Search results for: Large Eddy Simulation
8985 Estimating Interdependence of Social Statuses in a Cooperative Breeding Birds through Mathematical Modelling
Authors: Sinchan Ghosh, Fahad Al Basir, Santanu Ray, Sabyasachi Bhattacharya
Abstract:
The cooperatively breeding birds have two major ranks for the sexually mature birds. The breeders mate and produce offspring while the non-breeding helpers increase the chick production rate through help in mate-finding and allo-parenting. However, the chicks also cooperate to raise their younger siblings through warming, defending and food sharing. Although, the existing literatures describes the evolution of allo-parenting in birds but do not differentiate the significance of allo-parenting in sexually immature and mature helpers separately. This study addresses the significance of both immature and mature helpers’ contribution to the total sustainable bird population in a breeding site using Blue-tailed bee-eater as a test-bed species. To serve this purpose, a mathematical model has been built considering each social status and chicks as separate but interactive compartments. Also, to observe the dynamics of each social status with changing prey abundance, a prey population has been introduced as an additional compartment. The model was analyzed for stability condition and was validated using field-data. A simulation experiment was then performed to observe the change in equilibria with a varying helping rate from both the helpers. The result from the simulation experiment suggest that the cooperative breeding population changes its population sizes significantly with a change in helping rate from the sexually immature helpers. On the other hand, the mature helpers do not contribute to the stability of the population equilibrium as much as the immature helpers.Keywords: Blue-tailed bee eater, Altruism, Mathematical Ethology, Behavioural modelling
Procedia PDF Downloads 1678984 Computational Investigation of Secondary Flow Losses in Linear Turbine Cascade by Modified Leading Edge Fence
Authors: K. N. Kiran, S. Anish
Abstract:
It is well known that secondary flow loses account about one third of the total loss in any axial turbine. Modern gas turbine height is smaller and have longer chord length, which might lead to increase in secondary flow. In order to improve the efficiency of the turbine, it is important to understand the behavior of secondary flow and device mechanisms to curtail these losses. The objective of the present work is to understand the effect of a stream wise end-wall fence on the aerodynamics of a linear turbine cascade. The study is carried out computationally by using commercial software ANSYS CFX. The effect of end-wall on the flow field are calculated based on RANS simulation by using SST transition turbulence model. Durham cascade which is similar to high-pressure axial flow turbine for simulation is used. The aim of fencing in blade passage is to get the maximum benefit from flow deviation and destroying the passage vortex in terms of loss reduction. It is observed that, for the present analysis, fence in the blade passage helps reducing the strength of horseshoe vortex and is capable of restraining the flow along the blade passage. Fence in the blade passage helps in reducing the under turning by 70 in comparison with base case. Fence on end-wall is effective in preventing the movement of pressure side leg of horseshoe vortex and helps in breaking the passage vortex. Computations are carried for different fence height whose curvature is different from the blade camber. The optimum fence geometry and location reduces the loss coefficient by 15.6% in comparison with base case.Keywords: boundary layer fence, horseshoe vortex, linear cascade, passage vortex, secondary flow
Procedia PDF Downloads 3528983 Buffer Allocation and Traffic Shaping Policies Implemented in Routers Based on a New Adaptive Intelligent Multi Agent Approach
Authors: M. Taheri Tehrani, H. Ajorloo
Abstract:
In this paper, an intelligent multi-agent framework is developed for each router in which agents have two vital functionalities, traffic shaping and buffer allocation and are positioned in the ports of the routers. With traffic shaping functionality agents shape the traffic forward by dynamic and real time allocation of the rate of generation of tokens in a Token Bucket algorithm and with buffer allocation functionality agents share their buffer capacity between each other based on their need and the conditions of the network. This dynamic and intelligent framework gives this opportunity to some ports to work better under burst and more busy conditions. These agents work intelligently based on Reinforcement Learning (RL) algorithm and will consider effective parameters in their decision process. As RL have limitation considering much parameter in its decision process due to the volume of calculations, we utilize our novel method which invokes Principle Component Analysis (PCA) on the RL and gives a high dimensional ability to this algorithm to consider as much as needed parameters in its decision process. This implementation when is compared to our previous work where traffic shaping was done without any sharing and dynamic allocation of buffer size for each port, the lower packet drop in the whole network specifically in the source routers can be seen. These methods are implemented in our previous proposed intelligent simulation environment to be able to compare better the performance metrics. The results obtained from this simulation environment show an efficient and dynamic utilization of resources in terms of bandwidth and buffer capacities pre allocated to each port.Keywords: principal component analysis, reinforcement learning, buffer allocation, multi- agent systems
Procedia PDF Downloads 5238982 Numerical Investigation of the Influence on Buckling Behaviour Due to Different Launching Bearings
Authors: Nadine Maier, Martin Mensinger, Enea Tallushi
Abstract:
In general, today, two types of launching bearings are used in the construction of large steel and steel concrete composite bridges. These are sliding rockers and systems with hydraulic bearings. The advantages and disadvantages of the respective systems are under discussion. During incremental launching, the center of the webs of the superstructure is not perfectly in line with the center of the launching bearings due to unavoidable tolerances, which may have an influence on the buckling behavior of the web plates. These imperfections are not considered in the current design against plate buckling, according to DIN EN 1993-1-5. It is therefore investigated whether the design rules have to take into account any eccentricities which occur during incremental launching and also if this depends on the respective launching bearing. Therefore, at the Technical University Munich, large-scale buckling tests were carried out on longitudinally stiffened plates under biaxial stresses with the two different types of launching bearings and eccentric load introduction. Based on the experimental results, a numerical model was validated. Currently, we are evaluating different parameters for both types of launching bearings, such as load introduction length, load eccentricity, the distance between longitudinal stiffeners, the position of the rotation point of the spherical bearing, which are used within the hydraulic bearings, web, and flange thickness and imperfections. The imperfection depends on the geometry of the buckling field and whether local or global buckling occurs. This and also the size of the meshing is taken into account in the numerical calculations of the parametric study. As a geometric imperfection, the scaled first buckling mode is applied. A bilinear material curve is used so that a GMNIA analysis is performed to determine the load capacity. Stresses and displacements are evaluated in different directions, and specific stress ratios are determined at the critical points of the plate at the time of the converging load step. To evaluate the load introduction of the transverse load, the transverse stress concentration is plotted on a defined longitudinal section on the web. In the same way, the rotation of the flange is evaluated in order to show the influence of the different degrees of freedom of the launching bearings under eccentric load introduction and to be able to make an assessment for the case, which is relevant in practice. The input and the output are automatized and depend on the given parameters. Thus we are able to adapt our model to different geometric dimensions and load conditions. The programming is done with the help of APDL and a Python code. This allows us to evaluate and compare more parameters faster. Input and output errors are also avoided. It is, therefore, possible to evaluate a large spectrum of parameters in a short time, which allows a practical evaluation of different parameters for buckling behavior. This paper presents the results of the tests as well as the validation and parameterization of the numerical model and shows the first influences on the buckling behavior under eccentric and multi-axial load introduction.Keywords: buckling behavior, eccentric load introduction, incremental launching, large scale buckling tests, multi axial stress states, parametric numerical modelling
Procedia PDF Downloads 1128981 Properties and Microstructure of Scaled-Up MgO Concrete Blocks Incorporating Fly Ash or Ground Granulated Blast-Furnace Slag
Abstract:
MgO cements have the potential to sequester CO2 in construction products, and can be partial or complete replacement of PC in concrete. Construction block is a promising application for reactive MgO cements. Main advantages of blocks are: (i) suitability for sequestering CO2 due to their initially porous structure; (ii) lack of need for in-situ treatment as carbonation can take place during fabrication; and (iii) high potential for commercialization. Both strength gain and carbon sequestration of MgO cements depend on carbonation process. Fly ash and ground granulated blast-furnace slag (GGBS) are pozzolanic material and are proved to improve many of the performance characteristics of the concrete, such as strength, workability, permeability, durability and corrosion resistance. A very limited amount of work has been reported on the production of MgO blocks on a large scale so far. A much more extensive study, wherein blocks with different mix design is needed to verify the feasibility of commercial production. The changes in the performance of the samples were evaluated by compressive strength testing. The properties of the carbonation products were identified by X-ray diffraction (XRD) and scanning electron microscopy (SEM)/ field emission scanning electron microscopy (FESEM), and the degree of carbonation was obtained by thermogravimetric analysis (TGA), XRD and energy dispersive X-ray (EDX). The results of this study enabled the understanding the relationship between lab-scale samples and scale-up blocks based on their mechanical performance and microstructure. Results indicate that for both scaled-up and lab-scale samples, MgO samples always had the highest strength results, followed by MgO-fly ash samples and MgO-GGBS had relatively lowest strength. The lower strength of MgO with fly ash/GGBS samples at early stage is related to the relatively slow hydration process of pozzolanic materials. Lab-scale cubic samples were observed to have higher strength results than scaled-up samples. The large size of the scaled-up samples made it more difficult to let CO2 to reach inner part of the samples and less carbonation products formed. XRD, TGA and FESEM/EDX results indicate the existence of brucite and HMCs in MgO samples, M-S-H, hydrotalcite in the MgO-fly ash samples and C-S-H, hydrotalctie in the MgO-GGBS samples. Formation of hydration products (M-S-H, C-S-H, hydrotalcite) and carbonation products (hydromagnecite, dypingite) increased with curing duration, which is the reason of increasing strength. This study verifies the advantage of large-scale MgO blocks over common PC blocks and the feasibility of commercial production of MgO blocks.Keywords: reactive MgO, fly ash, ground granulated blast-furnace slag, carbonation, CO₂
Procedia PDF Downloads 1948980 Investigation of Wind Farm Interaction with Ethiopian Electric Power’s Grid: A Case Study at Ashegoda Wind Farm
Authors: Fikremariam Beyene, Getachew Bekele
Abstract:
Ethiopia is currently on the move with various projects to raise the amount of power generated in the country. The progress observed in recent years indicates this fact clearly and indisputably. The rural electrification program, the modernization of the power transmission system, the development of wind farm is some of the main accomplishments worth mentioning. As it is well known, currently, wind power is globally embraced as one of the most important sources of energy mainly for its environmentally friendly characteristics, and also that once it is installed, it is a source available free of charge. However, integration of wind power plant with an existing network has many challenges that need to be given serious attention. In Ethiopia, a number of wind farms are either installed or are under construction. A series of wind farm is planned to be installed in the near future. Ashegoda Wind farm (13.2°, 39.6°), which is the subject of this study, is the first large scale wind farm under construction with the capacity of 120 MW. The first phase of 120 MW (30 MW) has been completed and is expected to be connected to the grid soon. This paper is concerned with the investigation of the wind farm interaction with the national grid under transient operating condition. The main concern is the fault ride through (FRT) capability of the system when the grid voltage drops to exceedingly low values because of short circuit fault and also the active and reactive power behavior of wind turbines after the fault is cleared. On the wind turbine side, a detailed dynamic modelling of variable speed wind turbine of a 1 MW capacity running with a squirrel cage induction generator and full-scale power electronics converters is done and analyzed using simulation software DIgSILENT PowerFactory. On the Ethiopian electric power corporation side, after having collected sufficient data for the analysis, the grid network is modeled. In the model, a fault ride-through (FRT) capability of the plant is studied by applying 3-phase short circuit on the grid terminal near the wind farm. The results show that the Ashegoda wind farm can ride from voltage deep within a short time and the active and reactive power performance of the wind farm is also promising.Keywords: squirrel cage induction generator, active and reactive power, DIgSILENT PowerFactory, fault ride-through capability, 3-phase short circuit
Procedia PDF Downloads 1798979 Field Synergy Analysis of Combustion Characteristics in the Afterburner of Solid Oxide Fuel Cell System
Authors: Shing-Cheng Chang, Cheng-Hao Yang, Wen-Sheng Chang, Chih-Chia Lin, Chun-Han Li
Abstract:
The solid oxide fuel cell (SOFC) is a promising green technology which can achieve a high electrical efficiency. Due to the high operating temperature of SOFC stack, the off-gases at high temperature from anode and cathode outlets are introduced into an afterburner to convert the chemical energy into thermal energy by combustion. The heat is recovered to preheat the fresh air and fuel gases before they pass through the stack during the SOFC power generation system operation. For an afterburner of the SOFC system, the temperature control with a good thermal uniformity is important. A burner with a well-designed geometry usually can achieve a satisfactory performance. To design an afterburner for an SOFC system, the computational fluid dynamics (CFD) simulation is adoptable. In this paper, the hydrogen combustion characteristics in an afterburner with simple geometry are studied by using CFD. The burner is constructed by a cylinder chamber with the configuration of a fuel gas inlet, an air inlet, and an exhaust outlet. The flow field and temperature distributions inside the afterburner under different fuel and air flow rates are analyzed. To improve the temperature uniformity of the afterburner during the SOFC system operation, the flow paths of anode/cathode off-gases are varied by changing the positions of fuels and air inlet channel to improve the heat and flow field synergy in the burner furnace. Because the air flow rate is much larger than the fuel gas, the flow structure and heat transfer in the afterburner is dominated by the air flow path. The present work studied the effects of fluid flow structures on the combustion characteristics of an SOFC afterburner by three simulation models with a cylindrical combustion chamber and a tapered outlet. All walls in the afterburner are assumed to be no-slip and adiabatic. In each case, two set of parameters are simulated to study the transport phenomena of hydrogen combustion. The equivalence ratios are in the range of 0.08 to 0.1. Finally, the pattern factor for the simulation cases is calculated to investigate the effect of gas inlet locations on the temperature uniformity of the SOFC afterburner. The results show that the temperature uniformity of the exhaust gas can be improved by simply adjusting the position of the gas inlet. The field synergy analysis indicates the design of the fluid flow paths should be in the way that can significantly contribute to the heat transfer, i.e. the field synergy angle should be as small as possible. In the study cases, the averaged synergy angle of the burner is about 85̊, 84̊, and 81̊ respectively.Keywords: afterburner, combustion, field synergy, solid oxide fuel cell
Procedia PDF Downloads 1378978 A BERT-Based Model for Financial Social Media Sentiment Analysis
Authors: Josiel Delgadillo, Johnson Kinyua, Charles Mutigwe
Abstract:
The purpose of sentiment analysis is to determine the sentiment strength (e.g., positive, negative, neutral) from a textual source for good decision-making. Natural language processing in domains such as financial markets requires knowledge of domain ontology, and pre-trained language models, such as BERT, have made significant breakthroughs in various NLP tasks by training on large-scale un-labeled generic corpora such as Wikipedia. However, sentiment analysis is a strong domain-dependent task. The rapid growth of social media has given users a platform to share their experiences and views about products, services, and processes, including financial markets. StockTwits and Twitter are social networks that allow the public to express their sentiments in real time. Hence, leveraging the success of unsupervised pre-training and a large amount of financial text available on social media platforms could potentially benefit a wide range of financial applications. This work is focused on sentiment analysis using social media text on platforms such as StockTwits and Twitter. To meet this need, SkyBERT, a domain-specific language model pre-trained and fine-tuned on financial corpora, has been developed. The results show that SkyBERT outperforms current state-of-the-art models in financial sentiment analysis. Extensive experimental results demonstrate the effectiveness and robustness of SkyBERT.Keywords: BERT, financial markets, Twitter, sentiment analysis
Procedia PDF Downloads 1578977 Multi-Temporal Cloud Detection and Removal in Satellite Imagery for Land Resources Investigation
Authors: Feng Yin
Abstract:
Clouds are inevitable contaminants in optical satellite imagery, and prevent the satellite imaging systems from acquiring clear view of the earth surface. The presence of clouds in satellite imagery bring negative influences for remote sensing land resources investigation. As a consequence, detecting the locations of clouds in satellite imagery is an essential preprocessing step, and further remove the existing clouds is crucial for the application of imagery. In this paper, a multi-temporal based satellite imagery cloud detection and removal method is proposed, which will be used for large-scale land resource investigation. The proposed method is mainly composed of four steps. First, cloud masks are generated for cloud contaminated images by single temporal cloud detection based on multiple spectral features. Then, a cloud-free reference image of target areas is synthesized by weighted averaging time-series images in which cloud pixels are ignored. Thirdly, the refined cloud detection results are acquired by multi-temporal analysis based on the reference image. Finally, detected clouds are removed via multi-temporal linear regression. The results of a case application in Hubei province indicate that the proposed multi-temporal cloud detection and removal method is effective and promising for large-scale land resource investigation.Keywords: cloud detection, cloud remove, multi-temporal imagery, land resources investigation
Procedia PDF Downloads 2838976 Microsimulation of Potential Crashes as a Road Safety Indicator
Authors: Vittorio Astarita, Giuseppe Guido, Vincenzo Pasquale Giofre, Alessandro Vitale
Abstract:
Traffic microsimulation has been used extensively to evaluate consequences of different traffic planning and control policies in terms of travel time delays, queues, pollutant emissions, and every other common measured performance while at the same time traffic safety has not been considered in common traffic microsimulation packages as a measure of performance for different traffic scenarios. Vehicle conflict techniques that were introduced at intersections in the early traffic researches carried out at the General Motor laboratory in the USA and in the Swedish traffic conflict manual have been applied to vehicles trajectories simulated in microscopic traffic simulators. The concept is that microsimulation can be used as a base for calculating the number of conflicts that will define the safety level of a traffic scenario. This allows engineers to identify unsafe road traffic maneuvers and helps in finding the right countermeasures that can improve safety. Unfortunately, most commonly used indicators do not consider conflicts between single vehicles and roadside obstacles and barriers. A great number of vehicle crashes take place with roadside objects or obstacles. Only some recent proposed indicators have been trying to address this issue. This paper introduces a new procedure based on the simulation of potential crash events for the evaluation of safety levels in microsimulation traffic scenarios, which takes into account also potential crashes with roadside objects and barriers. The procedure can be used to define new conflict indicators. The proposed simulation procedure generates with the random perturbation of vehicle trajectories a set of potential crashes which can be evaluated accurately in terms of DeltaV, the energy of the impact, and/or expected number of injuries or casualties. The procedure can also be applied to real trajectories giving birth to new surrogate safety performance indicators, which can be considered as “simulation-based”. The methodology and a specific safety performance indicator are described and applied to a simulated test traffic scenario. Results indicate that the procedure is able to evaluate safety levels both at the intersection level and in the presence of roadside obstacles. The procedure produces results that are expressed in the same unity of measure for both vehicle to vehicle and vehicle to roadside object conflicts. The total energy for a square meter of all generated crash can be used and is shown on the map, for the test network, after the application of a threshold to evidence the most dangerous points. Without any detailed calibration of the microsimulation model and without any calibration of the parameters of the procedure (standard values have been used), it is possible to identify dangerous points. A preliminary sensitivity analysis has shown that results are not dependent on the different energy thresholds and different parameters of the procedure. This paper introduces a specific new procedure and the implementation in the form of a software package that is able to assess road safety, also considering potential conflicts with roadside objects. Some of the principles that are at the base of this specific model are discussed. The procedure can be applied on common microsimulation packages once vehicle trajectories and the positions of roadside barriers and obstacles are known. The procedure has many calibration parameters and research efforts will have to be devoted to make confrontations with real crash data in order to obtain the best parameters that have the potential of giving an accurate evaluation of the risk of any traffic scenario.Keywords: road safety, traffic, traffic safety, traffic simulation
Procedia PDF Downloads 1398975 Attitudes toward Cultural Diversity: A Study of Russian Teachers
Authors: Rezeda Khairutdinova, Chulpan Gromova, Dina Birman
Abstract:
The paper presents results of an exploratory study of teachers’ social attitudes toward ethnic and religious diversity, and variables influencing such attitudes. The study was conducted in Russia and is focused on school teachers, given their special role in culturally diverse modern societies. Using the social distance scale (adapted from Bogardus, 1926), we sampled 355 school teachers from two Russian regions known for their high cultural diversity: Moscow and Moscow region, Kazan and Republic of Tatarstan, and measured teacher attitudes toward large religious and ethnic groups (including migrants). The findings showed that teachers hold mostly tolerant attitudes with respect to members belonging to culturally and religiously diverse groups. The social distance between respondents and native residents of their region was minimal. Social distance was larger with respect to such ethnic groups as migrants from the Caucasian and Central Asian countries. The analysis of perception of different religious groups also showed positive attitudes toward these groups and readiness to interact with them. Teacher attitudes were not related to their age or ethnicity. The findings indicated that there was a significant correlation between social distance and the region of residence on the one hand, and between social distance and the degree of social interaction on the other. The results of this study will be used to develop a large-scale study to contribute to a better understanding of teacher attitudes toward immigrant students in public schools.Keywords: attitudes of teachers, cultural diversity, migrants, social distance
Procedia PDF Downloads 1388974 DCDNet: Lightweight Document Corner Detection Network Based on Attention Mechanism
Authors: Kun Xu, Yuan Xu, Jia Qiao
Abstract:
The document detection plays an important role in optical character recognition and text analysis. Because the traditional detection methods have weak generalization ability, and deep neural network has complex structure and large number of parameters, which cannot be well applied in mobile devices, this paper proposes a lightweight Document Corner Detection Network (DCDNet). DCDNet is a two-stage architecture. The first stage with Encoder-Decoder structure adopts depthwise separable convolution to greatly reduce the network parameters. After introducing the Feature Attention Union (FAU) module, the second stage enhances the feature information of spatial and channel dim and adaptively adjusts the size of receptive field to enhance the feature expression ability of the model. Aiming at solving the problem of the large difference in the number of pixel distribution between corner and non-corner, Weighted Binary Cross Entropy Loss (WBCE Loss) is proposed to define corner detection problem as a classification problem to make the training process more efficient. In order to make up for the lack of Dataset of document corner detection, a Dataset containing 6620 images named Document Corner Detection Dataset (DCDD) is made. Experimental results show that the proposed method can obtain fast, stable and accurate detection results on DCDD.Keywords: document detection, corner detection, attention mechanism, lightweight
Procedia PDF Downloads 3568973 Building Biodiversity Conservation Plans Robust to Human Land Use Uncertainty
Authors: Yingxiao Ye, Christopher Doehring, Angelos Georghiou, Hugh Robinson, Phebe Vayanos
Abstract:
Human development is a threat to biodiversity, and conservation organizations (COs) are purchasing land to protect areas for biodiversity preservation. However, COs have limited budgets and thus face hard prioritization decisions that are confounded by uncertainty in future human land use. This research proposes a data-driven sequential planning model to help COs choose land parcels that minimize the uncertain human impact on biodiversity. The proposed model is robust to uncertain development, and the sequential decision-making process is adaptive, allowing land purchase decisions to adapt to human land use as it unfolds. The cellular automata model is leveraged to simulate land use development based on climate data, land characteristics, and development threat index from NASA Socioeconomic Data and Applications Center. This simulation is used to model uncertainty in the problem. This research leverages state-of-the-art techniques in the robust optimization literature to propose a computationally tractable reformulation of the model, which can be solved routinely by off-the-shelf solvers like Gurobi or CPLEX. Numerical results based on real data from the Jaguar in Central and South America show that the proposed method reduces conservation loss by 19.46% on average compared to standard approaches such as MARXAN used in practice for biodiversity conservation. Our method may better help guide the decision process in land acquisition and thereby allow conservation organizations to maximize the impact of limited resources.Keywords: data-driven robust optimization, biodiversity conservation, uncertainty simulation, adaptive sequential planning
Procedia PDF Downloads 2148972 Head and Neck Extranodal Rosai-Dorfman Disease- Utility of immunohistochemistry
Authors: Beverly Wang
Abstract:
Background: Rosai-Dorfman disease (RDD), aka sinus histiocytosis with massive lymphadenopathy, is a rare, idiopathic histiocytic proliferative disorder. Although RDD can be seen involving the head and neck lymph nodes, rarely it can affect other extranodal sites. It present 3 unique cases of RDD affecting the nasal cavity, paranasal sinuses, and ear canal. The initial clinical presentation on two cases mimicked a malignant neoplasm. The 3rd case of RDD co-existed with a cholesteatoma of the ear canal. The clinical presentation, histology and immunohistochemical stains, and radiographic findings are discussed. Design: An overview of 3 cases of RDD affected sinonasal cavity and ear canal from UCI Medical Center was conducted. Case 1: A 61 year old male complaining of breathing difficulty presented with bilateral polypoid sinonasal masses and severe nasal obstruction. The masses elevated the nasal floor, and involved the anterior nasal septum to lateral wall. It was endoscopically excised. At intraoperative consultation, frozen section reported a pleomorphic spindle cell neoplasm with scattered large atypical spindle cells, resembling a high grade sarcoma. Case 2: A 46 year old male presented with recurrent bilateral maxillary chronic sinusitis with mass formation, clinically suspicious for malignant lymphoma. Excisional tissue sample showed large irregular spindled histiocytes with abundant granular and vacuolated cytoplasm. Case 3: A 36 year old female with a history of asthma initially presented with left-sided chronic otalgia, occasional nausea, vertigo, and fluctuating pain exacerbated by head movement and temperature changes. CT scan revealed an external auditory canal mass extending to the middle ear, coexisting with a small cholesteatoma. Results: The morphology of all cases revealed large atypical spindled histiocytes resembling fibrohistiocytic or myofibroblastic proliferative neoplasms. Scattered emperipolesis was seen. All 3 cases were confirmed as extranodal sinus RDD, confirmed by immunohistochemistry. The large atypical cells were positive for S100, CD68, and CD163. No evidence for malignancy was identified. Case 3 showed concurrent RDD co-existing with a cholesteatoma. Conclusion: Due to its rarity and variable clinical presentations, the diagnosis of RDD is seldom clinically considered. Extranodal sinus RDD morphologically can be pitfall as mimicker of spindly neoplasm, especially at intraoperative consultation. It can create diagnostic and therapeutic challenges. Correlation of radiological findings with histologic features will help to reach the diagnosis.Keywords: head and neck, extranodal, rosai-dorfman disease, mimicker, immunohistochemistry
Procedia PDF Downloads 858971 Experimental Simulation Set-Up for Validating Out-Of-The-Loop Mitigation when Monitoring High Levels of Automation in Air Traffic Control
Authors: Oliver Ohneiser, Francesca De Crescenzio, Gianluca Di Flumeri, Jan Kraemer, Bruno Berberian, Sara Bagassi, Nicolina Sciaraffa, Pietro Aricò, Gianluca Borghini, Fabio Babiloni
Abstract:
An increasing degree of automation in air traffic will also change the role of the air traffic controller (ATCO). ATCOs will fulfill significantly more monitoring tasks compared to today. However, this rather passive role may lead to Out-Of-The-Loop (OOTL) effects comprising vigilance decrement and less situation awareness. The project MINIMA (Mitigating Negative Impacts of Monitoring high levels of Automation) has conceived a system to control and mitigate such OOTL phenomena. In order to demonstrate the MINIMA concept, an experimental simulation set-up has been designed. This set-up consists of two parts: 1) a Task Environment (TE) comprising a Terminal Maneuvering Area (TMA) simulator as well as 2) a Vigilance and Attention Controller (VAC) based on neurophysiological data recording such as electroencephalography (EEG) and eye-tracking devices. The current vigilance level and the attention focus of the controller are measured during the ATCO’s active work in front of the human machine interface (HMI). The derived vigilance level and attention trigger adaptive automation functionalities in the TE to avoid OOTL effects. This paper describes the full-scale experimental set-up and the component development work towards it. Hence, it encompasses a pre-test whose results influenced the development of the VAC as well as the functionalities of the final TE and the two VAC’s sub-components.Keywords: automation, human factors, air traffic controller, MINIMA, OOTL (Out-Of-The-Loop), EEG (Electroencephalography), HMI (Human Machine Interface)
Procedia PDF Downloads 3878970 Parallel Pipelined Conjugate Gradient Algorithm on Heterogeneous Platforms
Authors: Sergey Kopysov, Nikita Nedozhogin, Leonid Tonkov
Abstract:
The article presents a parallel iterative solver for large sparse linear systems which can be used on a heterogeneous platform. Traditionally, the problem of solving linear systems does not scale well on multi-CPU/multi-GPUs clusters. For example, most of the attempts to implement the classical conjugate gradient method were at best counted in the same amount of time as the problem was enlarged. The paper proposes the pipelined variant of the conjugate gradient method (PCG), a formulation that is potentially better suited for hybrid CPU/GPU computing since it requires only one synchronization point per one iteration instead of two for standard CG. The standard and pipelined CG methods need the vector entries generated by the current GPU and other GPUs for matrix-vector products. So the communication between GPUs becomes a major performance bottleneck on multi GPU cluster. The article presents an approach to minimize the communications between parallel parts of algorithms. Additionally, computation and communication can be overlapped to reduce the impact of data exchange. Using the pipelined version of the CG method with one synchronization point, the possibility of asynchronous calculations and communications, load balancing between the CPU and GPU for solving the large linear systems allows for scalability. The algorithm is implemented with the combined use of technologies: MPI, OpenMP, and CUDA. We show that almost optimum speed up on 8-CPU/2GPU may be reached (relatively to a one GPU execution). The parallelized solver achieves a speedup of up to 5.49 times on 16 NVIDIA Tesla GPUs, as compared to one GPU.Keywords: conjugate gradient, GPU, parallel programming, pipelined algorithm
Procedia PDF Downloads 1678969 Quantification of Soft Tissue Artefacts Using Motion Capture Data and Ultrasound Depth Measurements
Authors: Azadeh Rouhandeh, Chris Joslin, Zhen Qu, Yuu Ono
Abstract:
The centre of rotation of the hip joint is needed for an accurate simulation of the joint performance in many applications such as pre-operative planning simulation, human gait analysis, and hip joint disorders. In human movement analysis, the hip joint center can be estimated using a functional method based on the relative motion of the femur to pelvis measured using reflective markers attached to the skin surface. The principal source of errors in estimation of hip joint centre location using functional methods is soft tissue artefacts due to the relative motion between the markers and bone. One of the main objectives in human movement analysis is the assessment of soft tissue artefact as the accuracy of functional methods depends upon it. Various studies have described the movement of soft tissue artefact invasively, such as intra-cortical pins, external fixators, percutaneous skeletal trackers, and Roentgen photogrammetry. The goal of this study is to present a non-invasive method to assess the displacements of the markers relative to the underlying bone using optical motion capture data and tissue thickness from ultrasound measurements during flexion, extension, and abduction (all with knee extended) of the hip joint. Results show that the artefact skin marker displacements are non-linear and larger in areas closer to the hip joint. Also marker displacements are dependent on the movement type and relatively larger in abduction movement. The quantification of soft tissue artefacts can be used as a basis for a correction procedure for hip joint kinematics.Keywords: hip joint center, motion capture, soft tissue artefact, ultrasound depth measurement
Procedia PDF Downloads 2868968 Folding of β-Structures via the Polarized Structure-Specific Backbone Charge (PSBC) Model
Authors: Yew Mun Yip, Dawei Zhang
Abstract:
Proteins are the biological machinery that executes specific vital functions in every cell of the human body by folding into their 3D structures. When a protein misfolds from its native structure, the machinery will malfunction and lead to misfolding diseases. Although in vitro experiments are able to conclude that the mutations of the amino acid sequence lead to incorrectly folded protein structures, these experiments are unable to decipher the folding process. Therefore, molecular dynamic (MD) simulations are employed to simulate the folding process so that our improved understanding of the folding process will enable us to contemplate better treatments for misfolding diseases. MD simulations make use of force fields to simulate the folding process of peptides. Secondary structures are formed via the hydrogen bonds formed between the backbone atoms (C, O, N, H). It is important that the hydrogen bond energy computed during the MD simulation is accurate in order to direct the folding process to the native structure. Since the atoms involved in a hydrogen bond possess very dissimilar electronegativities, the more electronegative atom will attract greater electron density from the less electronegative atom towards itself. This is known as the polarization effect. Since the polarization effect changes the electron density of the two atoms in close proximity, the atomic charges of the two atoms should also vary based on the strength of the polarization effect. However, the fixed atomic charge scheme in force fields does not account for the polarization effect. In this study, we introduce the polarized structure-specific backbone charge (PSBC) model. The PSBC model accounts for the polarization effect in MD simulation by updating the atomic charges of the backbone hydrogen bond atoms according to equations derived between the amount of charge transferred to the atom and the length of the hydrogen bond, which are calculated from quantum-mechanical calculations. Compared to other polarizable models, the PSBC model does not require quantum-mechanical calculations of the peptide simulated at every time-step of the simulation and maintains the dynamic update of atomic charges, thereby reducing the computational cost and time while accounting for the polarization effect dynamically at the same time. The PSBC model is applied to two different β-peptides, namely the Beta3s/GS peptide, a de novo designed three-stranded β-sheet whose structure is folded in vitro and studied by NMR, and the trpzip peptides, a double-stranded β-sheet where a correlation is found between the type of amino acids that constitute the β-turn and the β-propensity.Keywords: hydrogen bond, polarization effect, protein folding, PSBC
Procedia PDF Downloads 2718967 CFD Analysis of the Blood Flow in Left Coronary Bifurcation with Variable Angulation
Authors: Midiya Khademi, Ali Nikoo, Shabnam Rahimnezhad Baghche Jooghi
Abstract:
Cardiovascular diseases (CVDs) are the main cause of death globally. Most CVDs can be prevented by avoiding habitual risk factors. Separate from the habitual risk factors, there are some inherent factors in each individual that can increase the risk potential of CVDs. Vessel shapes and geometry are influential factors, having great impact on the blood flow and the hemodynamic behavior of the vessels. In the present study, the influence of bifurcation angle on blood flow characteristics is studied. In order to approach this topic, by simplifying the details of the bifurcation, three models with angles 30°, 45°, and 60° were created, then by using CFD analysis, the response of these models for stable flow and pulsatile flow was studied. In the conducted simulation in order to eliminate the influence of other geometrical factors, only the angle of the bifurcation was changed and other parameters remained constant during the research. Simulations are conducted under dynamic and stable condition. In the stable flow simulation, a steady velocity of 0.17 m/s at the inlet plug was maintained and in dynamic simulations, a typical LAD flow waveform is implemented. The results show that the bifurcation angle has an influence on the maximum speed of the flow. In the stable flow condition, increasing the angle lead to decrease the maximum flow velocity. In the dynamic flow simulations, increasing the bifurcation angle lead to an increase in the maximum velocity. Since blood flow has pulsatile characteristics, using a uniform velocity during the simulations can lead to a discrepancy between the actual results and the calculated results.Keywords: coronary artery, cardiovascular disease, bifurcation, atherosclerosis, CFD, artery wall shear stress
Procedia PDF Downloads 1688966 The Assessment of Natural Ventilation Performance for Thermal Comfort in Educational Space: A Case Study of Design Studio in the Arab Academy for Science and Technology, Alexandria
Authors: Alaa Sarhan, Rania Abd El Gelil, Hana Awad
Abstract:
Through the last decades, the impact of thermal comfort on the working performance of users and occupants of an indoor space has been a concern. Research papers concluded that natural ventilation quality directly impacts the levels of thermal comfort. Natural ventilation must be put into account during the design process in order to improve the inhabitant's efficiency and productivity. One example of daily long-term occupancy spaces is educational facilities. Many individuals spend long times receiving a considerable amount of knowledge, and it takes additional time to apply this knowledge. Thus, this research is concerned with user's level of thermal comfort in design studios of educational facilities. The natural ventilation quality in spaces is affected by a number of parameters including orientation, opening design, and many other factors. This research aims to investigate the conscious manipulation of the physical parameters of the spaces and its impact on natural ventilation performance which subsequently affects thermal comfort of users. The current research uses inductive and deductive methods to define natural ventilation design considerations, which are used in a field study in a studio in the university building in Alexandria (AAST) to evaluate natural ventilation performance through analyzing and comparing the current case to the developed framework and conducting computational fluid dynamics simulation. Results have proved that natural ventilation performance is successful by only 50% of the natural ventilation design framework; these results are supported by CFD simulation.Keywords: educational buildings, natural ventilation, , mediterranean climate, thermal comfort
Procedia PDF Downloads 2298965 Reconstructability Analysis for Landslide Prediction
Authors: David Percy
Abstract:
Landslides are a geologic phenomenon that affects a large number of inhabited places and are constantly being monitored and studied for the prediction of future occurrences. Reconstructability analysis (RA) is a methodology for extracting informative models from large volumes of data that work exclusively with discrete data. While RA has been used in medical applications and social science extensively, we are introducing it to the spatial sciences through applications like landslide prediction. Since RA works exclusively with discrete data, such as soil classification or bedrock type, working with continuous data, such as porosity, requires that these data are binned for inclusion in the model. RA constructs models of the data which pick out the most informative elements, independent variables (IVs), from each layer that predict the dependent variable (DV), landslide occurrence. Each layer included in the model retains its classification data as a primary encoding of the data. Unlike other machine learning algorithms that force the data into one-hot encoding type of schemes, RA works directly with the data as it is encoded, with the exception of continuous data, which must be binned. The usual physical and derived layers are included in the model, and testing our results against other published methodologies, such as neural networks, yields accuracy that is similar but with the advantage of a completely transparent model. The results of an RA session with a data set are a report on every combination of variables and their probability of landslide events occurring. In this way, every combination of informative state combinations can be examined.Keywords: reconstructability analysis, machine learning, landslides, raster analysis
Procedia PDF Downloads 738964 Small Scale Solar-Photovoltaic and Wind Pump-Storage Hydroelectric System for Remote Residential Applications
Authors: Seshi Reddy Kasu, Florian Misoc
Abstract:
The use of hydroelectric pump-storage system at large scale, MW-size systems, is already widespread around the world. Designed for large scale applications, pump-storage station can be scaled-down for small, remote residential applications. Given the cost and complexity associated with installing a substation further than 100 miles from the main transmission lines, a remote, independent and self-sufficient system is by far the most feasible solution. This article is aiming at the design of wind and solar power generating system, by means of pumped-storage to replace the wind and/or solar power systems with a battery bank energy storage. Wind and solar pumped-storage power generating system can reduce the cost of power generation system, according to the user's electricity load and resource condition and also can ensure system reliability of power supply. Wind and solar pumped-storage power generation system is well suited for remote residential applications with intermittent wind and/or solar energy. This type of power systems, installed in these locations, could be a very good alternative, with economic benefits and positive social effects. The advantage of pumped storage power system, where wind power regulation is calculated, shows that a significant smoothing of the produced power is obtained, resulting in a power-on-demand system’s capability, concomitant to extra economic benefits.Keywords: battery bank, photo-voltaic, pump-storage, wind energy
Procedia PDF Downloads 5978963 Construction and Validation of a Hybrid Lumbar Spine Model for the Fast Evaluation of Intradiscal Pressure and Mobility
Authors: Dicko Ali Hamadi, Tong-Yette Nicolas, Gilles Benjamin, Faure Francois, Palombi Olivier
Abstract:
A novel hybrid model of the lumbar spine, allowing fast static and dynamic simulations of the disc pressure and the spine mobility, is introduced in this work. Our contribution is to combine rigid bodies, deformable finite elements, articular constraints, and springs into a unique model of the spine. Each vertebra is represented by a rigid body controlling a surface mesh to model contacts on the facet joints and the spinous process. The discs are modeled using a heterogeneous tetrahedral finite element model. The facet joints are represented as elastic joints with six degrees of freedom, while the ligaments are modeled using non-linear one-dimensional elastic elements. The challenge we tackle is to make these different models efficiently interact while respecting the principles of Anatomy and Mechanics. The mobility, the intradiscal pressure, the facet joint force and the instantaneous center of rotation of the lumbar spine are validated against the experimental and theoretical results of the literature on flexion, extension, lateral bending as well as axial rotation. Our hybrid model greatly simplifies the modeling task and dramatically accelerates the simulation of pressure within the discs, as well as the evaluation of the range of motion and the instantaneous centers of rotation, without penalizing precision. These results suggest that for some types of biomechanical simulations, simplified models allow far easier modeling and faster simulations compared to usual full-FEM approaches without any loss of accuracy.Keywords: hybrid, modeling, fast simulation, lumbar spine
Procedia PDF Downloads 3078962 Leptin Levels in Cord Blood and Their Associations with the Birth of Small, Large and Appropriate for Gestational Age Infants in Southern Sri Lanka
Authors: R. P. Hewawasam, M. H. A. D. de Silva, M. A. G. Iresha
Abstract:
In recent years childhood obesity has increased to pan-epidemic proportions along with a concomitant increase in obesity-associated morbidity. Birth weight is an important determinant of later adult health, with neonates at both ends of the birth weight spectrum at risk of future health complications. Consequently, infants who are born large for gestational age (LGA) are more likely to be obese in childhood and adolescence and are at risk of cardiovascular and metabolic complications later in life. Adipose tissue plays a role in linking events in fetal growth to the subsequent development of adult diseases. In addition to its role as a storage depot for fat, adipose tissue produces and secrets a number of hormones of importance in modulating metabolism and energy homeostasis. Cord blood leptin level has been positively correlated with fetal adiposity at birth. It is established that Asians have lower skeletal muscle mass, low bone mineral content and excess body fat for a given body mass index indicating a genetic predisposition in the occurrence of obesity. To our knowledge, studies have never been conducted in Sri Lanka to determine the relationship between adipocytokine profile in cord blood and anthropometric parameters in newborns. Thus, the objective of this study is to establish the above relationship for the Sri Lankan population to implement awareness programs to minimize childhood obesity in the future. Umbilical cord blood was collected from 90 newborns (Male 40, Female 50; gestational age 35-42 weeks) after double clamping the umbilical cord before separation of the placenta and the concentration of leptin was measured by ELISA technique. Anthropometric parameters of the newborn such as birth weight, length, ponderal index, occipital frontal, chest, hip and calf circumferences were measured. Pearson’s correlation was used to assess the relationship between leptin and anthropometric parameters while the Mann-Whitney U test was used to assess the differences in cord blood leptin levels between small for gestational age (SGA), appropriate for gestational age (AGA) and LGA infants. There was a significant difference (P < 0.05) between the cord blood leptin concentrations of LGA infants (12.67 ng/mL ± 2.34) and AGA infants (7.10 ng/mL ± 0.90). However, a significant difference was not observed between leptin levels of SGA infants (8.86 ng/mL ± 0.70) and AGA infants. In both male and female neonates, umbilical leptin levels showed significant positive correlations (P < 0.05) with birth weight of the newborn, pre-pregnancy maternal weight and pre pregnancy BMI between the infants of large and appropriate for gestational ages. Increased concentrations of leptin levels in the cord blood of large for gestational age infants suggest that they may be involved in regulating fetal growth. Leptin concentration of Sri Lankan population was not significantly deviated from published data of Asian populations. Fetal leptin may be an important predictor of neonatal adiposity; however, interventional studies are required to assess its impact on the possible risk of childhood obesity.Keywords: appropriate for gestational age, childhood obesity, leptin, anthropometry
Procedia PDF Downloads 1928961 Combined Effect of Moving and Open Boundary Conditions in the Simulation of Inland Inundation Due to Far Field Tsunami
Authors: M. Ashaque Meah, Md. Fazlul Karim, M. Shah Noor, Nazmun Nahar Papri, M. Khalid Hossen, M. Ismoen
Abstract:
Tsunami and inundation modelling due to far field tsunami propagation in a limited area is a very challenging numerical task because it involves many aspects such as the formation of various types of waves and the irregularities of coastal boundaries. To compute the effect of far field tsunami and extent of inland inundation due to far field tsunami along the coastal belts of west coast of Malaysia and Southern Thailand, a formulated boundary condition and a moving boundary condition are simultaneously used. In this study, a boundary fitted curvilinear grid system is used in order to incorporate the coastal and island boundaries accurately as the boundaries of the model domain are curvilinear in nature and the bending is high. The tsunami response of the event 26 December 2004 along the west open boundary of the model domain is computed to simulate the effect of far field tsunami. Based on the data of the tsunami source at the west open boundary of the model domain, a boundary condition is formulated and applied to simulate the tsunami response along the coastal and island boundaries. During the simulation process, a moving boundary condition is initiated instead of fixed vertical seaside wall. The extent of inland inundation and tsunami propagation pattern are computed. Some comparisons are carried out to test the validation of the simultaneous use of the two boundary conditions. All simulations show excellent agreement with the data of observation.Keywords: open boundary condition, moving boundary condition, boundary-fitted curvilinear grids, far-field tsunami, shallow water equations, tsunami source, Indonesian tsunami of 2004
Procedia PDF Downloads 4488960 Microfluidic Construction of Responsive Photonic Microcapsules for Microsensors
Authors: Lingling Shui, Shuting Xie
Abstract:
As alternatives to electronic devices, optically active structures from responsive nanomaterials offer great opportunity buildup smart functional sensors. Hereby, we report on droplet microfluidics enabled construction and application of photonic microcapsules (PMCs) for colorimetric temperature microsensors, enabling miniaturization for injectable local micro-area sensing and integration for large-area sensing. Monodispersed PMCs are produced by in-situ photopolymerization of hydrogel shells of cholesteric liquid crystal (CLC)-in-water-in-oil double emulsion droplets prepared using microfluidic devices, with controllable physical structures and chemical compositions. Constructed PMCs exhibit thermal responsive structural color according to the selective Bragg reflection of CLC’s periodical helical structures within the microdroplet’s spherical confinement. Constructed PMCs with tunable size and composition have been successfully applied for monitoring the living cell extracellular temperature via co-incubation with cell suspension, and for detecting human body temperature via a flexible device from assembled PMCs. These PMCs could be flexibly applied in either micro-environment or large-area surface, enabling wide applications for precision temperature monitoring biological activities (e.g. cells or organs), optoelectronic devices working conditions (e.g. temperature indicators under extreme conditions), and etc.Keywords: droplet, microfluidics, assembly, soft materials, microsensor
Procedia PDF Downloads 848959 Life Stage Customer Segmentation by Fine-Tuning Large Language Models
Authors: Nikita Katyal, Shaurya Uppal
Abstract:
This paper tackles the significant challenge of accurately classifying customers within a retailer’s customer base. Accurate classification is essential for developing targeted marketing strategies that effectively engage this important demographic. To address this issue, we propose a method that utilizes Large Language Models (LLMs). By employing LLMs, we analyze the metadata associated with product purchases derived from historical data to identify key product categories that act as distinguishing factors. These categories, such as baby food, eldercare products, or family-sized packages, offer valuable insights into the likely household composition of customers, including families with babies, families with kids/teenagers, families with pets, households caring for elders, or mixed households. We segment high-confidence customers into distinct categories by integrating historical purchase behavior with LLM-powered product classification. This paper asserts that life stage segmentation can significantly enhance e-commerce businesses’ ability to target the appropriate customers with tailored products and campaigns, thereby augmenting sales and improving customer retention. Additionally, the paper details the data sources, model architecture, and evaluation metrics employed for the segmentation task.Keywords: LLMs, segmentation, product tags, fine-tuning, target segments, marketing communication
Procedia PDF Downloads 318958 Accurate Positioning Method of Indoor Plastering Robot Based on Line Laser
Authors: Guanqiao Wang, Hongyang Yu
Abstract:
There is a lot of repetitive work in the traditional construction industry. These repetitive tasks can significantly improve production efficiency by replacing manual tasks with robots. There- fore, robots appear more and more frequently in the construction industry. Navigation and positioning are very important tasks for construction robots, and the requirements for accuracy of positioning are very high. Traditional indoor robots mainly use radiofrequency or vision methods for positioning. Compared with ordinary robots, the indoor plastering robot needs to be positioned closer to the wall for wall plastering, so the requirements for construction positioning accuracy are higher, and the traditional navigation positioning method has a large error, which will cause the robot to move. Without the exact position, the wall cannot be plastered, or the error of plastering the wall is large. A new positioning method is proposed, which is assisted by line lasers and uses image processing-based positioning to perform more accurate positioning on the traditional positioning work. In actual work, filter, edge detection, Hough transform and other operations are performed on the images captured by the camera. Each time the position of the laser line is found, it is compared with the standard value, and the position of the robot is moved or rotated to complete the positioning work. The experimental results show that the actual positioning error is reduced to less than 0.5 mm by this accurate positioning method.Keywords: indoor plastering robot, navigation, precise positioning, line laser, image processing
Procedia PDF Downloads 1518957 Applying the CA Systems in Education Process
Authors: A. Javorova, M. Matusova, K. Velisek
Abstract:
The article summarizes the experience of laboratory technical subjects teaching methodologies using a number of software products. The main aim is to modernize the teaching process in accordance with the requirements of today - based on information technology. Increasing of the study attractiveness and effectiveness is due to the introduction of CA technologies in the learning process. This paper discussed the areas where individual CA system used. Environment using CA systems are briefly presented in each chapter.Keywords: education, CA systems, simulation, technology
Procedia PDF Downloads 4008956 Gilgel Gibe III: Dam-Induced Displacement in Ethiopia and Kenya
Authors: Jonny Beirne
Abstract:
Hydropower developments have come to assume an important role within the Ethiopian government's overall development strategy for the country during the last ten years. The Gilgel Gibe III on the Omo river, due to become operational in September 2014, represents the most ambitious, and controversial, of these projects to date. Further aspects of the government's national development strategy include leasing vast areas of designated 'unused' land for large-scale commercial agricultural projects and 'voluntarily' villagizing scattered, semi-nomadic agro-pastoralist groups to centralized settlements so as to use land and water more efficiently and to better provide essential social services such as education and healthcare. The Lower Omo valley, along the Omo River, is one of the sites of this villagization programme as well as of these large-scale commercial agricultural projects which are made possible owing to the regulation of the river's flow by Gibe III. Though the Ethiopian government cite many positive aspects of these agricultural and hydropower developments there are still expected to be serious regional and transnational effects, including on migration flows, in an area already characterized by increasing climatic vulnerability with attendant population movements and conflicts over scarce resources. The following paper is an attempt to track actual and anticipated migration flows resulting from the construction of Gibe III in the immediate vicinity of the dam, downstream in the Lower Omo Valley and across the border in Kenya around Lake Turkana. In the case of those displaced in the Lower Omo Valley, this will be considered in view of the distinction between voluntary villagization and forced resettlement. The research presented is not primary-source material. Instead, it is drawn from the reports and assessments of the Ethiopian government, rights-based groups, and academic researchers as well as media articles. It is hoped that this will serve to draw greater attention to the issue and encourage further methodological research on the dynamics of dam constructions (and associated large-scale irrigation schemes) on migration flows and on the ultimate experience of displacement and resettlement for environmental migrants in the region.Keywords: forced displacement, voluntary resettlement, migration, human rights, human security, land grabs, dams, commercial agriculture, pastoralism, ecosystem modification, natural resource conflict, livelihoods, development
Procedia PDF Downloads 383