Search results for: total absorbed strain energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17793

Search results for: total absorbed strain energy

15273 An Energy Holes Avoidance Routing Protocol for Underwater Wireless Sensor Networks

Authors: A. Khan, H. Mahmood

Abstract:

In Underwater Wireless Sensor Networks (UWSNs), sensor nodes close to water surface (final destination) are often preferred for selection as forwarders. However, their frequent selection makes them depleted of their limited battery power. In consequence, these nodes die during early stage of network operation and create energy holes where forwarders are not available for packets forwarding. These holes severely affect network throughput. As a result, system performance significantly degrades. In this paper, a routing protocol is proposed to avoid energy holes during packets forwarding. The proposed protocol does not require the conventional position information (localization) of holes to avoid them. Localization is cumbersome; energy is inefficient and difficult to achieve in underwater environment where sensor nodes change their positions with water currents. Forwarders with the lowest water pressure level and the maximum number of neighbors are preferred to forward packets. These two parameters together minimize packet drop by following the paths where maximum forwarders are available. To avoid interference along the paths with the maximum forwarders, a packet holding time is defined for each forwarder. Simulation results reveal superior performance of the proposed scheme than the counterpart technique.

Keywords: energy holes, interference, routing, underwater

Procedia PDF Downloads 409
15272 Determination of Natural Gamma Radioactivity in Sand along the Black Sea Coastal Region of Giresun, North Turkey

Authors: A. Karadeniz, Belgin Kucukomeroglu

Abstract:

In this study natural gamma radioactivity levels are determined on sands along the coastal regions of Giresun/Turkey. The coast of Giresun about 290 km long in investigated to collect 101 sand samples. Natural and artificial radioactivity concentrations of sand samples were measured by using HPGe gamma spectrometry. The average activity concentrations of 238U, 232Th, 40K and 137Cs on sand samples of Giresun were found to be 10.83±2.92 Bq/kg, 21.28±3.22 Bq/kg, 6.42±1.06 Bq/kg, 230.94±10.67 Bq/kg respectively. The average activity concentrations for these radionuclides were compared with the reported data of other parts of Turkey and other countries. The average absorbed dose rate for Giresun was calculated to be 38.68 nGy/h respectively. This value is significantly lower than the World averaged value of 60 nGy/h. The external annual effective dose rate concentration in Giresun was found to be 0.047 mSv/y respectively. This result is much lower than the recommeded limit of 5 mSv/y. The external hazard dose rate for Giresun weas calculated to be 0.21 respectively. This result is much lower than the recommended limit of 1.0.

Keywords: concentration, radioactivity, Giresun, natural gamma radioactivity

Procedia PDF Downloads 391
15271 Contribution Of Community-based House To House (H2h) Active Tuberculosis (Tb) Case Finding (Acf) To Increase In Tb Notification In Nigeria: Kano State Experience 2012 To 2022

Authors: Ibrahim Umar, S Chindo, A Rajab

Abstract:

Background: TB remains a disease of public health concern in Nigeria with an estimated incidence rate of 219/100,000. Kano has the second highest TB burden in Nigeria and is the leading state with the highest consistent yearly TB notification. House-to-house (H2H) active case search in the community was found to have major contribution to the total TB notification in the state. Aims and Objective: To showcase the impact of H2H community active TB case search (ACF) to yearly TB notification in Kano State, Northern Nigeria from 2012 to 2022. Methodology: This is a retrospective descriptive study based on the analysis of data collected during the routine quarterly and yearly TB data collected in the state. Data was analyzed using the Power BI with statistical alpha level of significance <0.05. Results: Between 2012 and 2013 there was no House-to-house active TB case search in Nigeria and Kano had zero contribution to TB notification from the community in those years. However, in 2014 with the introduction of H2H Active TB Case Search Kano notified 6,014 TB cases out of which 113 came from the community ACF that translated to 2% contribution to total TB notification. From 2014 to 2022 there was progressive increase in community contribution to TB case notification from 113 out of 6,014 total TB patients notified (2012) to 11,799 out of 26,371 TB patients notified (2022) in Kano State. This translated to 45% increase in community contribution to total TB case notification. Discussion: Remarkable increase in community contribution to total TB case notification in Kano State was achieved in 2022 with 11,799 TB cases notified from the community Active TB case search to the total of 26,731 TB cases notified in Kano State, Nigeria. Conclusion: in research has shown that Community-based H2H Active TB Case Search through Community TB Workers (CTWs) is an excellent strategy in finding the missing TB cases towards Ending TB in the world.

Keywords: tuberculosis(TB), active case search (ACF), house-to-house (H2H), community TB workers (CTWs)

Procedia PDF Downloads 92
15270 Comparative Study between Two Methods for Extracting Pomegranate Juice and Their Effect on Product Quality

Authors: Amani Aljahani

Abstract:

The purpose of the study was to identify the physical and chemical properties of pomegranate juices and to evaluate their sensory quality. The samples were collected from the local markets and included four types of pomegranate produced in the western and southern region of the kingdom. The juices were extracted by manual squeezing and by centrifugal force. The juices were analyzed periodically for their content of organic acids, total acidity, glucose and fructose, total sugars, and the anthosianine. A panel of 30 judges evaluated the juices for their color, smell, taste, consistency and general acceptance using a prepared scale for that purpose. Result showed that pomegranate juices were acidic in nature (PH between 3.56–4.27). The major organic acids were citric, tartaric, malic, and oxalic aids total organic acidity was between 596.32–763.49 ng/100 ml and increased over storage time, however; total acidity almost stable over time except for the southern produced. The major monosaccharide's in pomegranate juices were glucose and fructose. Their concentration in the juice varied by storage. On the average glucose concentration was between 6.68–7.71 g/100 ml while fructose concentration was between 6.72–7.98 g/100 ml. total sugars content was 16% on the average and dropped by storage. Anthosianine concertration increased after five hours of storage then dropped and stabilized over time regardless of method of treatment. In addition, sensory evaluation of the juices showed general acceptance of them as of color, flavor, and constercy but the preferred one was with that of the western kind extracted by squeezing.

Keywords: extracting, pomegranate, juice, quality

Procedia PDF Downloads 350
15269 Comparison Approach for Wind Resource Assessment to Determine Most Precise Approach

Authors: Tasir Khan, Ishfaq Ahmad, Yejuan Wang, Muhammad Salam

Abstract:

Distribution models of the wind speed data are essential to assess the potential wind speed energy because it decreases the uncertainty to estimate wind energy output. Therefore, before performing a detailed potential energy analysis, the precise distribution model for data relating to wind speed must be found. In this research, material from numerous criteria goodness-of-fits, such as Kolmogorov Simonov, Anderson Darling statistics, Chi-Square, root mean square error (RMSE), AIC and BIC were combined finally to determine the wind speed of the best-fitted distribution. The suggested method collectively makes each criterion. This method was useful in a circumstance to fitting 14 distribution models statistically with the data of wind speed together at four sites in Pakistan. The consequences show that this method provides the best source for selecting the most suitable wind speed statistical distribution. Also, the graphical representation is consistent with the analytical results. This research presents three estimation methods that can be used to calculate the different distributions used to estimate the wind. In the suggested MLM, MOM, and MLE the third-order moment used in the wind energy formula is a key function because it makes an important contribution to the precise estimate of wind energy. In order to prove the presence of the suggested MOM, it was compared with well-known estimation methods, such as the method of linear moment, and maximum likelihood estimate. In the relative analysis, given to several goodness-of-fit, the presentation of the considered techniques is estimated on the actual wind speed evaluated in different time periods. The results obtained show that MOM certainly provides a more precise estimation than other familiar approaches in terms of estimating wind energy based on the fourteen distributions. Therefore, MOM can be used as a better technique for assessing wind energy.

Keywords: wind-speed modeling, goodness of fit, maximum likelihood method, linear moment

Procedia PDF Downloads 84
15268 Analysis of Thermal Damage Characteristics of High Pressure Turbine Blade According to Off-Design Operating Conditions

Authors: Seon Ho Kim, Minho Bang, Seok Min Choi, Young Moon Lee, Dong Kwan Kim, Hyung Hee Cho

Abstract:

Gas turbines are heat engines that convert chemical energy into electrical energy through mechanical energy. Since their high energy density per unit volume and low pollutant emissions, gas turbines are classified as clean energy. In order to obtain better performance, the turbine inlet temperature of the current gas turbine is operated at about 1600℃, and thermal damage is a very serious problem. Especially, these thermal damages are more prominent in off-design conditions than in design conditions. In this study, the thermal damage characteristics of high temperature components of a gas turbine made of a single crystal material are studied numerically for the off-design operating conditions. The target gas turbine is configured as a reheat cycle and is operated in peak load operation mode, not normal operation. In particular, the target gas turbine features a lot of low-load operation. In this study, a commercial code, ANSYS 18.2, was used for analyzing the thermal-flow coupling problems. As a result, the flow separation phenomenon on the pressure side due to the flow reduction was remarkable at the off-design condition, and the high heat transfer coefficient at the upper end of the suction surface due to the tip leakage flow was appeared.

Keywords: gas turbine, single crystal blade, off-design, thermal analysis

Procedia PDF Downloads 213
15267 Explore and Reduce the Performance Gap between Building Modelling Simulations and the Real World: Case Study

Authors: B. Salehi, D. Andrews, I. Chaer, A. Gillich, A. Chalk, D. Bush

Abstract:

With the rapid increase of energy consumption in buildings in recent years, especially with the rise in population and growing economies, the importance of energy savings in buildings becomes more critical. One of the key factors in ensuring energy consumption is controlled and kept at a minimum is to utilise building energy modelling at the very early stages of the design. So, building modelling and simulation is a growing discipline. During the design phase of construction, modelling software can be used to estimate a building’s projected energy consumption, as well as building performance. The growth in the use of building modelling software packages opens the door for improvements in the design and also in the modelling itself by introducing novel methods such as building information modelling-based software packages which promote conventional building energy modelling into the digital building design process. To understand the most effective implementation tools, research projects undertaken should include elements of real-world experiments and not just rely on theoretical and simulated approaches. Upon review of the related studies undertaken, it’s evident that they are mostly based on modelling and simulation, which can be due to various reasons such as the more expensive and time-consuming nature of real-time data-based studies. Taking in to account the recent rise of building energy software modelling packages and the increasing number of studies utilising these methods in their projects and research, the accuracy and reliability of these modelling software packages has become even more crucial and critical. This Energy Performance Gap refers to the discrepancy between the predicted energy savings and the realised actual savings, especially after buildings implement energy-efficient technologies. There are many different software packages available which are either free or have commercial versions. In this study, IES VE (Integrated Environmental Solutions Virtual Environment) is used as it is a common Building Energy Modeling and Simulation software in the UK. This paper describes a study that compares real time results with those in a virtual model to illustrate this gap. The subject of the study is a north west facing north-west (345°) facing, naturally ventilated, conservatory within a domestic building in London is monitored during summer to capture real-time data. Then these results are compared to the virtual results of IES VE, which is a commonly used building energy modelling and simulation software in the UK. In this project, the effect of the wrong position of blinds on overheating is studied as well as providing new evidence of Performance Gap. Furthermore, the challenges of drawing the input of solar shading products in IES VE will be considered.

Keywords: building energy modelling and simulation, integrated environmental solutions virtual environment, IES VE, performance gap, real time data, solar shading products

Procedia PDF Downloads 139
15266 Measuring Resource Recovery and Environmental Benefits of Global Waste Management System Using the Zero Waste Index

Authors: Atiq Uz Zaman

Abstract:

Sustainable waste management is one of the major global challenges that we face today. A poor waste management system not only symbolises the inefficiency of our society but also depletes valuable resources and emits pollutions to the environment. Presently, we extract more natural resources than ever before in order to meet the demand for constantly growing resource consumption. It is estimated that around 71 tonnes of ‘upstream’ materials are used for every tonne of MSW. Therefore, resource recovery from waste potentially offsets a significant amount of upstream resource being depleted. This study tries to measure the environmental benefits of global waste management systems by applying a tool called the Zero Waste Index (ZWI). The ZWI measures the waste management performance by accounting for the potential amount of virgin material that can be offset by recovering resources from waste. In addition, the ZWI tool also considers the energy, GHG and water savings by offsetting virgin materials and recovering energy from waste. This study analyses the municipal solid waste management system of 172 countries from all over the globe and the population covers in the study is 3.37 billion. This study indicates that we generated around 1.47 billion tonnes (436kg/cap/year) of municipal solid waste each year and the waste generation is increasing over time. This study also finds a strong and positive correlation (R2=0.29, p = < .001) between income (GDP/capita/year) and amount of waste generated (kg/capita/year). About 84% of the waste is collected globally and only 15% of the collected waste is recycled. The ZWI of the world is measured in this study of 0.12, which means that the current waste management system potentially offsets only 12% of the total virgin material substitution potential from waste. Annually, an average person saved around 219kWh of energy, emitted around 48kg of GHG and saved around 38l of water. Findings of this study are very important to measure the current waste management performance in a global context. In addition, the study also analysed countries waste management performance based on their income level.

Keywords: global performance, material substitution; municipal waste, resource recovery, waste management, zero waste index

Procedia PDF Downloads 244
15265 Ceramide-PLGA Nanoparticle Formation to Apply to Atopic Dermatitis

Authors: Sang-Myung Jung, Gwang Heum Yoon, Hoo Chul Lee, Hwa Sung Shin

Abstract:

Ceramide, a component of stratum corneum at epidermis, helps to construct a rigid and dense skin barrier to prevent pathogens that cause atopic dermatitis. However, ceramide was too hydrophobic to be directly absorbed into stratum corneum and has risks of side effects by excessive treatment. To overcome the obstacles, ceramide was embedded into PLGA nanoparticles coated with chitosan. PLGA and chitosan have been known as biocompatible materials. PLGA was squeezed when faced with water and pumped ceramide out of PLGA nanoparticle. In addition, the chitosan coating layer helped initial adherence of nanoparticles to skin and regulate ceramide release until removed. This coating was degraded at weakly acid state like skin surface, finally ceramide release could be controlled. Finally, the nanoparticle was demonstrated to be non-cytotoxic and regenerate stratum corneum of atopic dermatitis model. Overall the nanoparticle is suggested as a novel and effective nanodrug to apply atopic dermatitis.

Keywords: nanoparticle, controlled release, atopic dermatitis, chitosan coating, ceramide

Procedia PDF Downloads 395
15264 Cytotoxic Effect of Biologically Transformed Propolis on HCT-116 Human Colon Cancer Cells

Authors: N. Selvi Gunel, L. M. Oktay, H. Memmedov, B. Durmaz, H. Kalkan Yildirim, E. Yildirim Sozmen

Abstract:

Object: Propolis which consists of compounds that are accepted as antioxidant, antimicrobial, antiseptic, antibacterial, anti-inflammatory, anti-mutagenic, immune-modulator and cytotoxic, is frequently used in current therapeutic applications. However, some of them result in allergic side effects, causing consumption to be restricted. Previously our group has succeeded in producing a new biotechnological product which was less allergenic. In this study, we purpose to optimize production conditions of this biologically-transformed propolis and determine the cytotoxic effects of obtained new products on colon cancer cell line (HCT-116). Method: Firstly, solid propolis samples were dissolved in water after weighing, grinding and sizing (sieve-35mesh) and applied 40 kHz/10 min ultrasonication. Samples were prepared according to inoculation with Lactobacillus plantarum in two different proportions (2.5% and 3.5%). Chromatographic analyzes of propolis were performed by UPLC-MS/MS (Waters, Milford, MA) system. Results were analysed by UPLC-MS/MS system MassLynx™ 4.1 software. HCT-116 cells were treated with propolis examples at 25-1000 µg/ml concentrations and cytotoxicity were measured by using WST-8 assay at 24, 48, and 72 hours. Samples with biological transformation were compared with the non-transformed control group samples. Our experiment groups were formed as follows: untreated (group 1), propolis dissolved in water ultrasonicated at 40 kHz/10 min (group 2), propolis dissolved in water ultrasonicated at 40 kHz/10 min and inoculated 2.5% L. plantarum L1 strain (group 3), propolis dissolved in water ultrasonicated at 40 kHz/10 min and inoculated 3.5% L. plantarum L3 strain (group 4). Obtained data were calculated with Graphpad Software V5 and analyzed by two-way ANOVA test followed by Bonferroni test. Result: As a result of our study, the cytotoxic effect of propolis samples on HCT-116 cells was evaluated. There was a 7.21 fold increase in group 3 compared to group 2 in the concentration of 1000 µg/ml, and it was a 6.66 fold increase in group 3 compared to group 1 at the end of 24 hours. At the end of 48 hours, in the concentration of 500 µg/ml, it was determined 4.7 fold increase in group 4 compared to group 3. At the same time, in the concentration of 750 µg/ml it was determined 2.01 fold increase in group 4 compared to group 3 and in the same concentration, it was determined 3.1 fold increase in group 4 compared to group 2. Also, at the 72 hours, in the concentration of 750 µg/ml, it was determined 2.42 fold increase in group 3 according to group 2 and in the same time, in the concentration of 1000 µg/ml, it was determined 2.13 fold increase in group 4 according to group 2. According to cytotoxicity results, the group which were ultrasonicated at 40 kHz/10min and inoculated 3.5% L. plantarum L3-strain had a higher cytotoxic effect. Conclusion: It is known that bioavailability of propolis is halved in six months. The data obtained from our results indicated that biologically-transformed propolis had more cytotoxic effect than non-transformed group on colon cancer cells. Consequently, we suggested that L. plantarum-transformation provides both reduction of allergenicity and extension of bioavailability period by enhancing healthful polyphenols.

Keywords: bio-transformation, propolis, colon cancer, cytotoxicity

Procedia PDF Downloads 140
15263 Si Doped HfO₂ Anti-Ferroelectric Thin Films for Energy Storage and Solid State Cooling Applications

Authors: Faizan Ali, Dayu Zhou, Xiaohua Liu, Tony Schenk, Johannes Muller, Uwe Schroeder

Abstract:

Recently, the ferroelectricity (FE) and anti-ferroelectricity (AFE) introduced in so-called 'high-k dielectric' HfO₂ material incorporated with various dopants (Si, Gd, Y, Sr, Gd, Al, and La, etc.), HfO₂-ZrO₂ solid-solution, Al or Si-doped Hf₀.₅Zr₀.₅O₂ and even undoped HfO₂ thin films. The origin of FE property was attributed to the formation of a non-centrosymmetric orthorhombic (o) phase of space group Pbc2₁. To the author’s best knowledge, AFE property was observed only in HfO₂ doped with a certain amount of Si, Al, HfₓZr₁₋ₓO₂ (0 ≤ x < 0.5), and in Si or Al-doped Hf₀.₅Zr₀.₅O₂. The origin of the anti-ferroelectric behavior is an electric field induced phase transition between the non-polar tetragonal (t) and the polar ferroelectric orthorhombic (o) phase. Compared with the significant amount of studies for the FE properties in the context of non-volatile memories, AFE properties of HfO₂-based and HfₓZr₁₋ₓO₂ (HZO) thin films have just received attention recently for energy-related applications such as electrocaloric cooling, pyroelectric energy harvesting, and electrostatic energy storage. In this work, energy storage and solid state cooling properties of Si-doped HfO₂ AFE thin films are investigated. Owing to the high field-induced polarization and slim double hysteresis, an extremely large Energy storage density (ESD) value of 61.2 J cm⁻³ is achieved at 4.5 MV cm⁻¹ with high efficiency of ~65%. In addition, the ESD and efficiency exhibit robust thermal stability in 210-400 K temperature range and excellent endurance up to 10⁹ times of charge/discharge cycling at a very high electric field of 4.0 MV cm⁻¹. Similarly, for solid-state cooling, the maximum adiabatic temperature change (

Keywords: thin films, energy storage, endurance, solid state cooling, anti-ferroelectric

Procedia PDF Downloads 128
15262 Passive Solar Water Concepts for Human Comfort

Authors: Eyibo Ebengeobong Eddie

Abstract:

Taking advantage of the sun's position to design buildings to ensure human comfort has always been an important aspect in an architectural design. Using cheap and less expensive methods and systems for gaining solar energy, heating and cooling has always been a great advantage to users and occupants of a building. As the years run by, daily techniques and methods have been created and more are being discovered to help reduce the energy demands of any building. Architects have made effective use of a buildings orientation, building materials and elements to achieve less energy demand. This paper talks about the various techniques used in solar heating and passive cooling of buildings and through water techniques and concepts to achieve thermal comfort.

Keywords: comfort, passive, solar, water

Procedia PDF Downloads 460
15261 RNAseq Reveals Hypervirulence-Specific Host Responses to M. tuberculosis Infection

Authors: Gina Leisching, Ray-Dean Pietersen, Carel Van Heerden, Paul Van Helden, Ian Wiid, Bienyameen Baker

Abstract:

The distinguishing factors that characterize the host response to infection with virulent Mycobacterium tuberculosis (M.tb) are largely confounding. We present an infection study with two genetically closely related M.tb strains that have vastly different pathogenic characteristics. The early host response to infection with these detergent-free cultured strains was analyzed through RNAseq in an attempt to provide information on the subtleties which may ultimately contribute to the virulent phenotype. Murine bone marrow-derived macrophages (BMDMs) were infected with either a hyper- (R5527) or hypovirulent (R1507) Beijing M. tuberculosis clinical isolate. RNAseq revealed 69 differentially expressed host genes in BMDMs during comparison of these two transcriptomes. Pathway analysis revealed activation of the stress-induced and growth inhibitory Gadd45 signaling pathway in hypervirulent infected BMDMs. Upstream regulators of interferon activation such as and IRF3 and IRF7 were predicted to be upregulated in hypovirulent-infected BMDMs. Additional analysis of the host immune response through ELISA and qPCR included the use of human THP-1 macrophages where a robust proinflammatory response was observed after infection with the hypervirulent strain. RNAseq revealed two early-response genes (IER3 and SAA3) and two host-defence genes (OASL1 and SLPI) that were significantly upregulated by the hypervirulent strain. The role of these genes under M.tb infection conditions are largely unknown but here we provide validation of their presence with use of qPCR and Western blot. Further analysis into their biological role under infection with virulent M.tb is required.

Keywords: host-response, Mycobacterium tuberculosis, RNAseq, virulence

Procedia PDF Downloads 210
15260 Nutritional Composition of Provitamin A-Biofortified Amahewu, a Maize Based Beverage with Potential to Alleviate Vitamin A Deficiency

Authors: Temitope D. Awobusuyi, Eric O. Amonsou, Muthulisi Siwela

Abstract:

Amahewu, a lactic acid fermented non-alcoholic maize based beverage is widely consumed in Southern Africa. It is traditionally made with white maize which is deficient in vitamin A. Provitamin A-biofortified maize has been developed for use as a complementary strategy to alleviate vitamin A deficiency. In this study the nutritional composition and protein digestibility of amahewu produced using provitamin A-biofortified maize was determined. Provitamin A-biofortified amahewu was processed by fermenting cooked maize porridge using malted provitamin A-biofortified maize, wheat bran and lactobacillus mixed starter culture with either malted maize or wheat bran. The total provitamin A content in amahewu products ranged from 3.3-3.8 μg/g (DW). The % retention of total provitamin A ranged from 79 %- 90 % μg/g (DW). The lowest % retention was observed in products fermented with the addition of starter culture. The gross energy of amahewu products were approx. 20 MJ/kg. There was a slight increase in the lysine content of amahewu after fermentation. Protein digestibility of amahewu (approx.91%) was slightly higher compared to unprocessed provitamin A maize (86%). However, a general decrease was observed in the minerals when compared to the unprocessed provitamin A maize. Amahewu processed using starter cultures has higher iron content than those processed with the addition of malt. These result suggests that provitamin A-biofortified amahewu has the potential to make a significant contribution towards alleviating Vitamin A Deficiency in rural communities who are also the most vulnerable to VAD.

Keywords: vitamin A deficiency, provitamin A maize, biofortification, fermentation

Procedia PDF Downloads 417
15259 Magnetic Field Induced Mechanical Behavior of Fluid Filled Carbon Nanotube Foam

Authors: Siva Kumar Reddy, Anwesha Mukherjee, Abha Misra

Abstract:

Excellent energy absorption capability in carbon nanotubes (CNT) is shown in their bulk structure that behaves like super compressible foam. Furthermore, a tunable mechanical behavior of CNT foam is achieved using several methods like changing the concentration of precursors, polymer impregnation, non covalent functionalization of CNT microstructure etc. Influence of magnetic field on compressive behavior of magnetic CNT demonstrated an enhanced peak stress and energy absorption capability, which does not require any surface and structural modification of the foam. This presentation discusses the mechanical behavior of micro porous CNT foam that is impregnated in magnetic field responsive fluid. Magnetic particles are dispersed in a nonmagnetic fluid so that alignment of both particles and CNT could play a crucial role in controlling the stiffness of the overall structure. It is revealed that the compressive behavior of CNT foam critically depends on the fluid viscosity as well as magnetic field intensity. Both peak Stress and energy absorption in CNT foam followed a power law behavior with the increase in the magnetic field intensity. However, in the absence of magnetic field, both peak stress and energy absorption capability of CNT foam presented a linear dependence on the fluid viscosity. Hence, this work demonstrates the role magnetic filed in controlling the mechanical behavior of the foams prepared at nanoscale.

Keywords: carbon nanotubes, magnetic field, energy absorption capability and viscosity

Procedia PDF Downloads 304
15258 Block Matching Based Stereo Correspondence for Depth Calculation

Authors: G. Balakrishnan

Abstract:

Stereo Correspondence plays a major role in estimation of distance of an object from the stereo camera pair for various applications. In this paper, a stereo correspondence algorithm based on block-matching technique is presented. Initially, an energy matrix is calculated for every disparity obtained using modified Sum of Absolute Difference (SAD). Higher energy matrix errors are removed by using threshold value in order to reduce the mismatch errors. A smoothening filter is applied to eliminate unreliable disparity estimate across the object boundaries. The purpose is to improve the reliability of calculation of disparity map. The experimental results obtained shows that the final depth map produce better results and can be used to all the applications using stereo cameras.

Keywords: stereo matching, filters, energy matrix, disparity

Procedia PDF Downloads 215
15257 Thermal Comfort and Energy Saving Evaluation of a Combined System in an Office Room Using Displacement Ventilation

Authors: A. Q. Ahmed, S. Gao

Abstract:

In this paper, the energy saving and human thermal comfort in a typical office room are investigated. The impact of a combined system of exhaust inlet air with light slots located at the ceiling level in a room served by displacement ventilation system is numerically modelled. Previous experimental data are used to validate the computational fluid dynamic (CFD) model. A case study of simulated office room includes two seating occupants, two computers, two data loggers and four lamps. The combined system is located at the ceiling level above the heat sources. A new method of calculation for the cooling coil load in stratified air distribution (STRAD) system is used in this study. The results show that 47.4 % energy saving of space cooling load can be achieved by combing the exhaust inlet air with light slots at the ceiling level above the heat sources.

Keywords: air conditioning, displacement ventilation, energy saving, thermal comfort

Procedia PDF Downloads 483
15256 Molecular Dynamic Simulation of Cold Spray Process

Authors: Aneesh Joshi, Sagil James

Abstract:

Cold Spray (CS) process is deposition of solid particles over a substrate above a certain critical impact velocity. Unlike thermal spray processes, CS process does not melt the particles thus retaining their original physical and chemical properties. These characteristics make CS process ideal for various engineering applications involving metals, polymers, ceramics and composites. The bonding mechanism involved in CS process is extremely complex considering the dynamic nature of the process. Though CS process offers great promise for several engineering applications, the realization of its full potential is limited by the lack of understanding of the complex mechanisms involved in this process and the effect of critical process parameters on the deposition efficiency. The goal of this research is to understand the complex nanoscale mechanisms involved in CS process. The study uses Molecular Dynamics (MD) simulation technique to understand the material deposition phenomenon during the CS process. Impact of a single crystalline copper nanoparticle on copper substrate is modelled under varying process conditions. The quantitative results of the impacts at different velocities, impact angle and size of the particles are evaluated using flattening ratio, von Mises stress distribution and local shear strain. The study finds that the flattening ratio and hence the quality of deposition was highest for an impact velocity of 700 m/s, particle size of 20 Å and an impact angle of 90°. The stress and strain analysis revealed regions of shear instabilities in the periphery of impact and also revealed plastic deformation of the particles after the impact. The results of this study can be used to augment our existing knowledge in the field of CS processes.

Keywords: cold spray process, molecular dynamics simulation, nanoparticles, particle impact

Procedia PDF Downloads 367
15255 Solanum tuberosum Ammonium Transporter Gene: Some Bioinformatics Insights

Authors: A. T. Adetunji, F. B. Lewu, R. Mundembe

Abstract:

Plants require nitrogen (N) to support desired production levels. Nitrogen is available to plants in the form of nitrate or ammonium, which are transported into the cell with the aid of various transport proteins. Ammonium transporters (AMTs) play a role in the uptake of ammonium, the form in which nitrogen is preferentially absorbed by plants. Solanum tuberosum AMT1 (StAMT1) was characterized using molecular biology and bioinformatics methods. Nucleotide database sequences were used to design AMT1-specific primers which were used to amplify the AMT1 internal regions. Nucleotide sequencing, alignment and phylogenetic analysis assigned StAMT1 to the AMT1 family. The deduced amino acid sequences showed that StAMT1 is 92%, 83% and 76% similar to Solanum lycopersicum LeAMT1.1, Lotus japonicus LjAMT1.1 and Solanum lycopersicum LeAMT1.2 respectively. StAMT1 fragments were shown to correspond to the 5th - 10th trans-membrane domains. Residue StAMT1 D15 is predicted to be essential for ammonium transport, while mutations of StAMT1 S76A may further enhance ammonium transport.

Keywords: ammonium transporter, bioinformatics, nitrogen, primers, Solanum tuberosum

Procedia PDF Downloads 249
15254 Structured Tariff Calculation to Promote Geothermal for Energy Security

Authors: Siti Mariani, Arwin DW Sumari, Retno Gumilang Dewi

Abstract:

This paper analyzes the necessity of a structured tariff calculation for geothermal electricity in Indonesia. Indonesia is blessed with abundant natural resources and a choices of energy resources to generate electricity among other are coal, gas, biomass, hydro to geothermal, creating a fierce competition in electricity tariffs. While geothermal is inline with energy security principle and green growth initiative, it requires a huge capital funding. Geothermal electricity development consists of phases of project with each having its own financial characteristics. The Indonesian government has set a support in the form of ceiling price of geothermal electricity tariff by 11 U.S cents / kWh. However, the government did not set a levelized cost of geothermal, as an indication of lower limit capacity class, to which support is given. The government should establish a levelized cost of geothermal energy to reflect its financial capability in supporting geothermal development. Aside of that, the government is also need to establish a structured tariff calculation to reflect a fair and transparent business cooperation.

Keywords: load fator, levelized cost of geothermal, geothermal power plant, structured tariff calculation

Procedia PDF Downloads 441
15253 Energy Enterprise Information System for Strategic Decision-Making

Authors: Woosik Jang, Seung H. Han, Seung Won Baek, Chan Young Park

Abstract:

Natural gas (NG) is a local energy resource that exists in certain countries, and most NG producers operate within unstable governments. Moreover, about 90% of the liquefied natural gas (LNG) market is governed by a small number of international oil companies (IOCs) and national oil companies (NOCs), market entry of second movers is extremely limited. To overcome these barriers, project viability should be assessed based on limited information at the project screening perspective. However, there have been difficulties at the early stages of projects as follows: (1) What factors should be considered? (2) How many experts are needed to make a decision? and (3) How to make an optimal decision with limited information? To answer these questions, this research suggests a LNG project viability assessment model based on the Dempster-Shafer theory (DST). Total of 11 indices for the gas field analysis and 23 indices for the market environment analysis are identified that reflect unique characteristics of LNG industry. Moreover, the proposed model evaluates LNG projects based on questionnaire survey and it provides not only quantified results but also uncertainty level of results based on DST. Consequently, the proposed model as a systematic framework can support the decision-making process from the gas field projects using quantitative results, and it is developed to a stand-alone system to enhance the practical usability. It is expected to improve the decision-making quality and opportunity in LNG projects for enterprise through informed decision.

Keywords: project viability, LNG project, enterprise information system, Dempster-Shafer Theory, strategic decision-making

Procedia PDF Downloads 258
15252 Collapse Load Analysis of Reinforced Concrete Pile Group in Liquefying Soils under Lateral Loading

Authors: Pavan K. Emani, Shashank Kothari, V. S. Phanikanth

Abstract:

The ultimate load analysis of RC pile groups has assumed a lot of significance under liquefying soil conditions, especially due to post-earthquake studies of 1964 Niigata, 1995 Kobe and 2001 Bhuj earthquakes. The present study reports the results of numerical simulations on pile groups subjected to monotonically increasing lateral loads under design amounts of pile axial loading. The soil liquefaction has been considered through the non-linear p-y relationship of the soil springs, which can vary along the depth/length of the pile. This variation again is related to the liquefaction potential of the site and the magnitude of the seismic shaking. As the piles in the group can reach their extreme deflections and rotations during increased amounts of lateral loading, a precise modeling of the inelastic behavior of the pile cross-section is done, considering the complete stress-strain behavior of concrete, with and without confinement, and reinforcing steel, including the strain-hardening portion. The possibility of the inelastic buckling of the individual piles is considered in the overall collapse modes. The model is analysed using Riks analysis in finite element software to check the post buckling behavior and plastic collapse of piles. The results confirm the kinds of failure modes predicted by centrifuge test results reported by researchers on pile group, although the pile material used is significantly different from that of the simulation model. The extension of the present work promises an important contribution to the design codes for pile groups in liquefying soils.

Keywords: collapse load analysis, inelastic buckling, liquefaction, pile group

Procedia PDF Downloads 162
15251 Comparison of Methodologies to Compute the Probabilistic Seismic Hazard Involving Faults and Associated Uncertainties

Authors: Aude Gounelle, Gloria Senfaute, Ludivine Saint-Mard, Thomas Chartier

Abstract:

The long-term deformation rates of faults are not fully captured by Probabilistic Seismic Hazard Assessment (PSHA). PSHA that use catalogues to develop area or smoothed-seismicity sources is limited by the data available to constraint future earthquakes activity rates. The integration of faults in PSHA can at least partially address the long-term deformation. However, careful treatment of fault sources is required, particularly, in low strain rate regions, where estimated seismic hazard levels are highly sensitive to assumptions concerning fault geometry, segmentation and slip rate. When integrating faults in PSHA various constraints on earthquake rates from geologic and seismologic data have to be satisfied. For low strain rate regions where such data is scarce it would be especially challenging. Faults in PSHA requires conversion of the geologic and seismologic data into fault geometries, slip rates and then into earthquake activity rates. Several approaches exist for translating slip rates into earthquake activity rates. In the most frequently used approach, the background earthquakes are handled using a truncated approach, in which earthquakes with a magnitude lower or equal to a threshold magnitude (Mw) occur in the background zone, with a rate defined by the rate in the earthquake catalogue. Although magnitudes higher than the threshold are located on the fault with a rate defined using the average slip rate of the fault. As high-lighted by several research, seismic events with magnitudes stronger than the selected magnitude threshold may potentially occur in the background and not only at the fault, especially in regions of slow tectonic deformation. It also has been known that several sections of a fault or several faults could rupture during a single fault-to-fault rupture. It is then essential to apply a consistent modelling procedure to allow for a large set of possible fault-to-fault ruptures to occur aleatory in the hazard model while reflecting the individual slip rate of each section of the fault. In 2019, a tool named SHERIFS (Seismic Hazard and Earthquake Rates in Fault Systems) was published. The tool is using a methodology to calculate the earthquake rates in a fault system where the slip-rate budget of each fault is conversed into rupture rates for all possible single faults and faultto-fault ruptures. The objective of this paper is to compare the SHERIFS method with one other frequently used model to analyse the impact on the seismic hazard and through sensibility studies better understand the influence of key parameters and assumptions. For this application, a simplified but realistic case study was selected, which is in an area of moderate to hight seismicity (South Est of France) and where the fault is supposed to have a low strain.

Keywords: deformation rates, faults, probabilistic seismic hazard, PSHA

Procedia PDF Downloads 66
15250 The Design and Implementation of a Calorimeter for Evaluation of the Thermal Performance of Materials: The Case of Phase Change Materials

Authors: Ebrahim Solgi, Zahra Hamedani, Behrouz Mohammad Kari, Ruwan Fernando, Henry Skates

Abstract:

The use of thermal energy storage (TES) as part of a passive design strategy can reduce a building’s energy demand. TES materials do this by increasing the lag between energy consumption and energy supply by absorbing, storing and releasing energy in a controlled manner. The increase of lightweight construction in the building industry has made it harder to utilize thermal mass. Consequently, Phase Change Materials (PCMs) are a promising alternative as they can be manufactured in thin layers and used with lightweight construction to store latent heat. This research investigates utilizing PCMs, with the first step being measuring their performance under experimental conditions. To do this requires three components. The first is a calorimeter for measuring indoor thermal conditions, the second is a pyranometer for recording the solar conditions: global, diffuse and direct radiation and the third is a data-logger for recording temperature and humidity for the studied period. This paper reports on the design and implementation of an experimental setup used to measure the thermal characteristics of PCMs as part of a wall construction. The experimental model has been simulated with the software EnergyPlus to create a reliable simulation model that warrants further investigation.

Keywords: phase change materials, EnergyPlus, experimental evaluation, night ventilation

Procedia PDF Downloads 256
15249 Comprehensive Experimental Study to Determine Energy Dissipation of Nappe Flows on Stepped Chutes

Authors: Abdollah Ghasempour, Mohammad Reza Kavianpour, Majid Galoie

Abstract:

This study has investigated the fundamental parameters which have effective role on energy dissipation of nappe flows on stepped chutes in order to estimate an empirical relationship using dimensional analysis. To gain this goal, comprehensive experimental study on some large-scale physical models with various step geometries, slopes, discharges, etc. were carried out. For all models, hydraulic parameters such as velocity, pressure, water depth, flow regime and etc. were measured precisely. The effective parameters, then, could be determined by analysis of experimental data. Finally, a dimensional analysis was done in order to estimate an empirical relationship for evaluation of energy dissipation of nappe flows on stepped chutes. Because of using the large-scale physical models in this study, the empirical relationship is in very good agreement with the experimental results.

Keywords: nappe flow, energy dissipation, stepped chute, dimensional analysis

Procedia PDF Downloads 361
15248 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption and GDP for Iran: Time Series Analysis, 1980-2010

Authors: Jinhoa Lee

Abstract:

The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: Crude oil, coal, natural gas, and electricity), CO2 emissions and gross domestic product (GDP) for Iran using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen’s maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. All the variables in this study show very strong significant effects on GDP in the country for the long term. The long-run equilibrium in VECM suggests that all energy consumption variables in this study have significant impacts on GDP in the long term. The consumption of petroleum products and the direct combustion of crude oil and natural gas decrease GDP, while the coal and electricity use enhanced the GDP between 1980-2010 in Iran. In the short term, only electricity use enhances the GDP as well as its long-run effects. All variables of this study, except the CO2 emissions, show significant effects on the GDP in the country for the long term. The long-run equilibrium in VECM suggests that the consumption of petroleum products and the direct combustion of crude oil and natural gas use have positive impacts on the GDP while the consumptions of electricity and coal have adverse impacts on the GDP in the long term. In the short run, electricity use enhances the GDP over period of 1980-2010 in Iran. Overall, the results partly support arguments that there are relationships between energy use and economic output, but the associations can be differed by the sources of energy in the case of Iran over period of 1980-2010. However, there is no significant relationship between the CO2 emissions and the GDP and between the CO2 emissions and the energy use both in the short term and long term.

Keywords: CO2 emissions, energy consumption, GDP, Iran, time series analysis

Procedia PDF Downloads 592
15247 Formulation and Nutrition Analysis of Low-Sugar Snack Bars

Authors: S. Kongtun-Janphuk, S. Niwitpong Jr., J. Saengsai

Abstract:

Low-sugar snack bars were formulated with 3 main formulas depending on the main ingredient, which were peanut-green bean-sesame, apple, and prune. The most acceptable formula of each group was obtained by sensory evaluation using a nine-point hedonic scale. The moisture content, total ash, protein, fat and fiber were analyzed by the standard methods of AOAC. The peanut-mung bean-sesame snack bar showed the highest protein content (88.32%) and total fat (0.48%) with the lowest of fiber content (0.01%) while the prune formula showed the lowest protein content (71.91%) and total fat (0.21%) with the highest of fiber content (0.03%). This result indicated that the prune formula could be used as diet food to assist in weight loss program.

Keywords: low-sugar snack bar, diet food, nutrition analysis, food formulation

Procedia PDF Downloads 397
15246 The Impact of Large-Scale Wind Energy Development on Islands’ Interconnection to the Mainland System

Authors: Marina Kapsali, John S. Anagnostopoulos

Abstract:

Greek islands’ interconnection (IC) with larger power systems, such as the mainland grid, is a crucial issue that has attracted a lot of interest; however, the recent economic recession that the country undergoes together with the highly capital intensive nature of this kind of projects have stalled or sifted the development of many of those on a more long-term basis. On the other hand, most of Greek islands are still heavily dependent on the lengthy and costly supply chain of oil imports whilst the majority of them exhibit excellent potential for wind energy (WE) applications. In this respect, the main purpose of the present work is to investigate −through a parametric study which varies both in wind farm (WF) and submarine IC capacities− the impact of large-scale WE development on the IC of the third in size island of Greece (Lesbos) with the mainland system. The energy and economic performance of the system is simulated over a 25-year evaluation period assuming two possible scenarios, i.e. S(a): without the contribution of the local Thermal Power Plant (TPP) and S(b): the TPP is maintained to ensure electrification of the island. The economic feasibility of the two options is investigated in terms of determining their Levelized Cost of Energy (LCOE) including also a sensitivity analysis on the worst/reference/best Cases. According to the results, Lesbos island IC presents considerable economic interest for covering part of island’s future electrification needs with WE having a vital role in this challenging venture.

Keywords: electricity generation cost, levelized cost of energy, mainland grid, wind energy rejection

Procedia PDF Downloads 215
15245 Ribosomal Protein S4 Gene: Exploring the Presence in Syrian Strain of Leishmania Tropica Genome, Sequencing it and Evaluating Immune Response of pCI-S4 DNA Vaccine

Authors: Alyaa Abdlwahab

Abstract:

Cutaneous leishmaniasis represents a serious health problem in Syria; this problem has become noticeably aggravated after the civil war in the country. Leishmania tropica parasite is the main cause of cutaneous leishmaniasis in Syria. In order to control the disease, we need an effective vaccine against leishmania parasite. DNA vaccination remains one of the favorable approaches that have been used to face cutaneous leishmaniasis. Ribosomal protein S4 is responsible for important roles in Leishmania parasite life. DNA vaccine based on S4 gene has been used against infections by many species of Leishmania parasite but leishmania tropica parasite, so this gene represents a good candidate for DNA vaccine construction. After proving the existence of ribosomal protein S4 gene in a Syrian strain of Leishmania tropica (LCED Syrian 01), sequencing it and cloning it into pCI plasmid, BALB/C mice were inoculated with pCI-S4 DNA vaccine. The immune response was determined by monitoring the lesion progression in inoculated BALB/C mice for six weeks after challenging mice with Leishmania tropica (LCED Syrian 01) parasites. IL-12, IFN-γ, and IL-4 were quantified in draining lymph nodes (DLNa) of the immunized BALB/C mice by using the RT-qPCR technique. The parasite burden was calculated in the final week for the footpad lesion and the DLNs of the mice. This study proved the existence and the expression of the ribosomal protein S4 gene in Leishmania tropica (LCED Syrian 01) promastigotes. The sequence of ribosomal protein cDNA S4 gene was determined and published in Genbank; the gene size was 822 bp. Expression was also demonstrated at the level of cDNA. Also, this study revealed that pCI-S4 DNA vaccine induces TH1\TH2 response in immunized mice; this response prevents partially developing a dermal lesion of Leishmania.

Keywords: ribosomal protein S4, DNA vaccine, Leishmania tropica, BALB\c

Procedia PDF Downloads 137
15244 Relationship between Body Composition and Balance in Young Adults

Authors: Ferruh Taspinar, Gulce K. Seyyar, Gamze Kurt, Eda O. Okur, Emrah Afsar, Ismail Saracoglu, Betul Taspinar

Abstract:

Overweight and obesity has been associated with postural balance. The aim of this study was to investigate the relationship between body composition and balance. One hundred and thirty two young adults (58 male, 74 female) were included in the study. Mean age of participants were found as 21.21±1.51 years. Body composition (body mass index, total body fat ratio, total body muscle ratio) and balance (right anterior, right postero-medial, right postero-lateral, left anterior, left postero-medial, left postero-lateral) were evaluated by Tanita BC-418 and Y balance test, respectively. Pearson correlation analysis was used to evaluate the correlation between the parameters. Significance level in statistical analysis was accepted as 0.05. According to results, no correlation was found between body mass index and balance parameters. There was negative correlation between total body fat ratio and balance parameters (r=0.419-0.509, p˂0.05). On the other hand, positive correlation was found between total body muscle ratio and balance parameters (r=0.390-0.494, p˂0.05). This study demonstrated that body fat and muscle ratio affects the balance. Body composition should be considered in rehabilitation programs including postural balance training.

Keywords: balance, body composition, body mass, young adults

Procedia PDF Downloads 374