Search results for: wireless embedded sensor
344 Systematic Mapping Study of Digitization and Analysis of Manufacturing Data
Authors: R. Clancy, M. Ahern, D. O’Sullivan, K. Bruton
Abstract:
The manufacturing industry is currently undergoing a digital transformation as part of the mega-trend Industry 4.0. As part of this phase of the industrial revolution, traditional manufacturing processes are being combined with digital technologies to achieve smarter and more efficient production. To successfully digitally transform a manufacturing facility, the processes must first be digitized. This is the conversion of information from an analogue format to a digital format. The objective of this study was to explore the research area of digitizing manufacturing data as part of the worldwide paradigm, Industry 4.0. The formal methodology of a systematic mapping study was utilized to capture a representative sample of the research area and assess its current state. Specific research questions were defined to assess the key benefits and limitations associated with the digitization of manufacturing data. Research papers were classified according to the type of research and type of contribution to the research area. Upon analyzing 54 papers identified in this area, it was noted that 23 of the papers originated in Germany. This is an unsurprising finding as Industry 4.0 is originally a German strategy with supporting strong policy instruments being utilized in Germany to support its implementation. It was also found that the Fraunhofer Institute for Mechatronic Systems Design, in collaboration with the University of Paderborn in Germany, was the most frequent contributing Institution of the research papers with three papers published. The literature suggested future research directions and highlighted one specific gap in the area. There exists an unresolved gap between the data science experts and the manufacturing process experts in the industry. The data analytics expertise is not useful unless the manufacturing process information is utilized. A legitimate understanding of the data is crucial to perform accurate analytics and gain true, valuable insights into the manufacturing process. There lies a gap between the manufacturing operations and the information technology/data analytics departments within enterprises, which was borne out by the results of many of the case studies reviewed as part of this work. To test the concept of this gap existing, the researcher initiated an industrial case study in which they embedded themselves between the subject matter expert of the manufacturing process and the data scientist. Of the papers resulting from the systematic mapping study, 12 of the papers contributed a framework, another 12 of the papers were based on a case study, and 11 of the papers focused on theory. However, there were only three papers that contributed a methodology. This provides further evidence for the need for an industry-focused methodology for digitizing and analyzing manufacturing data, which will be developed in future research.Keywords: analytics, digitization, industry 4.0, manufacturing
Procedia PDF Downloads 111343 Delving into the Concept of Social Capital in the Smart City Research
Authors: Atefe Malekkhani, Lee Beattie, Mohsen Mohammadzadeh
Abstract:
Unprecedented growth of megacities and urban areas all around the world have resulted in numerous risks, concerns, and problems across various aspects of urban life, including environmental, social, and economic domains like climate change, spatial and social inequalities. In this situation, ever-increasing progress of technology has created a hope for urban authorities that the negative effects of various socio-economic and environmental crises can potentially be mitigated with the use of information and communication technologies. The concept of 'smart city' represents an emerging solution to urban challenges arising from increased urbanization using ICTs. However, smart cities are often perceived primarily as technological initiatives and are implemented without considering the social and cultural contexts of cities and the needs of their residents. The implementation of smart city projects and initiatives has the potential to (un)intentionally exacerbate pre-existing social, spatial, and cultural segregation. Investigating the impact of smart city on social capital of people who are users of smart city systems and with governance as policymakers is worth exploring. The importance of inhabitants to the existence and development of smart cities cannot be overlooked. This concept has gained different perspectives in the smart city studies. Reviewing the literature about social capital and smart city show that social capital play three different roles in smart city development. Some research indicates that social capital is a component of a smart city and has embedded in its dimensions, definitions, or strategies, while other ones see it as a social outcome of smart city development and point out that the move to smart cities improves social capital; however, in most cases, it remains an unproven hypothesis. Other studies show that social capital can enhance the functions of smart cities, and the consideration of social capital in planning smart cities should be promoted. Despite the existing theoretical and practical knowledge, there is a significant research gap reviewing the knowledge domain of smart city studies through the lens of social capital. To shed light on this issue, this study aims to explore the domain of existing research in the field of smart city through the lens of social capital. This research will use the 'Preferred Reporting Items for Systematic Reviews and Meta-Analyses' (PRISMA) method to review relevant literature, focusing on the key concepts of 'Smart City' and 'Social Capital'. The studies will be selected Web of Science Core Collection, using a selection process that involves identifying literature sources, screening and filtering studies based on titles, abstracts, and full-text reading.Keywords: smart city, urban digitalisation, ICT, social capital
Procedia PDF Downloads 9342 Examination of Relationship between Internet Addiction and Cyber Bullying in Adolescents
Authors: Adem Peker, Yüksel Eroğlu, İsmail Ay
Abstract:
As the information and communication technologies have become embedded in everyday life of adolescents, both their possible benefits and risks to adolescents are being identified. The information and communication technologies provide opportunities for adolescents to connect with peers and to access to information. However, as with other social connections, users of information and communication devices have the potential to meet and interact with in harmful ways. One emerging example of such interaction is cyber bullying. Cyber bullying occurs when someone uses the information and communication technologies to harass or embarrass another person. Cyber bullying can take the form of malicious text messages and e-mails, spreading rumours, and excluding people from online groups. Cyber bullying has been linked to psychological problems for cyber bullies and victims. Therefore, it is important to determine how internet addiction contributes to cyber bullying. Building on this question, this study takes a closer look at the relationship between internet addiction and cyber bullying. For this purpose, in this study, based on descriptive relational model, it was hypothesized that loss of control, excessive desire to stay online, and negativity in social relationships, which are dimensions of internet addiction, would be associated positively with cyber bullying and victimization. Participants were 383 high school students (176 girls and 207 boys; mean age, 15.7 years). Internet addiction was measured by using Internet Addiction Scale. The Cyber Victim and Bullying Scale was utilized to measure cyber bullying and victimization. The scales were administered to the students in groups in the classrooms. In this study, stepwise regression analyses were utilized to examine the relationships between dimensions of internet addiction and cyber bullying and victimization. Before applying stepwise regression analysis, assumptions of regression were verified. According to stepwise regression analysis, cyber bullying was predicted by loss of control (β=.26, p<.001) and negativity in social relationships (β=.13, p<.001). These variables accounted for 9 % of the total variance, with the loss of control explaining the higher percentage (8 %). On the other hand, cyber victimization was predicted by loss of control (β=.19, p<.001) and negativity in social relationships (β=.12, p<.001). These variables altogether accounted for 8 % of the variance in cyber victimization, with the best predictor loss of control (7 % of the total variance). The results of this study demonstrated that, as expected, loss of control and negativity in social relationships predicted cyber bullying and victimization positively. However, excessive desire to stay online did not emerge a significant predictor of both cyberbullying and victimization. Consequently, this study would enhance our understanding of the predictors of cyber bullying and victimization since the results proposed that internet addiction is related with cyber bullying and victimization.Keywords: cyber bullying, internet addiction, adolescents, regression
Procedia PDF Downloads 309341 On Grammatical Metaphors: A Corpus-Based Reflection on the Academic Texts Written in the Field of Environmental Management
Authors: Masoomeh Estaji, Ahdie Tahamtani
Abstract:
Considering the necessity of conducting research and publishing academic papers during Master’s and Ph.D. programs, graduate students are in dire need of improving their writing skills through either writing courses or self-study planning. One key feature that could aid academic papers to look more sophisticated is the application of grammatical metaphors (GMs). These types of metaphors represent the ‘non-congruent’ and ‘implicit’ ways of decoding meaning through which one grammatical category is replaced by another, more implied counterpart, which can alter the readers’ understanding of the text as well. Although a number of studies have been conducted on the application of GMs across various disciplines, almost none has been devoted to the field of environmental management, and the scope of the previous studies has been relatively limited compared to the present work. In the current study, attempts were made to analyze different types of GMs used in academic papers published in top-tiered journals in the field of environmental management, and make a list of the most frequently used GMs based on their functions in this particular discipline to make the teaching of academic writing courses more explicit and the composition of academic texts more well-structured. To fulfill these purposes, a corpus-based analysis based on the two theoretical models of Martin et al. (1997) and Liardet (2014) was run. Through two stages of manual analysis and concordancers, ten recent academic articles entailing 132490 words published in two prestigious journals were precisely scrutinized. The results yielded that through the whole IMRaD sections of the articles, among all types of ideational GMs, material processes were the most frequent types. The second and the third ranks would apply to the relational and mental categories, respectively. Regarding the use of interpersonal GMs, objective expanding metaphors were the highest in number. In contrast, subjective interpersonal metaphors, either expanding or contracting, were the least significant. This would suggest that scholars in the field of Environmental Management tended to shift the focus on the main procedures and explain technical phenomenon in detail, rather than to compare and contrast other statements and subjective beliefs. Moreover, since no instances of verbal ideational metaphors were detected, it could be deduced that the act of ‘saying or articulating’ something might be against the standards of the academic genre. One other assumption would be that the application of ideational GMs is context-embedded and that the more technical they are, the least frequent they become. For further studies, it is suggested that the employment of GMs to be studied in a wider scope and other disciplines, and the third type of GMs known as ‘textual’ metaphors to be included as well.Keywords: English for specific purposes, grammatical metaphor, academic texts, corpus-based analysis
Procedia PDF Downloads 166340 Automated Transformation of 3D Point Cloud to BIM Model: Leveraging Algorithmic Modeling for Efficient Reconstruction
Authors: Radul Shishkov, Orlin Davchev
Abstract:
The digital era has revolutionized architectural practices, with building information modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research introduces a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data -a collection of data points in space, typically produced by 3D scanners- into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. Our methodology has been tested on several real-world case studies, demonstrating its capability to handle diverse architectural styles and complexities. The results showcase a substantial reduction in time and resources required for BIM model generation while maintaining high levels of accuracy and detail. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historic preservation.Keywords: BIM, 3D point cloud, algorithmic modeling, computational design, architectural reconstruction
Procedia PDF Downloads 61339 Adaptive Process Monitoring for Time-Varying Situations Using Statistical Learning Algorithms
Authors: Seulki Lee, Seoung Bum Kim
Abstract:
Statistical process control (SPC) is a practical and effective method for quality control. The most important and widely used technique in SPC is a control chart. The main goal of a control chart is to detect any assignable changes that affect the quality output. Most conventional control charts, such as Hotelling’s T2 charts, are commonly based on the assumption that the quality characteristics follow a multivariate normal distribution. However, in modern complicated manufacturing systems, appropriate control chart techniques that can efficiently handle the nonnormal processes are required. To overcome the shortcomings of conventional control charts for nonnormal processes, several methods have been proposed to combine statistical learning algorithms and multivariate control charts. Statistical learning-based control charts, such as support vector data description (SVDD)-based charts, k-nearest neighbors-based charts, have proven their improved performance in nonnormal situations compared to that of the T2 chart. Beside the nonnormal property, time-varying operations are also quite common in real manufacturing fields because of various factors such as product and set-point changes, seasonal variations, catalyst degradation, and sensor drifting. However, traditional control charts cannot accommodate future condition changes of the process because they are formulated based on the data information recorded in the early stage of the process. In the present paper, we propose a SVDD algorithm-based control chart, which is capable of adaptively monitoring time-varying and nonnormal processes. We reformulated the SVDD algorithm into a time-adaptive SVDD algorithm by adding a weighting factor that reflects time-varying situations. Moreover, we defined the updating region for the efficient model-updating structure of the control chart. The proposed control chart simultaneously allows efficient model updates and timely detection of out-of-control signals. The effectiveness and applicability of the proposed chart were demonstrated through experiments with the simulated data and the real data from the metal frame process in mobile device manufacturing.Keywords: multivariate control chart, nonparametric method, support vector data description, time-varying process
Procedia PDF Downloads 298338 Electrochemical Impedance Spectroscopy Based Label-Free Detection of TSG101 by Electric Field Lysis of Immobilized Exosomes from Human Serum
Authors: Nusrat Praween, Krishna Thej Pammi Guru, Palash Kumar Basu
Abstract:
Designing non-invasive biosensors for cancer diagnosis is essential for developing an affordable and specific tool to measure cancer-related exosome biomarkers. Exosomes, released by healthy as well as cancer cells, contain valuable information about the biomarkers of various diseases, including cancer. Despite the availability of various isolation techniques, ultracentrifugation is the standard technique that is being employed. Post isolation, exosomes are traditionally exposed to detergents for extracting their proteins, which can often lead to protein degradation. Further to this, it is very essential to develop a sensing platform for the quantification of clinically relevant proteins in a wider range to ensure practicality. In this study, exosomes were immobilized on the Au Screen Printed Electrode (SPE) using EDC/NHS chemistry to facilitate binding. After immobilizing the exosomes on the screen-printed electrode (SPE), we investigated the impact of the electric field by applying various voltages to induce exosome lysis and release their contents. The lysed solution was used for sensing TSG101, a crucial biomarker associated with various cancers, using both faradaic and non-faradaic electrochemical impedance spectroscopy (EIS) methods. The results of non-faradaic and faradaic EIS were comparable and showed good consistency, indicating that non-faradaic sensing can be a reliable alternative. Hence, the non-faradaic sensing technique was used for label-free quantification of the TSG101 biomarker. The results were validated using ELISA. Our electrochemical immunosensor demonstrated a consistent response of TSG101 from 125 pg/mL to 8000 pg/mL, with a detection limit of 0.125 pg/mL at room temperature. Additionally, since non-faradic sensing is label-free, the ease of usage and cost of the final sensor developed can be reduced. The proposed immunosensor is capable of detecting the TSG101 protein at low levels in healthy serum with good sensitivity and specificity, making it a promising platform for biomarker detection.Keywords: biosensor, exosomes isolation on SPE, electric field lysis of exosome, EIS sensing of TSG101
Procedia PDF Downloads 44337 Developing Curricula for Signaling and Communication Course at Malaysia Railway Academy (MyRA) through Industrial Collaboration Program
Authors: Mohd Fairus Humar, Ibrahim Sulaiman, Pedro Cruz, Hasry Harun
Abstract:
This paper presents the propose knowledge transfer program on railway signaling and communication by Original Equipment Manufacturer (OEM) Thales Portugal. The fundamental issue is that there is no rail related course offered by local universities and colleges in Malaysia which could be an option to pursue student career path. Currently, dedicated trainings related to the rail technology are provided by in-house training academies established by the respective rail operators such as Malaysia Railway Academy (MyRA) and Rapid Rail Training Centre. In this matter, the content of training and facilities need to be strengthened to keep up-to-date with the dynamic evolvement of the rail technology. This is because rail products have evolved to be more sophisticated and embedded with high technology components which no longer exist in the mechanical form alone but combined with electronics, information technology and others. These demand for a workforce imbued with knowledge, multi-skills and competency to deal with specialized technical areas. Talent is needed to support sustainability in Southeast Asia. Keeping the above factors in mind, an Industrial Collaboration Program (ICP) was carried out to transfer knowledge on curricula of railway signaling and communication to a selected railway operators and tertiary educational institution in Malaysia. In order to achieve the aim, a partnership was formed between Technical Depository Agency (TDA), Thales Portugal and MyRA for two years with three main stages of program implementation comprising of: i) training on basic railway signaling and communication for 1 month with Thales in Malaysia; ii) training on advance railway signaling and communication for 4 months with Thales in Portugal and; iii) a series of workshop. Two workshops were convened to develop and harmonize curricula of railway signaling and communication course and were followed by one training for installation equipment of railway signaling and Controlled Train Centre (CTC) system from Thales Portugal. With active involvement from Technical Depository Agency (TDA), railway operators, universities, and colleges, in planning, executing, monitoring, control and closure, the program module of railway signaling and communication course with a lab railway signaling field equipment and CTC simulator were developed. Through this program, contributions from various parties help to build committed societies to engage important issues in relation to railway signaling and communication towards creating a sustainable future.Keywords: knowledge transfer program, railway signaling and communication, curricula, module and teaching aid simulator
Procedia PDF Downloads 189336 Private Coded Computation of Matrix Multiplication
Authors: Malihe Aliasgari, Yousef Nejatbakhsh
Abstract:
The era of Big Data and the immensity of real-life datasets compels computation tasks to be performed in a distributed fashion, where the data is dispersed among many servers that operate in parallel. However, massive parallelization leads to computational bottlenecks due to faulty servers and stragglers. Stragglers refer to a few slow or delay-prone processors that can bottleneck the entire computation because one has to wait for all the parallel nodes to finish. The problem of straggling processors, has been well studied in the context of distributed computing. Recently, it has been pointed out that, for the important case of linear functions, it is possible to improve over repetition strategies in terms of the tradeoff between performance and latency by carrying out linear precoding of the data prior to processing. The key idea is that, by employing suitable linear codes operating over fractions of the original data, a function may be completed as soon as enough number of processors, depending on the minimum distance of the code, have completed their operations. The problem of matrix-matrix multiplication in the presence of practically big sized of data sets faced with computational and memory related difficulties, which makes such operations are carried out using distributed computing platforms. In this work, we study the problem of distributed matrix-matrix multiplication W = XY under storage constraints, i.e., when each server is allowed to store a fixed fraction of each of the matrices X and Y, which is a fundamental building of many science and engineering fields such as machine learning, image and signal processing, wireless communication, optimization. Non-secure and secure matrix multiplication are studied. We want to study the setup, in which the identity of the matrix of interest should be kept private from the workers and then obtain the recovery threshold of the colluding model, that is, the number of workers that need to complete their task before the master server can recover the product W. The problem of secure and private distributed matrix multiplication W = XY which the matrix X is confidential, while matrix Y is selected in a private manner from a library of public matrices. We present the best currently known trade-off between communication load and recovery threshold. On the other words, we design an achievable PSGPD scheme for any arbitrary privacy level by trivially concatenating a robust PIR scheme for arbitrary colluding workers and private databases and the proposed SGPD code that provides a smaller computational complexity at the workers.Keywords: coded distributed computation, private information retrieval, secret sharing, stragglers
Procedia PDF Downloads 121335 Unveiling the Potential of MoSe₂ for Toxic Gas Sensing: Insights from Density Functional Theory and Non-equilibrium Green’s Function Calculations
Authors: Si-Jie Ji, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
With the rapid development of industrialization and urbanization, air pollution poses significant global environmental challenges, contributing to acid rain, global warming, and adverse health effects. Therefore, it is necessary to monitor the concentration of toxic gases in the atmospheric environment in real-time and to deploy cost-effective gas sensors capable of detecting their emissions. In this study, we systematically investigated the sensing capabilities of the two-dimensional MoSe₂ for seven key environmental gases (NO, NO₂, CO, CO₂, SO₂, SO₃, and O₂) using density functional theory (DFT) and non-equilibrium Green’s function (NEGF) calculations. We also investigated the impact of H₂O as an interfering gas. Our results indicate that the MoSe₂ monolayer is thermodynamically stable and exhibits strong gas-sensing capabilities. The calculated adsorption energies indicate that these gases can stably adsorb on MoSe₂, with SO₃ exhibiting the strongest adsorption energy (-0.63 eV). Electronic structure analysis, including projected density of states (PDOS) and Bader charge analysis, demonstrates significant changes in the electronic properties of MoSe₂ upon gas adsorption, affecting its conductivity and sensing performance. We find that oxygen (O₂) adsorption notably influenced the deformation of MoSe₂. To comprehensively understand the potential of MoSe₂ as a gas sensor, we used the NEGF method to assess the electronic transport properties of MoSe₂ under gas adsorption, evaluating current-voltage (I-V), resistance-voltage (R-V) characteristics, and transmission spectra to determine sensitivity, selectivity, and recovery time compared to pristine MoSe₂. Sensitivity, selectivity, and recovery time are analyzed at a bias voltage of 1.7V, showing excellent performance of MoSe₂ in detecting SO₃, among other gases. The pronounced changes in electronic transport behavior induced by SO₃ adsorption confirm MoSe₂’s strong potential as a high-performance gas-sensing material. Overall, this theoretical study provides new insights into the development of high-performance gas sensors, demonstrating the potential of MoSe₂ as a gas-sensing material, particularly for gases like SO₃.Keywords: density functional theory, gas sensing, MoSe₂, non-equilibrium Green’s function, SO
Procedia PDF Downloads 20334 Prevalence of Breast Cancer Molecular Subtypes at a Tertiary Cancer Institute
Authors: Nahush Modak, Meena Pangarkar, Anand Pathak, Ankita Tamhane
Abstract:
Background: Breast cancer is the prominent cause of cancer and mortality among women. This study was done to show the statistical analysis of a cohort of over 250 patients detected with breast cancer diagnosed by oncologists using Immunohistochemistry (IHC). IHC was performed by using ER; PR; HER2; Ki-67 antibodies. Materials and methods: Formalin fixed Paraffin embedded tissue samples were obtained by surgical manner and standard protocol was followed for fixation, grossing, tissue processing, embedding, cutting and IHC. The Ventana Benchmark XT machine was used for automated IHC of the samples. Antibodies used were supplied by F. Hoffmann-La Roche Ltd. Statistical analysis was performed by using SPSS for windows. Statistical tests performed were chi-squared test and Correlation tests with p<.01. The raw data was collected and provided by National Cancer Insitute, Jamtha, India. Result: Luminal B was the most prevailing molecular subtype of Breast cancer at our institute. Chi squared test of homogeneity was performed to find equality in distribution and Luminal B was the most prevalent molecular subtype. The worse prognostic indicator for breast cancer depends upon expression of Ki-67 and her2 protein in cancerous cells. Our study was done at p <.01 and significant dependence was observed. There exists no dependence of age on molecular subtype of breast cancer. Similarly, age is an independent variable while considering Ki-67 expression. Chi square test performed on Human epidermal growth factor receptor 2 (HER2) statuses of patients and strong dependence was observed in percentage of Ki-67 expression and Her2 (+/-) character which shows that, value of Ki depends upon Her2 expression in cancerous cells (p<.01). Surprisingly, dependence was observed in case of Ki-67 and Pr, at p <.01. This shows that Progesterone receptor proteins (PR) are over-expressed when there is an elevation in expression of Ki-67 protein. Conclusion: We conclude from that Luminal B is the most prevalent molecular subtype at National Cancer Institute, Jamtha, India. There was found no significant correlation between age and Ki-67 expression in any molecular subtype. And no dependence or correlation exists between patients’ age and molecular subtype. We also found that, when the diagnosis is Luminal A, out of the cohort of 257 patients, no patient shows >14% Ki-67 value. Statistically, extremely significant values were observed for dependence of PR+Her2- and PR-Her2+ scores on Ki-67 expression. (p<.01). Her2 is an important prognostic factor in breast cancer. Chi squared test for Her2 and Ki-67 shows that the expression of Ki depends upon Her2 statuses. Moreover, Ki-67 cannot be used as a standalone prognostic factor for determining breast cancer.Keywords: breast cancer molecular subtypes , correlation, immunohistochemistry, Ki-67 and HR, statistical analysis
Procedia PDF Downloads 121333 Enhanced Near-Infrared Upconversion Emission Based Lateral Flow Immunoassay for Background-Free Detection of Avian Influenza Viruses
Authors: Jaeyoung Kim, Heeju Lee, Huijin Jung, Heesoo Pyo, Seungki Kim, Joonseok Lee
Abstract:
Avian influenza viruses (AIV) are the primary cause of highly contagious respiratory diseases caused by type A influenza viruses of the Orthomyxoviridae family. AIV are categorized on the basis of types of surface glycoproteins such as hemagglutinin and neuraminidase. Certain H5 and H7 subtypes of AIV have evolved to the high pathogenic avian influenza (HPAI) virus, which has caused considerable economic loss to the poultry industry and led to severe public health crisis. Several commercial kits have been developed for on-site detection of AIV. However, the sensitivity of these methods is too low to detect low virus concentrations in clinical samples and opaque stool samples. Here, we introduced a background-free near-infrared (NIR)-to-NIR upconversion nanoparticle-based lateral flow immunoassay (NNLFA) platform to yield a sensor that detects AIV within 20 minutes. Ca²⁺ ion in the shell was used to enhance the NIR-to-NIR upconversion photoluminescence (PL) emission as a heterogeneous dopant without inducing significant changes in the morphology and size of the UCNPs. In a mixture of opaque stool samples and gold nanoparticles (GNPs), which are components of commercial AIV LFA, the background signal of the stool samples mask the absorption peak of GNPs. However, UCNPs dispersed in the stool samples still show strong emission centered at 800 nm when excited at 980 nm, which enables the NNLFA platform to detect 10-times lower viral load than a commercial GNP-based AIV LFA. The detection limit of NNLFA for low pathogenic avian influenza (LPAI) H5N2 and HPAI H5N6 viruses was 10² EID₅₀/mL and 10³.⁵ EID₅₀/mL, respectively. Moreover, when opaque brown-colored samples were used as the target analytes, strong NIR emission signal from the test line in NNLFA confirmed the presence of AIV, whereas commercial AIV LFA detected AIV with difficulty. Therefore, we propose that this rapid and background-free NNLFA platform has the potential of detecting AIV in the field, which could effectively prevent the spread of these viruses at an early stage.Keywords: avian influenza viruses, lateral flow immunoassay on-site detection, upconversion nanoparticles
Procedia PDF Downloads 163332 Development of Micelle-Mediated Sr(II) Fluorescent Analysis System
Authors: K. Akutsu, S. Mori, T. Hanashima
Abstract:
Fluorescent probes are useful for the selective detection of trace amount of ions and biomolecular imaging in living cells. Various kinds of metal ion-selective fluorescent compounds have been developed, and some compounds have been applied as effective metal ion-selective fluorescent probes. However, because competition between the ligand and water molecules for the metal ion constitutes a major contribution to the stability of a complex in aqueous solution, it is difficult to develop a highly sensitive, selective, and stable fluorescent probe in aqueous solution. The micelles, these are formed in the surfactant aqueous solution, provides a unique hydrophobic nano-environment for stabilizing metal-organic complexes in aqueous solution. Therefore, we focused on the unique properties of micelles to develop a new fluorescence analysis system. We have been developed a fluorescence analysis system for Sr(II) by using a Sr(II) fluorescent sensor, N-(2-hydroxy-3-(1H-benzimidazol-2-yl)-phenyl)-1-aza-18-crown-6-ether (BIC), and studied its complexation behavior with Sr(II) in micellar solution. We revealed that the stability constant of Sr(II)-BIC complex was 10 times higher than that in aqueous solution. In addition, its detection limit value was also improved up to 300 times by this system. However, the mechanisms of these phenomena have remained obscure. In this study, we investigated the structure of Sr(II)-BIC complex in aqueous micellar solution by combining use the extended X-ray absorption fine structure (EXAFS) and neutron reflectivity (NR) method to understand the unique properties of the fluorescence analysis system from the view point of structural chemistry. EXAFS and NR experiments were performed on BL-27B at KEK-PF and on BL17 SHARAKU at J-PARC MLF, respectively. The obtained EXAFS spectra and their fitting results indicated that Sr(II) and BIC formed a Sr(18-crown-6-ether)-like complex in aqueous micellar solution. The EXAFS results also indicated that the hydrophilic head group of surfactant molecule was directly coordinated with Sr(II). In addition, the NR results also indicated that Sr(II)-BIC complex would interact with the surface of micelle molecules. Therefore, we concluded that Sr(II), BIC, and surfactant molecule formed a ternary complexes in aqueous micellar solution, and at least, it is clear that the improvement of the stability constant in micellar solution is attributed to the result of the formation of Sr(BIC)(surfactant) complex.Keywords: micell, fluorescent probe, neutron reflectivity, EXAFS
Procedia PDF Downloads 179331 3-D Strain Imaging of Nanostructures Synthesized via CVD
Authors: Sohini Manna, Jong Woo Kim, Oleg Shpyrko, Eric E. Fullerton
Abstract:
CVD techniques have emerged as a promising approach in the formation of a broad range of nanostructured materials. The realization of many practical applications will require efficient and economical synthesis techniques that preferably avoid the need for templates or costly single-crystal substrates and also afford process adaptability. Towards this end, we have developed a single-step route for the reduction-type synthesis of nanostructured Ni materials using a thermal CVD method. By tuning the CVD growth parameters, we can synthesize morphologically dissimilar nanostructures including single-crystal cubes and Au nanostructures which form atop untreated amorphous SiO2||Si substrates. An understanding of the new properties that emerge in these nanostructures materials and their relationship to function will lead to for a broad range of magnetostrictive devices as well as other catalysis, fuel cell, sensor, and battery applications based on high-surface-area transition-metal nanostructures. We use coherent X-ray diffraction imaging technique to obtain 3-D image and strain maps of individual nanocrystals. Coherent x-ray diffractive imaging (CXDI) is a technique that provides the overall shape of a nanostructure and the lattice distortion based on the combination of highly brilliant coherent x-ray sources and phase retrieval algorithm. We observe a fine interplay of reduction of surface energy vs internal stress, which plays an important role in the morphology of nano-crystals. The strain distribution is influenced by the metal-substrate interface and metal-air interface, which arise due to differences in their thermal expansion. We find the lattice strain at the surface of the octahedral gold nanocrystal agrees well with the predictions of the Young-Laplace equation quantitatively, but exhibits a discrepancy near the nanocrystal-substrate interface resulting from the interface. The strain in the bottom side of the Ni nanocube, which is contacted on the substrate surface is compressive. This is caused by dissimilar thermal expansion coefficients between Ni nanocube and Si substrate. Research at UCSD support by NSF DMR Award # 1411335.Keywords: CVD, nanostructures, strain, CXRD
Procedia PDF Downloads 391330 Comparative Analysis of Reinforcement Learning Algorithms for Autonomous Driving
Authors: Migena Mana, Ahmed Khalid Syed, Abdul Malik, Nikhil Cherian
Abstract:
In recent years, advancements in deep learning enabled researchers to tackle the problem of self-driving cars. Car companies use huge datasets to train their deep learning models to make autonomous cars a reality. However, this approach has certain drawbacks in that the state space of possible actions for a car is so huge that there cannot be a dataset for every possible road scenario. To overcome this problem, the concept of reinforcement learning (RL) is being investigated in this research. Since the problem of autonomous driving can be modeled in a simulation, it lends itself naturally to the domain of reinforcement learning. The advantage of this approach is that we can model different and complex road scenarios in a simulation without having to deploy in the real world. The autonomous agent can learn to drive by finding the optimal policy. This learned model can then be easily deployed in a real-world setting. In this project, we focus on three RL algorithms: Q-learning, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO). To model the environment, we have used TORCS (The Open Racing Car Simulator), which provides us with a strong foundation to test our model. The inputs to the algorithms are the sensor data provided by the simulator such as velocity, distance from side pavement, etc. The outcome of this research project is a comparative analysis of these algorithms. Based on the comparison, the PPO algorithm gives the best results. When using PPO algorithm, the reward is greater, and the acceleration, steering angle and braking are more stable compared to the other algorithms, which means that the agent learns to drive in a better and more efficient way in this case. Additionally, we have come up with a dataset taken from the training of the agent with DDPG and PPO algorithms. It contains all the steps of the agent during one full training in the form: (all input values, acceleration, steering angle, break, loss, reward). This study can serve as a base for further complex road scenarios. Furthermore, it can be enlarged in the field of computer vision, using the images to find the best policy.Keywords: autonomous driving, DDPG (deep deterministic policy gradient), PPO (proximal policy optimization), reinforcement learning
Procedia PDF Downloads 144329 Alternative Epinephrine Injector to Combat Allergy Induced Anaphylaxis
Authors: Jeremy Bost, Matthew Brett, Jacob Flynn, Weihui Li
Abstract:
One response during anaphylaxis is reduced blood pressure due to blood vessels relaxing and dilating. Epinephrine causes the blood vessels to constrict, which raises blood pressure to counteract the symptoms. When going through an allergic reaction, an Epinephrine injector is used to administer a shot of epinephrine intramuscularly. Epinephrine injectors have become an integral part of day-to-day life for people with allergies. Current Epinephrine injectors (EpiPen) are completely mechanical and have no sensors to monitor the vital signs of patients or give suggestions the optimal time for the shot. The EpiPens are also large and inconvenient to carry daily. The current price of an EpiPen is roughly 600$ for a pack of two. This makes carrying an EpiPen very expensive, especially when they need to be switched out when the epinephrine expires. This new design is in the form of a bracelet, which has the ability to inject epinephrine. The bracelet will be equipped with vital signs monitors that can aid the patient to sense the allergic reaction. The vital signs that would be of interest are blood pressure, heart rate and Electrodermal activity (EDA). The heart rate of the patient will be tracked by a photoplethysmograph (PPG) that is incorporated into the sensors. The heart rate is expected to increase during anaphylaxis. Blood pressure will be monitored through a radar sensor, which monitors the phase changes in electromagnetic waves as they reflect off of the blood vessel. EDA is under autonomic control. Allergen-induced anaphylaxis is caused by a release of chemical mediators from mast cells and basophils, thus changes the autonomic activity of the patient. So by measuring EDA, it will give the wearer an alert on how their autonomic nervous system is reacting. After the vital signs are collected, they will be sent to an application on a smartphone to be analyzed, which can then alert an emergency contact if the epinephrine injector on the bracelet is activated. Overall, this design creates a safer system by aiding the user in keeping track of their epinephrine injector, while making it easier to track their vital signs. Also, our design will be more affordable and more convenient to replace. Rather than replacing the entire product, only the needle and drug will be switched out and not the entire design.Keywords: allergy, anaphylaxis, epinephrine, injector, vital signs monitor
Procedia PDF Downloads 252328 Seal and Heal Miracle Ointment: Effects of Cryopreserved and Lyophilized Amniotic Membrane on Experimentally Induced Diabetic Balb/C Mice
Authors: Elizalde D. Bana
Abstract:
Healing restores continuity and form through cell replication; hence, conserving structural integrity. In response to the worldwide pressing problem of chronic wounds in the healthcare delivery system, the researcher aims to provide effective intervention to preserve the structural integrity of the person. The wound healing effects of cryopreserved and lyophilized amniotic membrane (AM) of a term fetus embedded into two (2) concentrations (1.5 % and 1.0 %) of absorption-based ointment has been evaluated in vivo using the excision wound healing model 1x1 cm size. The total protein concentration in full term fetus was determined by the Biuret and Bradford methods, which are based on UV-visible spectroscopy. The percentages of protein presence in 9.5 mg (Mass total sample) of Amniotic membrane ranges between 14.77 – 14.46 % in Bradford method, while slightly lower to 13.78 – 13.80 % concentration in Biuret method, respectively. Bradford method evidently showed higher sensitivity for proteins than Biuret test. Overall, the amniotic membrane is composed principally of proteins in which a copious amount of literature substantially proved its healing abilities. After which, an area of 1 cm by 1 cm skin tissue was excised to its full thickness from the dorsolateral aspect of the isogenic mice and was applied twice a day with the ointment formulation having two (2) concentrations for the diabetic group and non-diabetic group. The wounds of each animal were left undressed and its area was measured every other day by a standard measurement formula from day 2,4,6,8,10,12 and 14. By the 14th day, the ointment containing 1.5 % of AM in absorption-based ointment applied to non-diabetic and diabetic group showed 100 % healing. The wound areas in the animals treated with the standard antibiotic, Mupirocin Ointment (Brand X) showed a 100% healing by the 14th day but with traces of scars, indicating that AM prepared from cryopreservation and lyophilization, at that given concentration, had a better wound healing property than the standard antibiotic. Four (4) multivariate tests were used which showed a significant interaction between days and treatments, meaning that the ointments prepared in two differing concentrations and induced in different groups of the mice had a significant effect on the percent of contraction over time. Furthermore, the evaluations of its effectiveness to wound healing were all significant although in differing degrees. It is observed that the higher the concentrations of amniotic membrane, the more effective are the results.Keywords: wounds, healing, amniotic membrane ointments, biomedical, stem cell
Procedia PDF Downloads 301327 Cost-Effective Mechatronic Gaming Device for Post-Stroke Hand Rehabilitation
Authors: A. Raj Kumar, S. Bilaloglu
Abstract:
Stroke is a leading cause of adult disability worldwide. We depend on our hands for our activities of daily living(ADL). Although many patients regain the ability to walk, they continue to experience long-term hand motor impairments. As the number of individuals with young stroke is increasing, there is a critical need for effective approaches for rehabilitation of hand function post-stroke. Motor relearning for dexterity requires task-specific kinesthetic, tactile and visual feedback. However, when a stroke results in both sensory and motor impairment, it becomes difficult to ascertain when and what type of sensory substitutions can facilitate motor relearning. In an ideal situation, real-time task-specific data on the ability to learn and data-driven feedback to assist such learning will greatly assist rehabilitation for dexterity. We have found that kinesthetic and tactile information from the unaffected hand can assist patients re-learn the use of optimal fingertip forces during a grasp and lift task. Measurement of fingertip grip force (GF), load forces (LF), their corresponding rates (GFR and LFR), and other metrics can be used to gauge the impairment level and progress during learning. Currently ATI mini force-torque sensors are used in research settings to measure and compute the LF, GF, and their rates while grasping objects of different weights and textures. Use of the ATI sensor is cost prohibitive for deployment in clinical or at-home rehabilitation. A cost effective mechatronic device is developed to quantify GF, LF, and their rates for stroke rehabilitation purposes using off-the-shelf components such as load cells, flexi-force sensors, and an Arduino UNO microcontroller. A salient feature of the device is its integration with an interactive gaming environment to render a highly engaging user experience. This paper elaborates the integration of kinesthetic and tactile sensing through computation of LF, GF and their corresponding rates in real time, information processing, and interactive interfacing through augmented reality for visual feedback.Keywords: feedback, gaming, kinesthetic, rehabilitation, tactile
Procedia PDF Downloads 239326 Double Functionalization of Magnetic Colloids with Electroactive Molecules and Antibody for Platelet Detection and Separation
Authors: Feixiong Chen, Naoufel Haddour, Marie Frenea-Robin, Yves MéRieux, Yann Chevolot, Virginie Monnier
Abstract:
Neonatal thrombopenia occurs when the mother generates antibodies against her baby’s platelet antigens. It is particularly critical for newborns because it can cause coagulation troubles leading to intracranial hemorrhage. In this case, diagnosis must be done quickly to make platelets transfusion immediately after birth. Before transfusion, platelet antigens must be tested carefully to avoid rejection. The majority of thrombopenia (95 %) are caused by antibodies directed against Human Platelet Antigen 1a (HPA-1a) or 5b (HPA-5b). The common method for antigen platelets detection is polymerase chain reaction allowing for identification of gene sequence. However, it is expensive, time-consuming and requires significant blood volume which is not suitable for newborns. We propose to develop a point-of-care device based on double functionalized magnetic colloids with 1) antibodies specific to antigen platelets and 2) highly sensitive electroactive molecules in order to be detected by an electrochemical microsensor. These magnetic colloids will be used first to isolate platelets from other blood components, then to capture specifically platelets bearing HPA-1a and HPA-5b antigens and finally to attract them close to sensor working electrode for improved electrochemical signal. The expected advantages are an assay time lower than 20 min starting from blood volume smaller than 100 µL. Our functionalization procedure based on amine dendrimers and NHS-ester modification of initial carboxyl colloids will be presented. Functionalization efficiency was evaluated by colorimetric titration of surface chemical groups, zeta potential measurements, infrared spectroscopy, fluorescence scanning and cyclic voltammetry. Our results showed that electroactive molecules and antibodies can be immobilized successfully onto magnetic colloids. Application of a magnetic field onto working electrode increased the detected electrochemical signal. Magnetic colloids were able to capture specific purified antigens extracted from platelets.Keywords: Magnetic Nanoparticles , Electroactive Molecules, Antibody, Platelet
Procedia PDF Downloads 269325 A Critical Analysis of the Creation of Geoparks in Brazil: Challenges and Possibilities
Authors: Isabella Maria Beil
Abstract:
The International Geosciences and Geoparks Programme (IGGP) were officially created in 2015 by the United Nations Educational, Scientific and Cultural Organization (UNESCO) to enhance the protection of the geological heritage and fill the gaps on the World Heritage Convention. According to UNESCO, a Global Geopark is an unified area where sites and landscapes of international geological significance are managed based on a concept of sustainable development. Tourism is seen as a main activity to develop new sources of revenue. Currently (November 2022), UNESCO recognized 177 Global Geoparks, of which more than 50% are in Europe, 40% in Asia, 6% in Latin America, and the remaining 4% are distributed between Africa and Anglo-Saxon America. This picture shows the existence of a much uneven geographical distribution of these areas across the planet. Currently, there are three Geoparks in Brazil; however, the first of them was accepted by the Global Geoparks Network in 2006 and, just fifteen years later, two other Brazilian Geoparks also obtained the UNESCO title. Therefore, this paper aims to provide an overview of the current geopark situation in Brazil and to identify the main challenges faced by the implementation of these areas in the country. To this end, the Brazilian history and its main characteristics regarding the development of geoparks over the years will be briefly presented. Then, the results obtained from interviews with those responsible for each of the current 29 aspiring geoparks in Brazil will be presented. Finally, the main challenges related to the implementation of Geoparks in the country will be listed. Among these challenges, the answers obtained through the interviews revealed conflicts and problems that pose hindrances both to the start of the development of a Geopark project and to its continuity and implementation. It is clear that the task of getting multiple social actors, or stakeholders, to engage with the Geopark, one of UNESCO’s guidelines, is one of its most complex aspects. Therefore, among the main challenges, stand out the difficulty of establishing solid partnerships, what directly reflects divergences between the different social actors and their goals. This difficulty in establishing partnerships happens for a number of reasons. One of them is that the investment in a Geopark project can be high and investors often expect a short-term financial return. In addition, political support from the public sector is often costly as well, since the possible results and positive influences of a Geopark in a given area will only be experienced during future mandates. These results demonstrate that the research on Geoparks goes far beyond the geological perspective linked to its origins, and is deeply embedded in political and economic issues.Keywords: Brazil, geoparks, tourism, UNESCO
Procedia PDF Downloads 90324 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters
Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran
Abstract:
The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.Keywords: electric propulsion, mass gauging, propellant, PVT, xenon
Procedia PDF Downloads 344323 Biofilm Text Classifiers Developed Using Natural Language Processing and Unsupervised Learning Approach
Authors: Kanika Gupta, Ashok Kumar
Abstract:
Biofilms are dense, highly hydrated cell clusters that are irreversibly attached to a substratum, to an interface or to each other, and are embedded in a self-produced gelatinous matrix composed of extracellular polymeric substances. Research in biofilm field has become very significant, as biofilm has shown high mechanical resilience and resistance to antibiotic treatment and constituted as a significant problem in both healthcare and other industry related to microorganisms. The massive information both stated and hidden in the biofilm literature are growing exponentially therefore it is not possible for researchers and practitioners to automatically extract and relate information from different written resources. So, the current work proposes and discusses the use of text mining techniques for the extraction of information from biofilm literature corpora containing 34306 documents. It is very difficult and expensive to obtain annotated material for biomedical literature as the literature is unstructured i.e. free-text. Therefore, we considered unsupervised approach, where no annotated training is necessary and using this approach we developed a system that will classify the text on the basis of growth and development, drug effects, radiation effects, classification and physiology of biofilms. For this, a two-step structure was used where the first step is to extract keywords from the biofilm literature using a metathesaurus and standard natural language processing tools like Rapid Miner_v5.3 and the second step is to discover relations between the genes extracted from the whole set of biofilm literature using pubmed.mineR_v1.0.11. We used unsupervised approach, which is the machine learning task of inferring a function to describe hidden structure from 'unlabeled' data, in the above-extracted datasets to develop classifiers using WinPython-64 bit_v3.5.4.0Qt5 and R studio_v0.99.467 packages which will automatically classify the text by using the mentioned sets. The developed classifiers were tested on a large data set of biofilm literature which showed that the unsupervised approach proposed is promising as well as suited for a semi-automatic labeling of the extracted relations. The entire information was stored in the relational database which was hosted locally on the server. The generated biofilm vocabulary and genes relations will be significant for researchers dealing with biofilm research, making their search easy and efficient as the keywords and genes could be directly mapped with the documents used for database development.Keywords: biofilms literature, classifiers development, text mining, unsupervised learning approach, unstructured data, relational database
Procedia PDF Downloads 169322 Discrete Element Simulations of Composite Ceramic Powders
Authors: Julia Cristina Bonaldo, Christophe L. Martin, Severine Romero Baivier, Stephane Mazerat
Abstract:
Alumina refractories are commonly used in steel and foundry industries. These refractories are prepared through a powder metallurgy route. They are a mixture of hard alumina particles and graphite platelets embedded into a soft carbonic matrix (binder). The powder can be cold pressed isostatically or uniaxially, depending on the application. The compact is then fired to obtain the final product. The quality of the product is governed by the microstructure of the composite and by the process parameters. The compaction behavior and the mechanical properties of the fired product depend greatly on the amount of each phase, on their morphology and on the initial microstructure. In order to better understand the link between these parameters and the macroscopic behavior, we use the Discrete Element Method (DEM) to simulate the compaction process and the fracture behavior of the fired composite. These simulations are coupled with well-designed experiments. Four mixes with various amounts of Al₂O₃ and binder were tested both experimentally and numerically. In DEM, each particle is modelled and the interactions between particles are taken into account through appropriate contact or bonding laws. Here, we model a bimodal mixture of large Al₂O₃ and small Al₂O₃ covered with a soft binder. This composite is itself mixed with graphite platelets. X-ray tomography images are used to analyze the morphologies of the different components. Large Al₂O₃ particles and graphite platelets are modelled in DEM as sets of particles bonded together. The binder is modelled as a soft shell that covers both large and small Al₂O₃ particles. When two particles with binder indent each other, they first interact through this soft shell. Once a critical indentation is reached (towards the end of compaction), hard Al₂O₃ - Al₂O₃ contacts appear. In accordance with experimental data, DEM simulations show that the amount of Al₂O₃ and the amount of binder play a major role for the compaction behavior. The graphite platelets bend and break during the compaction, also contributing to the macroscopic stress. Firing step is modeled in DEM by ascribing bonds to particles which contact each other after compaction. The fracture behavior of the compacted mixture is also simulated and compared with experimental data. Both diametrical tests (Brazilian tests) and triaxial tests are carried out. Again, the link between the amount of Al₂O₃ particles and the fracture behavior is investigated. The methodology described here can be generalized to other particulate materials that are used in the ceramic industry.Keywords: cold compaction, composites, discrete element method, refractory materials, x-ray tomography
Procedia PDF Downloads 137321 Anatomical and Histochemical Investigation of the Leaf of Vitex agnus-castus L.
Authors: S. Mamoucha, J. Rahul, N. Christodoulakis
Abstract:
Introduction: Nature has been the source of medicinal agents since the dawn of the human existence on Earth. Currently, millions of people, in the developing world, rely on medicinal plants for primary health care, income generation and lifespan improvement. In Greece, more than 5500 plant taxa are reported while about 250 of them are considered to be of great pharmaceutical importance. Among the plants used for medical purposes, Vitex agnus-castus L. (Verbenaceae) is known since ancient times. It is a small tree or shrub, widely distributed in the Mediterranean basin up to the Central Asia. It is also known as chaste tree or monks pepper. Theophrastus mentioned the shrub several times, as ‘agnos’ in his ‘Enquiry into Plants’. Dioscorides mentioned the use of V. agnus-castus for the stimulation of lactation in nursing mothers and the treatment of several female disorders. The plant has important medicinal properties and a long tradition in folk medicine as an antimicrobial, diuretic, digestive and insecticidal agent. Materials and methods: Leaves were cleaned, detached, fixed, sectioned and investigated with light and Scanning Electron Microscopy (SEM). Histochemical tests were executed as well. Specific histochemical reagents (osmium tetroxide, H2SO4, vanillin/HCl, antimony trichloride, Wagner’ s reagent, Dittmar’ s reagent, potassium bichromate, nitroso reaction, ferric chloride and di methoxy benzaldehyde) were used for the sub cellular localization of secondary metabolites. Results: Light microscopical investigations of the elongated leaves of V. agnus-castus revealed three layers of palisade parenchyma, just below the single layered adaxial epidermis. The spongy parenchyma is rather loose. Adaxial epidermal cells are larger in magnitude, compared to those of the abaxial epidermis. Four different types of capitate, secreting trichomes, were localized among the abaxial epidermal cells. Stomata were observed at the abaxial epidermis as well. SEM revealed the interesting arrangement of trichomes. Histochemical treatment on fresh and plastic embedded tissue sections revealed the nature and the sites of secondary metabolites accumulation (flavonoids, steroids, terpenes). Acknowledgment: This work was supported by IKY - State Scholarship Foundation, Athens, Greece.Keywords: Vitex agnus-castus, leaf anatomy, histochemical reagents, secondary metabolites
Procedia PDF Downloads 385320 An Integrated Geophysical Investigation for Earthen Dam Inspection: A Case Study of Huai Phueng Dam, Udon Thani, Northeastern Thailand
Authors: Noppadol Poomvises, Prateep Pakdeerod, Anchalee Kongsuk
Abstract:
In the middle of September 2017, a tropical storm named ‘DOKSURI’ swept through Udon Thani, Northeastern Thailand. The storm dumped heavy rain for many hours and caused large amount of water flowing into Huai Phueng reservoir. Level of impounding water increased rapidly, and the extra water flowed over a service spillway, morning-glory type constructed by concrete material for about 50 years ago. Subsequently, a sinkhole was formed on the dam crest and five points of water piping were found on downstream slope closely to spillway. Three techniques of geophysical investigation were carried out to inspect cause of failures; Electrical Resistivity Imaging (ERI), Multichannel Analysis of Surface Wave (MASW), and Ground Penetrating Radar (GPR), respectively. Result of ERI clearly shows evidence of overtop event and heterogeneity around spillway that implied possibility of previous shape of sinkhole around the pipe. The shear wave velocity of subsurface soil measured by MASW can numerically convert to undrained shear strength of impervious clay core. Result of GPR clearly reveals partial settlements of freeboard zone at top part of the dam and also shaping new refilled material to plug the sinkhole back to the condition it should be. In addition, the GPR image is a main answer to confirm that there are not any sinkholes in the survey lines, only that found on top of the spillway. Integrity interpretation of the three results together with several evidences observed during a field walk-through and data from drilled holes can be interpreted that there are four main causes in this account. The first cause is too much water flowing over the spillway. Second, the water attacking morning glory spillway creates cracks upon concrete contact where the spillway is cross-cut to the center of the dam. Third, high velocity of water inside the concrete pipe sucking fine particle of embankment material down via those cracks and flushing out to the river channel. Lastly, loss of clay material of the dam into the concrete pipe creates the sinkhole at the crest. However, in case of failure by piping, it is possible that they can be formed both by backward erosion (internal erosion along or into embedded structure of spillway walls) and also by excess saturated water of downstream material.Keywords: dam inspection, GPR, MASW, resistivity
Procedia PDF Downloads 241319 Building the Professional Readiness of Graduates from Day One: An Empirical Approach to Curriculum Continuous Improvement
Authors: Fiona Wahr, Sitalakshmi Venkatraman
Abstract:
Industry employers require new graduates to bring with them a range of knowledge, skills and abilities which mean these new employees can immediately make valuable work contributions. These will be a combination of discipline and professional knowledge, skills and abilities which give graduates the technical capabilities to solve practical problems whilst interacting with a range of stakeholders. Underpinning the development of these disciplines and professional knowledge, skills and abilities, are “enabling” knowledge, skills and abilities which assist students to engage in learning. These are academic and learning skills which are essential to common starting points for both the learning process of students entering the course as well as forming the foundation for the fully developed graduate knowledge, skills and abilities. This paper reports on a project created to introduce and strengthen these enabling skills into the first semester of a Bachelor of Information Technology degree in an Australian polytechnic. The project uses an action research approach in the context of ongoing continuous improvement for the course to enhance the overall learning experience, learning sequencing, graduate outcomes, and most importantly, in the first semester, student engagement and retention. The focus of this is implementing the new curriculum in first semester subjects of the course with the aim of developing the “enabling” learning skills, such as literacy, research and numeracy based knowledge, skills and abilities (KSAs). The approach used for the introduction and embedding of these KSAs, (as both enablers of learning and to underpin graduate attribute development), is presented. Building on previous publications which reported different aspects of this longitudinal study, this paper recaps on the rationale for the curriculum redevelopment and then presents the quantitative findings of entering students’ reading literacy and numeracy knowledge and skills degree as well as their perceived research ability. The paper presents the methodology and findings for this stage of the research. Overall, the cohort exhibits mixed KSA levels in these areas, with a relatively low aggregated score. In addition, the paper describes the considerations for adjusting the design and delivery of the new subjects with a targeted learning experience, in response to the feedback gained through continuous monitoring. Such a strategy is aimed at accommodating the changing learning needs of the students and serves to support them towards achieving the enabling learning goals starting from day one of their higher education studies.Keywords: enabling skills, student retention, embedded learning support, continuous improvement
Procedia PDF Downloads 246318 Analysis on the Feasibility of Landsat 8 Imagery for Water Quality Parameters Assessment in an Oligotrophic Mediterranean Lake
Authors: V. Markogianni, D. Kalivas, G. Petropoulos, E. Dimitriou
Abstract:
Lake water quality monitoring in combination with the use of earth observation products constitutes a major component in many water quality monitoring programs. Landsat 8 images of Trichonis Lake (Greece) acquired on 30/10/2013 and 30/08/2014 were used in order to explore the possibility of Landsat 8 to estimate water quality parameters and particularly CDOM absorption at specific wavelengths, chlorophyll-a and nutrient concentrations in this oligotrophic freshwater body, characterized by inexistent quantitative, temporal and spatial variability. Water samples have been collected at 22 different stations, on late August of 2014 and the satellite image of the same date was used to statistically correlate the in-situ measurements with various combinations of Landsat 8 bands in order to develop algorithms that best describe those relationships and calculate accurately the aforementioned water quality components. Optimal models were applied to the image of late October of 2013 and the validation of the results was conducted through their comparison with the respective available in-situ data of 2013. Initial results indicated the limited ability of the Landsat 8 sensor to accurately estimate water quality components in an oligotrophic waterbody. As resulted by the validation process, ammonium concentrations were proved to be the most accurately estimated component (R = 0.7), followed by chl-a concentration (R = 0.5) and the CDOM absorption at 420 nm (R = 0.3). In-situ nitrate, nitrite, phosphate and total nitrogen concentrations of 2014 were measured as lower than the detection limit of the instrument used, hence no statistical elaboration was conducted. On the other hand, multiple linear regression among reflectance measures and total phosphorus concentrations resulted in low and statistical insignificant correlations. Our results were concurrent with other studies in international literature, indicating that estimations for eutrophic and mesotrophic lakes are more accurate than oligotrophic, owing to the lack of suspended particles that are detectable by satellite sensors. Nevertheless, although those predictive models, developed and applied to Trichonis oligotrophic lake are less accurate, may still be useful indicators of its water quality deterioration.Keywords: landsat 8, oligotrophic lake, remote sensing, water quality
Procedia PDF Downloads 395317 Uncertainty Evaluation of Erosion Volume Measurement Using Coordinate Measuring Machine
Authors: Mohamed Dhouibi, Bogdan Stirbu, Chabotier André, Marc Pirlot
Abstract:
Internal barrel wear is a major factor affecting the performance of small caliber guns in their different life phases. Wear analysis is, therefore, a very important process for understanding how wear occurs, where it takes place, and how it spreads with the aim on improving the accuracy and effectiveness of small caliber weapons. This paper discusses the measurement and analysis of combustion chamber wear for a small-caliber gun using a Coordinate Measuring Machine (CMM). Initially, two different NATO small caliber guns: 5.56x45mm and 7.62x51mm, are considered. A Micura Zeiss Coordinate Measuring Machine (CMM) equipped with the VAST XTR gold high-end sensor is used to measure the inner profile of the two guns every 300-shot cycle. The CMM parameters, such us (i) the measuring force, (ii) the measured points, (iii) the time of masking, and (iv) the scanning velocity, are investigated. In order to ensure minimum measurement error, a statistical analysis is adopted to select the reliable CMM parameters combination. Next, two measurement strategies are developed to capture the shape and the volume of each gun chamber. Thus, a task-specific measurement uncertainty (TSMU) analysis is carried out for each measurement plan. Different approaches of TSMU evaluation have been proposed in the literature. This paper discusses two different techniques. The first is the substitution method described in ISO 15530 part 3. This approach is based on the use of calibrated workpieces with similar shape and size as the measured part. The second is the Monte Carlo simulation method presented in ISO 15530 part 4. Uncertainty evaluation software (UES), also known as the Virtual Coordinate Measuring Machine (VCMM), is utilized in this technique to perform a point-by-point simulation of the measurements. To conclude, a comparison between both approaches is performed. Finally, the results of the measurements are verified through calibrated gauges of several dimensions specially designed for the two barrels. On this basis, an experimental database is developed for further analysis aiming to quantify the relationship between the volume of wear and the muzzle velocity of small caliber guns.Keywords: coordinate measuring machine, measurement uncertainty, erosion and wear volume, small caliber guns
Procedia PDF Downloads 149316 Decoding Democracy's Notion in Aung San Suu Kyi's Speeches
Authors: Woraya Som-Indra
Abstract:
This article purposes to decode the notion of democracy embedded in the political speeches of Aung San Su Kyi by adopting critical discourse analysis approach, using Systemic Function Linguistics (SFL) and transitivity as a vital analytical tool. Two main objectives of the study are 1) to analyze linguistic strategies constituted the crucial characteristics of Su Kyi's political speeches by employing SFL and transitivity and 2) to examine ideology manifested the notion of democracy behind Su Kyi’s political speeches. The data consists of four speeches of Su Kyi delivering in different places within the year 2011 broadcasted through the website of US campaign for Burma. By employing linguistic tool and the concept of ideology as an analytical frame, the word choice selection found in the speeches assist explaining the manifestation of Su Kyi’s ideology toward democracy and power struggle. The finding revealed eight characters of word choice projected from Su Kyi’s political speeches, as follows; 1) support, hope and encouragement which render the recipients to uphold with the mutual aim to fight for democracy together and moving forwards for change and solution in the future, 2) aim and achievement evoke the recipients to attach with the purpose to fight for democracy, 3) challenge and change release energy to challenge the present political regime of Burma to change to the new political regime of democracy, 4) action, doing and taking signify the action and practical process to call for a new political regime, 5) struggle represents power struggle during the process of democracy requesting and it could refer to her long period of house arrest in Burma, 6) freedom implies what she has been long fighting for- to be released from house arrest, be able to access to the freedom of speech related to political ideology, and moreover, be able to speak out for the people of Burmese about their desirable political regime and political participation, 7) share and scarify call the recipients to have the spirit of shared value in the process of acquiring democracy, and 8) solution and achievement remind her recipients of what they have been long fighting for, and what could lead them to reach out the mutual achievement of a new political regime, i.e. democracy. Those word choice selections are plausible representation of democracy notion in Su Kyi’s terms. Due to her long journey of fighting for democracy in Burma, Suu Kyi’s political speeches always possess tremendously strong leadership characteristic, using words of wisdom and moreover, they are encoded with a wide range of words related to democracy ideology in order to push forward the future change into the Burma’s political regime.Keywords: Aung San Su Kyi’s speeches, critical discourse analysis, democracy ideology, systemic function linguistics, transitivity
Procedia PDF Downloads 274315 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence
Authors: Mohammed Al Sulaimani, Hamad Al Manhi
Abstract:
With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems
Procedia PDF Downloads 31