Search results for: COSMO models
4265 The Effect of Absolute and Relative Deprivation on Homicides in Brazil
Authors: Temidayo James Aransiola, Vania Ceccato, Marcelo Justus
Abstract:
This paper investigates the effect of absolute deprivation (proxy unemployment) and relative deprivation (proxy income inequality) on homicide levels in Brazil. A database from the Brazilian Information System about Mortality and Census of the year 2000 and 2010 was used to estimate negative binomial models of homicide levels controlling for socioeconomic, demographic and geographic factors. Findings show that unemployment and income inequality affect homicides levels and that the effect of the former is more pronounced compared to the latter. Moreover, the combination of income inequality and unemployment exacerbates the overall effect of deprivation on homicide levels.Keywords: deprivation, inequality, interaction, unemployment, violence
Procedia PDF Downloads 1504264 Towards Creative Movie Title Generation Using Deep Neural Models
Authors: Simon Espigolé, Igor Shalyminov, Helen Hastie
Abstract:
Deep machine learning techniques including deep neural networks (DNN) have been used to model language and dialogue for conversational agents to perform tasks, such as giving technical support and also for general chit-chat. They have been shown to be capable of generating long, diverse and coherent sentences in end-to-end dialogue systems and natural language generation. However, these systems tend to imitate the training data and will only generate the concepts and language within the scope of what they have been trained on. This work explores how deep neural networks can be used in a task that would normally require human creativity, whereby the human would read the movie description and/or watch the movie and come up with a compelling, interesting movie title. This task differs from simple summarization in that the movie title may not necessarily be derivable from the content or semantics of the movie description. Here, we train a type of DNN called a sequence-to-sequence model (seq2seq) that takes as input a short textual movie description and some information on e.g. genre of the movie. It then learns to output a movie title. The idea is that the DNN will learn certain techniques and approaches that the human movie titler may deploy that may not be immediately obvious to the human-eye. To give an example of a generated movie title, for the movie synopsis: ‘A hitman concludes his legacy with one more job, only to discover he may be the one getting hit.’; the original, true title is ‘The Driver’ and the one generated by the model is ‘The Masquerade’. A human evaluation was conducted where the DNN output was compared to the true human-generated title, as well as a number of baselines, on three 5-point Likert scales: ‘creativity’, ‘naturalness’ and ‘suitability’. Subjects were also asked which of the two systems they preferred. The scores of the DNN model were comparable to the scores of the human-generated movie title, with means m=3.11, m=3.12, respectively. There is room for improvement in these models as they were rated significantly less ‘natural’ and ‘suitable’ when compared to the human title. In addition, the human-generated title was preferred overall 58% of the time when pitted against the DNN model. These results, however, are encouraging given the comparison with a highly-considered, well-crafted human-generated movie title. Movie titles go through a rigorous process of assessment by experts and focus groups, who have watched the movie. This process is in place due to the large amount of money at stake and the importance of creating an effective title that captures the audiences’ attention. Our work shows progress towards automating this process, which in turn may lead to a better understanding of creativity itself.Keywords: creativity, deep machine learning, natural language generation, movies
Procedia PDF Downloads 3304263 Modeling and Optimizing of Sinker Electric Discharge Machine Process Parameters on AISI 4140 Alloy Steel by Central Composite Rotatable Design Method
Authors: J. Satya Eswari, J. Sekhar Babub, Meena Murmu, Govardhan Bhat
Abstract:
Electrical Discharge Machining (EDM) is an unconventional manufacturing process based on removal of material from a part by means of a series of repeated electrical sparks created by electric pulse generators at short intervals between a electrode tool and the part to be machined emmersed in dielectric fluid. In this paper, a study will be performed on the influence of the factors of peak current, pulse on time, interval time and power supply voltage. The output responses measured were material removal rate (MRR) and surface roughness. Finally, the parameters were optimized for maximum MRR with the desired surface roughness. RSM involves establishing mathematical relations between the design variables and the resulting responses and optimizing the process conditions. RSM is not free from problems when it is applied to multi-factor and multi-response situations. Design of experiments (DOE) technique to select the optimum machining conditions for machining AISI 4140 using EDM. The purpose of this paper is to determine the optimal factors of the electro-discharge machining (EDM) process investigate feasibility of design of experiment techniques. The work pieces used were rectangular plates of AISI 4140 grade steel alloy. The study of optimized settings of key machining factors like pulse on time, gap voltage, flushing pressure, input current and duty cycle on the material removal, surface roughness is been carried out using central composite design. The objective is to maximize the Material removal rate (MRR). Central composite design data is used to develop second order polynomial models with interaction terms. The insignificant coefficients’ are eliminated with these models by using student t test and F test for the goodness of fit. CCD is first used to establish the determine the optimal factors of the electro-discharge machining (EDM) for maximizing the MRR. The responses are further treated through a objective function to establish the same set of key machining factors to satisfy the optimization problem of the electro-discharge machining (EDM) process. The results demonstrate the better performance of CCD data based RSM for optimizing the electro-discharge machining (EDM) process.Keywords: electric discharge machining (EDM), modeling, optimization, CCRD
Procedia PDF Downloads 3444262 Modeling of the Fermentation Process of Enzymatically Extracted Annona muricata L. Juice
Authors: Calister Wingang Makebe, Wilson Agwanande Ambindei, Zangue Steve Carly Desobgo, Abraham Billu, Emmanuel Jong Nso, P. Nisha
Abstract:
Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1, as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics
Procedia PDF Downloads 704261 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks
Authors: Sulemana Ibrahim
Abstract:
Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks
Procedia PDF Downloads 674260 Men's Intimate Violence: Theory and Practice Relationship
Authors: Omer Zvi Shaked
Abstract:
Intimate Partner Violence (IPV) is a widespread social problem. Since the 1970's, and due to political changes resulting from the feminist movement, western society has been changing its attitude towards the phenomenon and has been taking an active approach to reduce its magnitude. Enterprises in the form of legislation, awareness and prevention campaigns, women's shelters, and community intervention programs became more prevalent as years progressed. Although many initiatives were found to be productive, the effectiveness of one, however, remained questionable throughout the years: intervention programs for men's intimate violence. Surveys outline two main intervention models for men's intimate violence. The first is the Duluth model, which argued that men are socialized to be dominant - while women are socialized to be subordinate - and men are therefore required by social imperative to enforce, physically if necessary, their dominance. The Duluth model became the chief authorized intervention program, and some states in the US even regulated it as the standard criminal justice program for men's intimate violence. However, meta-analysis findings demonstrated that based on a partner's reports, Duluth treatment completers have 44% recidivism rate, and between 40% and 85% dropout range. The second model is the Cognitive-Behavioral Model (CBT), which is a highly accepted intervention worldwide. The model argues that cognitive misrepresentations of intimate situations precede violent behaviors frequently when anger predisposition exists. Since anger dysregulation mediates between one's cognitive schemes and violent response, anger regulation became the chief purpose of the intervention. Yet, a meta-analysis found only a 56% risk reduction for CBT interventions. It is, therefore, crucial to understand the background behind the domination of both the Duluth model and CBT interventions. This presentation will discuss the ways in which theoretical conceptualizations of men's intimate violence, as well as ideologies, had contributed to the above-mentioned interventions' wide acceptance, despite known lack of scientific and evidential support. First, the presentation will review the prominent interventions for male intimate violence, the Duluth model, and CBT. Second, the presentation will review the prominent theoretical models explaining men's intimate violence: The Patriarchal model, the Abusive Personality model, and the Post-Traumatic Stress model. Third, the presentation will discuss the interrelation between theory and practice, and the nature of affinity between research and practice regarding men's intimate violence. Finally, the presentation will set new directions for further research, aiming to improve intervention's efficiency with men's intimate violence and advance social work practice in the field.Keywords: intimate partner violence, theory and practice relationship, Duluth, CBT, abusive personality, post-traumatic stress
Procedia PDF Downloads 1284259 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography
Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai
Abstract:
Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics
Procedia PDF Downloads 1014258 Meeting the Energy Balancing Needs in a Fully Renewable European Energy System: A Stochastic Portfolio Framework
Authors: Iulia E. Falcan
Abstract:
The transition of the European power sector towards a clean, renewable energy (RE) system faces the challenge of meeting power demand in times of low wind speed and low solar radiation, at a reasonable cost. This is likely to be achieved through a combination of 1) energy storage technologies, 2) development of the cross-border power grid, 3) installed overcapacity of RE and 4) dispatchable power sources – such as biomass. This paper uses NASA; derived hourly data on weather patterns of sixteen European countries for the past twenty-five years, and load data from the European Network of Transmission System Operators-Electricity (ENTSO-E), to develop a stochastic optimization model. This model aims to understand the synergies between the four classes of technologies mentioned above and to determine the optimal configuration of the energy technologies portfolio. While this issue has been addressed before, it was done so using deterministic models that extrapolated historic data on weather patterns and power demand, as well as ignoring the risk of an unbalanced grid-risk stemming from both the supply and the demand side. This paper aims to explicitly account for the inherent uncertainty in the energy system transition. It articulates two levels of uncertainty: a) the inherent uncertainty in future weather patterns and b) the uncertainty of fully meeting power demand. The first level of uncertainty is addressed by developing probability distributions for future weather data and thus expected power output from RE technologies, rather than known future power output. The latter level of uncertainty is operationalized by introducing a Conditional Value at Risk (CVaR) constraint in the portfolio optimization problem. By setting the risk threshold at different levels – 1%, 5% and 10%, important insights are revealed regarding the synergies of the different energy technologies, i.e., the circumstances under which they behave as either complements or substitutes to each other. The paper concludes that allowing for uncertainty in expected power output - rather than extrapolating historic data - paints a more realistic picture and reveals important departures from results of deterministic models. In addition, explicitly acknowledging the risk of an unbalanced grid - and assigning it different thresholds - reveals non-linearity in the cost functions of different technology portfolio configurations. This finding has significant implications for the design of the European energy mix.Keywords: cross-border grid extension, energy storage technologies, energy system transition, stochastic portfolio optimization
Procedia PDF Downloads 1744257 Performance Analysis of Ad-Hoc Network Routing Protocols
Authors: I. Baddari, A. Riahla, M. Mezghich
Abstract:
Today in the literature, we discover a lot of routing algorithms which some have been the subject of normalization. Two great classes Routing algorithms are defined, the first is the class reactive algorithms and the second that of algorithms proactive. The aim of this work is to make a comparative study between some routing algorithms. Two comparisons are considered. The first will focus on the protocols of the same class and second class on algorithms of different classes (one reactive and the other proactive). Since they are not based on analytical models, the exact evaluation of some aspects of these protocols is challenging. Simulations have to be done in order to study their performances. Our simulation is performed in NS2 (Network Simulator 2). It identified a classification of the different routing algorithms studied in a metrics such as loss of message, the time transmission, mobility, etc.Keywords: ad-hoc network routing protocol, simulation, NS2, delay, packet loss, wideband, mobility
Procedia PDF Downloads 4074256 A Study on the Mechanism of the Regeneration of ‘Villages-in-City’ under Rapid Urbanization: Cases Study of Luojiazhuang
Authors: Mengying Du, Xiang Chen
Abstract:
‘villages-in-city’ is the unique product of rapid urbanization in China which embodies the contradiction between historical context and urbanization. This article mainly analyzes the corresponding strategy to the common problems such as urban texture, historical context, community structure, and industry pattern during the regeneration of ‘villages-in-city’ of Luojiazhuang. Taking government investment, community demands, the trend of urban renewal and transformation models of the ‘villages-in-city’ into consideration, the author propose a mechanism to balance those factors, and to achieve mutual confirmation with the instance of Luojiazhuang.Keywords: community demands, historical context, villages-in-city, urbanization
Procedia PDF Downloads 3134255 A Comprehensive Analysis of Factors Leading to Fatal Road Accidents in France and Its Overseas Territories
Authors: Bouthayna Hayou, Mohamed Mouloud Haddak
Abstract:
In road accidents in French overseas territories have been understudied, with relevant data often collected late and incompletely. Although these territories account for only 3% to 4% of road traffic injuries in France, their unique characteristics merit closer attention. Despite lower mobility and, consequently, lower exposure to road risks, the actual road risk in Overseas France is as high or even higher than in Metropolitan France. Significant disparities exist not only between Metropolitan France and Overseas territories but also among the overseas territories themselves. The varying population densities in these regions do not fully explain these differences, as each territory has its own distinct vulnerabilities and road safety challenges. This analysis, based on BAAC data files from 2005 to 2018 for both Metropolitan France and the overseas departments and regions, examines key variables such as gender, age, type of road user, type of obstacle hit, type of trip, road category, traffic conditions, weather, and location of accidents. Logistic regression models were built for each region to investigate the risk factors associated with fatal road accidents, focusing on the probability of being killed versus injured. Due to insufficient data, Mayotte and the Overseas Communities (French Polynesia and New Caledonia) were not included in the models. The findings reveal that road safety is worse in the overseas territories compared to Metropolitan France, particularly for vulnerable road users such as pedestrians and motorized two-wheelers. These territories present an accident profile that sits between that of Metropolitan France and middle-income countries. A pressing need exists to standardize accident data collection between Metropolitan and Overseas France to allow for more detailed comparative analyses. Further epidemiological studies could help identify the specific road safety issues unique to each territory, particularly with regard to socio-economic factors such as social cohesion, which may influence road safety outcomes. Moreover, the lack of data on new modes of travel, such as electric scooters, and the absence of socio-economic details of accident victims complicate the evaluation of emerging risk factors. Additional research, including sociological and psychosocial studies, is essential for understanding road users' behavior and perceptions of road risk, which could also provide valuable insights into accident trends in peri-urban areas in France.Keywords: multivariate logistic regression, overseas France, road safety, road traffic accident, territorial inequalities
Procedia PDF Downloads 174254 Comparison of the Effect of Strand Diameters, Providing Beam to Column Connection
Authors: Mustafa Kaya
Abstract:
In this study, the effect of pre-stressed strand diameters, providing the beam-to-column connections, was investigated from both experimental, and analytical aspects. In the experimental studies, the strength and stiffness, the capacities of the precast specimens were compared. The precast specimen with strands of 15.24 mm reached an equal strength of the reference specimen. Parallel results were obtained during the analytical studies from the aspects of strength, and behavior, but in terms of stiffness, it was seen that the initial stiffness of the analytical models was lower than that of the tested specimen.Keywords: post-tensioned connections, beam to column connections, finite element method, strand diameter
Procedia PDF Downloads 3374253 Possibilities to Evaluate the Climatic and Meteorological Potential for Viticulture in Poland: The Case Study of the Jagiellonian University Vineyard
Authors: Oskar Sekowski
Abstract:
Current global warming causes changes in the traditional zones of viticulture worldwide. During 20th century, the average global air temperature increased by 0.89˚C. The models of climate change indicate that viticulture, currently concentrating in narrow geographic niches, may move towards the poles, to higher geographic latitudes. Global warming may cause changes in traditional viticulture regions. Therefore, there is a need to estimate the climatic conditions and climate change in areas that are not traditionally associated with viticulture, e.g., Poland. The primary objective of this paper is to prepare methodology to evaluate the climatic and meteorological potential for viticulture in Poland based on a case study. Moreover, the additional aim is to evaluate the climatic potential of a mesoregion where a university vineyard is located. The daily data of temperature, precipitation, insolation, and wind speed (1988-2018) from the meteorological station located in Łazy, southern Poland, was used to evaluate 15 climatological parameters and indices connected with viticulture. The next steps of the methodology are based on Geographic Information System methods. The topographical factors such as a slope gradient and slope exposure were created using Digital Elevation Models. The spatial distribution of climatological elements was interpolated by ordinary kriging. The values of each factor and indices were also ranked and classified. The viticultural potential was determined by integrating two suitability maps, i.e., the topographical and climatic ones, and by calculating the average for each pixel. Data analysis shows significant changes in heat accumulation indices that are driven by increases in maximum temperature, mostly increasing number of days with Tmax > 30˚C. The climatic conditions of this mesoregion are sufficient for vitis vinifera viticulture. The values of indicators and insolation are similar to those in the known wine regions located on similar geographical latitudes in Europe. The smallest threat to viticulture in study area is the occurrence of hail and the highest occurrence of frost in the winter. This research provides the basis for evaluating general suitability and climatologic potential for viticulture in Poland. To characterize the climatic potential for viticulture, it is necessary to assess the suitability of all climatological and topographical factors that can influence viticulture. The methodology used in this case study shows places where there is a possibility to create vineyards. It may also be helpful for wine-makers to select grape varieties.Keywords: climatologic potential, climatic classification, Poland, viticulture
Procedia PDF Downloads 1094252 The Folk Influences in the Melody of Romanian and Serbian Church Music
Authors: Eudjen Cinc
Abstract:
Common Byzantine origins of church music of Serbs and Romanians are certainly not the only reason for great similarities between the ways of singing of the two nations, especially in the region of Banat. If it was so, the differences between the interpretation of church music in this part of Orthodox religion and the one specific for other parts where Serbs or Romanians live could not be explained. What is it that connects church signing of two nations in this peaceful part of Europe to such an extent that it could be considered a comprehensive corpus, different from other 'Serbian' or 'Romanian' regions? This is the main issue dealt with in the text according to examples and comparative processing of material. The main aim of the paper is representation of the new and interesting, while its value lies in its potential to encourage the reader or a future researcher to investigate and search further.Keywords: folk influences, melody, melodic models, ethnomusicology
Procedia PDF Downloads 2614251 The Impact of Religiosity and Ethical Senstivity on Accounting Students’ Ethical Judgement Decision
Authors: Ahmed Mohamed Alteer
Abstract:
The purpose of this paper is come up with theoretical model through understanding the causes and motives behind the auditors' sensitive to ethical dilemma through Auditing Students. This study considers the possibility of auditing students’ ethical judgement being affected by two individual factors, namely ethical sensitivity and religiosity. The finding of this study that there are several ethical theories a models provide a significant understanding of ethical issues and supported that ethical sensitivity and religiosity may affect ethical judgement decision among accounting students. The suggestion model proposes that student ethical judgement is influenced by their ethical sensitivity and their religiosity. Nonetheless, the influence of religiosity on ethical judgement is expected to be via ethical sensitivity.Keywords: asccounting students, ethical sensitivity, religiosity, ethical judgement
Procedia PDF Downloads 6224250 A Method against Obsolescence of Three-Dimensional Archaeological Collection. Two Cases of Study from Qubbet El-Hawa Necropolis, Aswan, Egypt
Authors: L. Serrano-Lara, J.M Alba-Gómez
Abstract:
Qubbet el–Hawa Project has been documented archaeological artifacts as 3d models by laser scanning technique since 2015. Currently, research has obtained the right methodology to develop a high accuracy photographic texture for each geometrical 3D model. Furthermore, the right methodology to attach the complete digital surrogate into a 3DPDF document has been obtained; it is used as a catalogue worksheet that brings archaeological data and, at the same time, allows us to obtain precise measurements, volume calculations and cross-section mapping of each scanned artifact. This validated archaeological documentation is the first step for dissemination, application as Qubbet el-Hawa Virtual Museum, and, moreover, multi-sensory experience through 3D print archaeological artifacts. Material culture from four funerary complexes constructed in West Aswan has become physical replicas opening the archaeological research process itself and offering creative possibilities on museology or educational projects. This paper shares a method of acquiring texture for scanning´s output product in order to achieve a 3DPDF archaeological cataloguing, and, on the other hand, to allow the colorfully 3D printing of singular archaeological artifacts. The proposed method has undergone two concrete cases, a polychrome wooden ushabti, and, a cartonnage mask belonging to a lady, bought recovered on intact tomb QH34aa. Both 3D model results have been implemented on three main applications, archaeological 3D catalogue, public dissemination activities, and the 3D artifact model in a bachelor education program. Due to those three already mentioned applications, productive interaction among spectator and three-dimensional artifact have been increased; moreover, functionality as archaeological documentation has been consolidated. Finding the right methodology to assign a specific color to each vector on the geometric 3D model, we had been achieved two essential archaeological applications. Firstly, 3DPDF as a display document for an archaeological catalogue, secondly, the possibility to obtain a colored 3d printed object to be displayed in public exhibitions. Obsolescences 3D models have become updated archaeological documentation of QH43aa tomb cultural material. Therefore, Qubbet el-Hawa Project has been actualized the educational potential of its results thanks to a multi-sensory experience that arose from 3d scanned´s archaeological artifacts.Keywords: 3D printed, 3D scanner, Middle Kingdom, Qubbet el-Hawa necropolis, virtual archaeology
Procedia PDF Downloads 1464249 Impact of Perceived Stress on Psychological Well-Being, Aggression and Emotional Regulation
Authors: Nishtha Batra
Abstract:
This study was conducted to identify the effect of perceived stress on emotional regulation, aggression and psychological well-being. Analysis was conducted using correlational and regression models to examine the relationships between perceived stress (independent variable) and psychological factors containing emotional intelligence, psychological well-being and aggression. Subjects N=100, Male students 50 and Female students 50. The data was collected using Cohen's Perceived Stress Scale, Gross’s Emotional Regulation Questionnaire (ERQ), Ryff’s Psychological Well-being scale and Orispina’s aggression scale. Correlation and regression (SPSS version 22) Emotional regulation and psychological well-being had a significant relationship with Perceived stress.Keywords: perceived stress, psychological well-being, aggression, emotional regulation, students
Procedia PDF Downloads 364248 Study and Construction on Signalling System during Reverse Motion Due to Obstacle
Authors: S. M. Yasir Arafat
Abstract:
Driving models are needed by many researchers to improve traffic safety and to advance autonomous vehicle design. To be most useful, a driving model must state specifically what information is needed and how it is processed. So we developed an “Obstacle Avoidance and Detection Autonomous Car” based on sensor application. The ever increasing technological demands of today call for very complex systems, which in turn require highly sophisticated controllers to ensure that high performance can be achieved and maintained under adverse conditions. Based on a developed model of brakes operation, the controller of braking system operation has been designed. It has a task to enable solution to the problem of the better controlling of braking system operation in a more accurate way then it was the case now a day.Keywords: automobile, obstacle, safety, sensing
Procedia PDF Downloads 3674247 Emissions and Total Cost of Ownership Assessment of Hybrid Propulsion Concepts for Bus Transport with Compressed Natural Gases or Diesel Engine
Authors: Volker Landersheim, Daria Manushyna, Thinh Pham, Dai-Duong Tran, Thomas Geury, Omar Hegazy, Steven Wilkins
Abstract:
Air pollution is one of the emerging problems in our society. Targets of reduction of CO₂ emissions address low-carbon and resource-efficient transport. (Plug-in) hybrid electric propulsion concepts offer the possibility to reduce total cost of ownership (TCO) and emissions for public transport vehicles (e.g., bus application). In this context, typically, diesel engines are used to form the hybrid propulsion system of the vehicle. Though the technological development of diesel engines experience major advantages, some challenges such as the high amount of particle emissions remain relevant. Gaseous fuels (i.e., compressed natural gases (CNGs) or liquefied petroleum gases (LPGs) represent an attractive alternative to diesel because of their composition. In the framework of the research project 'Optimised Real-world Cost-Competitive Modular Hybrid Architecture' (ORCA), which was funded by the EU, two different hybrid-electric propulsion concepts have been investigated: one using a diesel engine as internal combustion engine and one using CNG as fuel. The aim of the current study is to analyze specific benefits for the aforementioned hybrid propulsion systems for predefined driving scenarios with regard to emissions and total cost of ownership in bus application. Engine models based on experimental data for diesel and CNG were developed. For the purpose of designing optimal energy management strategies for each propulsion system, maps-driven or quasi-static models for specific engine types are used in the simulation framework. An analogous modelling approach has been chosen to represent emissions. This paper compares the two concepts regarding their CO₂ and NOx emissions. This comparison is performed for relevant bus missions (urban, suburban, with and without zero-emission zone) and with different energy management strategies. In addition to the emissions, also the downsizing potential of the combustion engine has been analysed to minimize the powertrain TCO (pTCO) for plug-in hybrid electric buses. The results of the performed analyses show that the hybrid vehicle concept using the CNG engine shows advantages both with respect to emissions as well as to pTCO. The pTCO is 10% lower, CO₂ emissions are 13% lower, and the NOx emissions are more than 50% lower than with the diesel combustion engine. These results are consistent across all usage profiles under investigation.Keywords: bus transport, emissions, hybrid propulsion, pTCO, CNG
Procedia PDF Downloads 1544246 Double Fourier Series Applied to Supraharmonic Determination: The Specific Cases of a Boost and an Interleaved Boost Converter Used as Active Power Factor Correctors
Authors: Erzen Muharemi, Emmanuel De Jaeger, Jos Knockaert
Abstract:
The work presented here investigates the modeling of power electronics converters in terms of their harmonic production. Specifically, it addresses high-frequency emissions in the range of 2-150 kHz, referred to as supraharmonics. This paper models a conventional converter, namely the boost converter used as an active power factor corrector (APFC). Furthermore, the modeling is extended to the case of the interleaved boost converter, which offers advantages such as halving the emissions. Finally, a comparison between the theoretical, numerical, and experimental results will be provided.Keywords: APFC, boost converter, converter modeling, double fourier series, supraharmonics
Procedia PDF Downloads 474245 Computation of Drag and Lift Coefficients on Submerged Vanes in Open Channels
Authors: Anshul Jain, P. Deepak Kumar, P. K. S. Dikshit
Abstract:
To stabilize the riverbanks in the curved reaches of alluvial channels due to erosion and to stop sediment transportation, many models and theories have been put forth. One among such methods is to install flat vanes on the channel bed in predetermined manner. In practical, a relatively small no of vanes can produce bend flows which are practically uniform across the channel. The objective of the present study is to measure the drag and lift on such submerged vanes in open channels. Experiments were performed and the data collected have been presented and analyzed. Using the data collected herein, predictors for the coefficients of drag and lift have been developed. Such predictors yield the value of these coefficients for the known fluid properties and flow characteristic of the channel.Keywords: drag, lift, vanes, open channel
Procedia PDF Downloads 3494244 An Examination of Earnings Management by Publicly Listed Targets Ahead of Mergers and Acquisitions
Authors: T. Elrazaz
Abstract:
This paper examines accrual and real earnings management by publicly listed targets around mergers and acquisitions. Prior literature shows that earnings management around mergers and acquisitions can have a significant economic impact because of the associated wealth transfers among stakeholders. More importantly, acting on behalf of their shareholders or pursuing their self-interests, managers of both targets and acquirers may be equally motivated to manipulate earnings prior to an acquisition to generate higher gains for their shareholders or themselves. Building on the grounds of information asymmetry, agency conflicts, stewardship theory, and the revelation principle, this study addresses the question of whether takeover targets employ accrual and real earnings management in the periods prior to the announcement of Mergers and Acquisitions (M&A). Additionally, this study examines whether acquirers are able to detect targets’ earnings management, and in response, adjust the acquisition premium paid in order not to face the risk of overpayment. This study uses an aggregate accruals approach in estimating accrual earnings management as proxied by estimated abnormal accruals. Additionally, real earnings management is proxied for by employing widely used models in accounting and finance literature. The results of this study indicate that takeover targets manipulate their earnings using accruals in the second year with an earnings release prior to the announcement of the M&A. Moreover, in partitioning the sample of targets according to the method of payment used in the deal, the results are restricted only to targets of stock-financed deals. These results are consistent with the argument that targets of cash-only or mixed-payment deals do not have the same strong motivations to manage their earnings as their stock-financed deals counterparts do additionally supporting the findings of prior studies that the method of payment in takeovers is value relevant. The findings of this study also indicate that takeover targets manipulate earnings upwards through cutting discretionary expenses the year prior to the acquisition while they do not do so by manipulating sales or production costs. Moreover, in partitioning the sample of targets according to the method of payment used in the deal, the results are restricted only to targets of stock-financed deals, providing further robustness to the results derived under the accrual-based models. Finally, this study finds evidence suggesting that acquirers are fully aware of the accrual-based techniques employed by takeover targets and can unveil such manipulation practices. These results are robust to alternative accrual and real earnings management proxies, as well as controlling for the method of payment in the deal.Keywords: accrual earnings management, acquisition premium, real earnings management, takeover targets
Procedia PDF Downloads 1204243 Optimization and Evaluation of 177lu-Dotatoc as a Potential Agent for Peptide Receptor Radionuclide Therapy
Authors: H. Yousefnia, MS. Mousavi-Daramoroudi, S. Zolghadri, F. Abbasi-Davani
Abstract:
High expression of somatostatin receptors on a wide range of human tumours makes them as potential targets for peptide receptor radionuclide tomography. A series of octreotide analogues were synthesized while [DOTA-DPhe1, Tyr3]octreotide (DOTATOC) indicated advantageous properties in tumour models. In this study, 177Lu-DOTATOC was prepared with the radiochemical purity of higher than 99% in 30 min at the optimized condition. Biological behavior of the complex was studied after intravenous injection into the Syrian rats. Major difference uptake was observed compared to 177LuCl3 solution especially in somatostatin receptor-positive tissues such as pancreas and adrenal.Keywords: Biodistribution, 177Lu, Octreotide, Syrian rats
Procedia PDF Downloads 4524242 Estimating the Technological Deviation Impact on the Value of the Output Parameter of the Induction Converter
Authors: Marinka K. Baghdasaryan, Siranush M. Muradyan, Avgen A. Gasparyan
Abstract:
Based on the experimental data, the impact of resistance and reactance of the winding, as well as the magnetic permeability of the magnetic circuit steel material on the value of the electromotive force of the induction converter is investigated. The obtained results allow to estimate the main technological spreads and determine the maximum level of the electromotive force change. By the method of experiment planning, the expression of a polynomial for the electromotive force which can be used to estimate the adequacy of mathematical models to be used at the investigation and design of induction converters is obtained.Keywords: induction converter, electromotive force, expectation, technological spread, deviation, planning an experiment, polynomial, confidence level
Procedia PDF Downloads 4684241 Review and Comparison of Associative Classification Data Mining Approaches
Authors: Suzan Wedyan
Abstract:
Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction
Procedia PDF Downloads 5414240 Hydrological, Hydraulics, Analysis and Design of the Aposto –Yirgalem Road Upgrading Project, Ethiopia
Authors: Azazhu Wassie
Abstract:
This study tried to analyze and identify the drainage pattern and catchment characteristics of the river basin and assess the impact of the hydrologic parameters (catchment area, rainfall intensity, runoff coefficient, land use, and soil type) on the referenced study area. Since there is no river gauging station near the road, even for large rivers, rainfall-runoff models are adopted for flood estimation, i.e., for catchment areas less than 50 ha, the rational method is used; for catchment areas, less than 65 km², the SCS unit hydrograph method is used; and for catchment areas greater than 65 km², HEC-HMS is adopted for flood estimation.Keywords: Arc GIS, catchment area, land use/land cover, peak flood, rainfall intensity
Procedia PDF Downloads 424239 Robust Variogram Fitting Using Non-Linear Rank-Based Estimators
Authors: Hazem M. Al-Mofleh, John E. Daniels, Joseph W. McKean
Abstract:
In this paper numerous robust fitting procedures are considered in estimating spatial variograms. In spatial statistics, the conventional variogram fitting procedure (non-linear weighted least squares) suffers from the same outlier problem that has plagued this method from its inception. Even a 3-parameter model, like the variogram, can be adversely affected by a single outlier. This paper uses the Hogg-Type adaptive procedures to select an optimal score function for a rank-based estimator for these non-linear models. Numeric examples and simulation studies will demonstrate the robustness, utility, efficiency, and validity of these estimates.Keywords: asymptotic relative efficiency, non-linear rank-based, rank estimates, variogram
Procedia PDF Downloads 4354238 Wireless Battery Charger with Adaptive Rapid-Charging Algorithm
Authors: Byoung-Hee Lee
Abstract:
Wireless battery charger with adaptive rapid charging algorithm is proposed. The proposed wireless charger adopts voltage regulation technique to reduce the number of power conversion steps. Moreover, based on battery models, an adaptive rapid charging algorithm for Li-ion batteries is obtained. Rapid-charging performance with the proposed wireless battery charger and the proposed rapid charging algorithm has been experimentally verified to show more than 70% charging time reduction compared to conventional constant-current constant-voltage (CC-CV) charging without the degradation of battery lifetime.Keywords: wireless, battery charger, adaptive, rapid-charging
Procedia PDF Downloads 3864237 Thermodynamic Behaviour of Binary Mixtures of 1, 2-Dichloroethane with Some Cyclic Ethers: Experimental Results and Modelling
Authors: Fouzia Amireche-Ziar, Ilham Mokbel, Jacques Jose
Abstract:
The vapour pressures of the three binary mixtures: 1, 2- dichloroethane + 1,3-dioxolane, + 1,4-dioxane or + tetrahydropyrane, are carried out at ten temperatures ranging from 273 to 353.15 K. An accurate static device was employed for these measurements. The VLE data were reduced using the Redlich-Kister equation by taking into consideration the vapour pressure non-ideality in terms of the second molar virial coefficient. The experimental data were compared to the results predicted with the DISQUAC and Dortmund UNIFAC group contribution models for the total pressures P and the excess molar Gibbs energies GE.Keywords: disquac model, dortmund UNIFAC model, excess molar Gibbs energies GE, VLE
Procedia PDF Downloads 2624236 Modelling Structural Breaks in Stock Price Time Series Using Stochastic Differential Equations
Authors: Daniil Karzanov
Abstract:
This paper studies the effect of quarterly earnings reports on the stock price. The profitability of the stock is modeled by geometric Brownian diffusion and the Constant Elasticity of Variance model. We fit several variations of stochastic differential equations to the pre-and after-report period using the Maximum Likelihood Estimation and Grid Search of parameters method. By examining the change in the model parameters after reports’ publication, the study reveals that the reports have enough evidence to be a structural breakpoint, meaning that all the forecast models exploited are not applicable for forecasting and should be refitted shortly.Keywords: stock market, earnings reports, financial time series, structural breaks, stochastic differential equations
Procedia PDF Downloads 210