents a survey covering of the techniques and methods in hotel competitiveness research. Furthermore, this study allows us to deduct the significant variables that influence the determination of hotel’s competitors. Lastly, the discussed experiences in this article found that the hotel competitors are influenced by several factors with different rates.

Keywords: competitiveness, e-reputation, hotels' competitors, online hotel’ review, principal component analysis, statistical modeling

Procedia PDF Downloads 119
16530 Design of Soil Replacement under Axial Centric Load Isolated Footing by Limit State Method

Authors: Emad A. M. Osman, Ahmed M. Abu-Bakr

Abstract:

Compacted granular fill under shallow foundation is one of the oldest, cheapest, and easiest techniques to improve the soil characteristics to increase the bearing capacity and decrease settlement under footing. There are three main factors affecting the design of soil replacement to gain these advantages. These factors are the type of replaced soil, characteristics, and thickness. The first two factors can be easily determined by laboratory and field control. This paper emphasizes on how to determine the thickness accurately for footing under centric axial load by limit state design method. The advantages of the method are the way of determining the thickness (independent of experience) and it takes into account the replaced and original or underneath soil characteristics and reaches the goals of replaced soils economically.

Keywords: design of soil replacement, LSD method, soil replacement, soil improvement

Procedia PDF Downloads 351
16529 Simulation of an Active Controlled Vibration Isolation System for Astronaut’s Exercise Platform

Authors: Shield B. Lin, Sameer Abdali

Abstract:

Computer simulations were performed using MATLAB/Simulink for a vibration isolation system for astronaut’s exercise platform. Simulation parameters initially were based on an on-going experiment in a laboratory at NASA Johnson Space Center. The authors expanded later simulations to include other parameters. A discrete proportional-integral-derivative controller with a low-pass filter commanding a linear actuator served as the active control unit to push and pull a counterweight in balancing the disturbance forces. A spring-damper device is used as an optional passive control unit. Simulation results indicated such design could achieve near complete vibration isolation with small displacements of the exercise platform.

Keywords: control, counterweight, isolation, vibration

Procedia PDF Downloads 149
16528 Effects of Silver Nanoparticles on in vitro Adventitious Shoot Regeneration of Water Hyssop (Bacopa monnieri L. Wettst.)

Authors: Muhammad Aasim, Mehmet Karataş, Fatih Erci, Şeyma Bakırcı, Ecenur Korkmaz, Burak Kahveci

Abstract:

Water hyssop (Bacopa monnieri L. Wettst.) is an important medicinal aquatic/semi aquatic plant native to India where it is used in traditional medicinal system. The plant contains bioactive compounds mainly Bacosides which are the main ingridient of commercial drug available as memory enhancer tonic. The local name of water hyssop is Brahmi and brahmi based drugs are available against for curing chronic diseases and disorders Alzheimer’s disease, anxiety, asthma, cancer, mental illness, respiratory ailments, and stomach ulcers. The plant is not a cultivated plant and collection of plant from nature make palnt threatened to endangered. On the other hand, low seed viability and availability make it difficult to propagate plant through traditional techniques. In recent years, plant tissue culture techniques have been employed to propagate plant for its conservation and production for continuous availability of secondary metabolites. On the other hand, application of nanoparticles has been reported for increasing biomass, in vitro regeneration and secondary metabolites production. In this study, silver nanoparticles (AgNPs) were applied at the rate of 2, 4, 6, 8 and 10 ppm to Murashihe and Skoog (MS) medium supplemented with 1.0 mg/l Benzylaminopurine (BAP), 3.0% sucrose and 0.7% agar. Leaf explants of water hyssop were cultured on AgNPs containing medium. Shoot induction from leaf explants were relatively slow compared to medium without AgNPs. Multiple shoot induction was recorded after 3-4 weeks of culture comapred to control that occured within 10 days. Regenerated shoots were rooted successfully on MS medium supplemented with 1.0 mg/l IBA and acclimatized in the aquariums for further studies.

Keywords: Water hyssop, Silver nanoparticles, In vitro, Regeneration, Secondary metabolites

Procedia PDF Downloads 196
16527 Business Program Curriculum with Industry-Recognized Certifications: An Empirical Study of Exam Results and Program Curriculum

Authors: Thomas J. Bell III

Abstract:

Pursuing a business degree is fraught with perplexing questions regarding the rising tuition cost and the immediate value of earning a degree. Any decision to pursue an undergraduate business degree is perceived to have value if it facilitates post-graduate job placement. Business programs have decreased value in the absence of innovation in business programs that close the skills gap between recent graduates and employment opportunities. Industry-based certifications are seemingly becoming a requirement differentiator among job applicants. Texas Wesleyan University offers a Computer Information System (CIS) program with an innovative curriculum that integrates industry-recognized certification training into its traditional curriculum with core subjects and electives. This paper explores a culture of innovation in the CIS business program curriculum that creates sustainable stakeholder value for students, employers, the community, and the university. A quantitative research methodology surveying over one-hundred students in the CIS program will be used to examine factors influencing the success or failure of students taking certification exams. Researchers will analyze control variables to identify specific correlations between practice exams, teaching pedagogy, study time, age, work experience, etc. This study compared various exam preparation techniques to corresponding exam results across several industry certification exams. The findings will aid in understanding control variables with correlations that positively and negatively impact exam results. Such discovery may provide useful insight into pedagogical impact indicators that positively contribute to certification exam success and curriculum enhancement.

Keywords: taking certification exams, exam training, testing skills, exam study aids, certification exam curriculum

Procedia PDF Downloads 88
16526 Study of Flow-Induced Noise Control Effects on Flat Plate through Biomimetic Mucus Injection

Authors: Chen Niu, Xuesong Zhang, Dejiang Shang, Yongwei Liu

Abstract:

Fishes can secrete high molecular weight fluid on their body skin to enable their rapid movement in the water. In this work, we employ a hybrid method that combines Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) to investigate the effects of different mucus viscosities and injection velocities on fluctuation pressure in the boundary layer and flow-induced structural vibration noise of a flat plate model. To accurately capture the transient flow distribution on the plate surface, we use Large Eddy Simulation (LES) while the mucus inlet is positioned at a sufficient distance from the model to ensure effective coverage. Mucus injection is modeled using the Volume of Fluid (VOF) method for multiphase flow calculations. The results demonstrate that mucus control of pulsating pressure effectively reduces flow-induced structural vibration noise, providing an approach for controlling flow-induced noise in underwater vehicles.

Keywords: mucus, flow control, noise control, flow-induced noise

Procedia PDF Downloads 145
16525 A Constrained Neural Network Based Variable Neighborhood Search for the Multi-Objective Dynamic Flexible Job Shop Scheduling Problems

Authors: Aydin Teymourifar, Gurkan Ozturk, Ozan Bahadir

Abstract:

In this paper, a new neural network based variable neighborhood search is proposed for the multi-objective dynamic, flexible job shop scheduling problems. The neural network controls the problems' constraints to prevent infeasible solutions, while the Variable Neighborhood Search (VNS) applies moves, based on the critical block concept to improve the solutions. Two approaches are used for managing the constraints, in the first approach, infeasible solutions are modified according to the constraints, after the moves application, while in the second one, infeasible moves are prevented. Several neighborhood structures from the literature with some modifications, also new structures are used in the VNS. The suggested neighborhoods are more systematically defined and easy to implement. Comparison is done based on a multi-objective flexible job shop scheduling problem that is dynamic because of the jobs different release time and machines breakdowns. The results show that the presented method has better performance than the compared VNSs selected from the literature.

Keywords: constrained optimization, neural network, variable neighborhood search, flexible job shop scheduling, dynamic multi-objective optimization

Procedia PDF Downloads 346
16524 Control HVAC Parameters by Brain Emotional Learning Based Intelligent Controller (BELBIC)

Authors: Javad Abdi, Azam Famil Khalili

Abstract:

Modeling emotions have attracted much attention in recent years, both in cognitive psychology and design of artificial systems. However, it is a negative factor in decision-making; emotions have shown to be a strong faculty for making fast satisfying decisions. In this paper, we have adapted a computational model based on the limbic system in the mammalian brain for control engineering applications. Learning in this model based on Temporal Difference (TD) Learning, we applied the proposed controller (termed BELBIC) for a simple model of a submarine. The model was supposed to reach the desired depth underwater. Our results demonstrate excellent control action, disturbance handling, and system parameter robustness for TDBELBIC. The proposal method, regarding the present conditions, the system action in the part and the controlling aims, can control the system in a way that these objectives are attained in the least amount of time and the best way.

Keywords: artificial neural networks, temporal difference, brain emotional learning based intelligent controller, heating- ventilating and air conditioning

Procedia PDF Downloads 433
16523 Investigations into Effect of Neural Network Predictive Control of UPFC for Improving Transient Stability Performance of Multimachine Power System

Authors: Sheela Tiwari, R. Naresh, R. Jha

Abstract:

The paper presents an investigation into the effect of neural network predictive control of UPFC on the transient stability performance of a multi-machine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers and an improved damping of the power oscillations as compared to the conventional PI controller.

Keywords: identification, neural networks, predictive control, transient stability, UPFC

Procedia PDF Downloads 371
16522 Level of Knowledge, Attitude, Perceived Behavior Control, Subjective Norm and Behavior of Household Solid Waste towards Zero Waste Management among Malaysian Consumer

Authors: M. J. Zuroni, O. Syuhaily, M. A. Afida Mastura, M. S. Roslina, A. K. Nurul Aini

Abstract:

The impact of country development has caused an increase of solid waste. The increase in population causes of excess usage thus effecting the sustainable environment. Zero waste management involves maximizing practices of recycling and minimizing residual waste. This paper seeks to analyze the relationship between knowledge, attitude, perceived behavior control, subjective norm and behavior of household solid waste towards household solid waste management among urban households in 8 states that have been implemented and enforced regulations under the Solid Waste Management and Public Cleansing Act 2007 (Act 672) in Malaysia. A total of respondents are 605 and we used a purposive sampling for location and simple sampling for sample size. Data collected by using self-administered questionnaire and were analyzed using SPSS software. The Pearson Correlation Test is to examine the relationship between four variables. Results show that knowledge scores are high because they have an awareness of the importance of managing solid waste. For attitude, perceived behavior control, subjective norm and behavioral scores at a moderate level in solid waste management activities. The findings show that there is a significant relationship between knowledge and behavior of household solid waste (r = 0.136 **, p = 0.001), there is a significant relationship between attitude and behavior (r = 0.238 **, p = 0.000), there is a significant relationship between perceived behavior control and behavior (r = 0.516 **, p = 0.000) and there is a significant relationship between subjective norm and behavior (r = 0.494 **, p = 0.000). The conclusion is that there is a relationship between knowledge, attitude, perceived behavior control and subjective norm toward the behavior of household solid waste management. Therefore, in the findings of the study, all parties including the government should work together to enhance the knowledge, attitude, perceived behavior control and behavior of household solid waste management in other states that have not implemented and enforced regulations under the Solid Waste and Public Cleansing Management Act 2007 (Act 672).

Keywords: solid waste management, knowledge, attitude, perceived behavior control, subjective norm, behavior

Procedia PDF Downloads 333
16521 Offline Signature Verification in Punjabi Based On SURF Features and Critical Point Matching Using HMM

Authors: Rajpal Kaur, Pooja Choudhary

Abstract:

Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capabilities to the reliably distinguish between an authorized person and an imposter. The Signature recognition systems can categorized as offline (static) and online (dynamic). This paper presents Surf Feature based recognition of offline signatures system that is trained with low-resolution scanned signature images. The signature of a person is an important biometric attribute of a human being which can be used to authenticate human identity. However the signatures of human can be handled as an image and recognized using computer vision and HMM techniques. With modern computers, there is need to develop fast algorithms for signature recognition. There are multiple techniques are defined to signature recognition with a lot of scope of research. In this paper, (static signature) off-line signature recognition & verification using surf feature with HMM is proposed, where the signature is captured and presented to the user in an image format. Signatures are verified depended on parameters extracted from the signature using various image processing techniques. The Off-line Signature Verification and Recognition is implemented using Mat lab platform. This work has been analyzed or tested and found suitable for its purpose or result. The proposed method performs better than the other recently proposed methods.

Keywords: offline signature verification, offline signature recognition, signatures, SURF features, HMM

Procedia PDF Downloads 384
16520 AutoML: Comprehensive Review and Application to Engineering Datasets

Authors: Parsa Mahdavi, M. Amin Hariri-Ardebili

Abstract:

The development of accurate machine learning and deep learning models traditionally demands hands-on expertise and a solid background to fine-tune hyperparameters. With the continuous expansion of datasets in various scientific and engineering domains, researchers increasingly turn to machine learning methods to unveil hidden insights that may elude classic regression techniques. This surge in adoption raises concerns about the adequacy of the resultant meta-models and, consequently, the interpretation of the findings. In response to these challenges, automated machine learning (AutoML) emerges as a promising solution, aiming to construct machine learning models with minimal intervention or guidance from human experts. AutoML encompasses crucial stages such as data preparation, feature engineering, hyperparameter optimization, and neural architecture search. This paper provides a comprehensive overview of the principles underpinning AutoML, surveying several widely-used AutoML platforms. Additionally, the paper offers a glimpse into the application of AutoML on various engineering datasets. By comparing these results with those obtained through classical machine learning methods, the paper quantifies the uncertainties inherent in the application of a single ML model versus the holistic approach provided by AutoML. These examples showcase the efficacy of AutoML in extracting meaningful patterns and insights, emphasizing its potential to revolutionize the way we approach and analyze complex datasets.

Keywords: automated machine learning, uncertainty, engineering dataset, regression

Procedia PDF Downloads 61
16519 Economics of Fish-Plantain Integrated Farm Enterprise in Southern Nigeria

Authors: S. O. Obasa, J. A. Soaga, O. I. Afolabi, N. A. Bamidele, O. E. Babalola

Abstract:

Attempt to improve the income of the rural population is a welcome development in Nigeria. Integrated fish-crop farming has been suggested as a means of raising farm income, reducing wastage and mitigating the risk component in production through the complementarity gain. A feeding trial was carried out to investigate the replacement of maize with fermented unripe plantain (Musa paradisiaca) peel meal in the diet of Nile tilapia, Oreochromis niloticus. The economics of the integrated enterprise was assessed using budgetary analysis techniques. The analysis incorporated the material and labour costs as well as the returns from sale of matured fish and plantain. A total of 60 fingerlings of Nile tilapia (1.70±0.1 g) were stocked at 10 per plastic tank. Two iso-nitrogenous diets containing 35% crude protein in which maize meal was replaced by fermented unripe plantain peel meal at 0% (FUP0/Control diet), and 100% (FUP100) were formulated and prepared. The fingerlings were fed at 5% body weight per day for 56 days. Lowest feed conversion ratio of 1.39 in fish fed diet FUP100 was not significantly different (P > 0.05) from the highest 1.42 of fish fed the Control diet. The highest percentage profit of 88.85% in fish fed diet FUP100 was significantly higher than 66.68% in fish fed diet FUP0, while the profit index of 1.89 in fish fed diet FUP100 was significantly different from 1.67 in fish fed diet FUP0. Therefore, fermented unripe plantain peel meal can completely replace maize in the diet of O. niloticus fingerlings. Profitability assessment shows that the net income from the integration was ₦ 463,000 per hectare and the integration resulted to an increase of ₦ 87,750.00 representing a 12.2% increase than in separate production.

Keywords: fish-crop, income, Nile tilapia, waste management

Procedia PDF Downloads 505
16518 The Effects of Critical Incident Stress Debriefing and Other Related Interventions on the Psychological Recovery of Earthquake Survivors

Authors: Joyce Fernandez

Abstract:

This study examined the effects of critical incident stress debriefing and other related interventions on the psychological recovery of earthquake survivors. It is a mixed experimental and qualitative study using post-test only control group design and focus group discussion. After the conduct of critical incident stress debriefing activities and other related interventions in the form of counseling and psychiatric treatment to the survivors of a 6.9 magnitude earthquake, a post-test measuring the level of psychological recovery was given to randomized participants categorized as intervention and control groups. Using the traumatic assessment and belief scale as instrument for the quantitative aspect in order to gauge recovery in the psychological need areas of safety, trust, esteem, intimacy and control, the findings are the following: Intervention group participants have relatively better adjustment along the five psychological need areas compared to the control group participants; there is no significant difference in the psychological recovery among female and male participants of the invention and control groups and; there are significant differences between intervention and control groups in the psychological need areas of self-safety, self-trust, other-trust, self-esteem, and self-intimacy. Using a guided interview for the qualitative data, the themes derived are the following. Safety: The world is an unsafe place to live because of the calamities. Trust: Trust and dependence are anchored on the family. Esteem: Participants are having confused self-worth. Intimacy: Participants are thriving on attachment with their family. Control: Participants have unaltered desire to help but feeling restricted because of personal and logistical concerns.As an outcome of the study a Psychosocial Care Program for Individuals, Families and Communities Affected by Disaster and Trauma was proposed.

Keywords: critical incident stress debriefing, earthquake survivors, psychological recovery, related interventions

Procedia PDF Downloads 293