Search results for: soil texture prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5618

Search results for: soil texture prediction

3098 Predicting the Effect of Vibro Stone Column Installation on Performance of Reinforced Foundations

Authors: K. Al Ammari, B. G. Clarke

Abstract:

Soil improvement using vibro stone column techniques consists of two main parts: (1) the installed load bearing columns of well-compacted, coarse-grained material and (2) the improvements to the surrounding soil due to vibro compaction. Extensive research work has been carried out over the last 20 years to understand the improvement in the composite foundation performance due to the second part mentioned above. Nevertheless, few of these studies have tried to quantify some of the key design parameters, namely the changes in the stiffness and stress state of the treated soil, or have consider these parameters in the design and calculation process. Consequently, empirical and conservative design methods are still being used by ground improvement companies with a significant variety of results in engineering practice. Two-dimensional finite element study to develop an axisymmetric model of a single stone column reinforced foundation was performed using PLAXIS 2D AE to quantify the effect of the vibro installation of this column in soft saturated clay. Settlement and bearing performance were studied as an essential part of the design and calculation of the stone column foundation. Particular attention was paid to the large deformation in the soft clay around the installed column caused by the lateral expansion. So updated mesh advanced option was taken in the analysis. In this analysis, different degrees of stone column lateral expansions were simulated and numerically analyzed, and then the changes in the stress state, stiffness, settlement performance and bearing capacity were quantified. It was found that application of radial expansion will produce a horizontal stress in the soft clay mass that gradually decrease as the distance from the stone column axis increases. The excess pore pressure due to the undrained conditions starts to dissipate immediately after finishing the column installation, allowing the horizontal stress to relax. Changes in the coefficient of the lateral earth pressure K ٭, which is very important in representing the stress state, and the new stiffness distribution in the reinforced clay mass, were estimated. More encouraging results showed that increasing the expansion during column installation has a noticeable effect on improving the bearing capacity and reducing the settlement of reinforced ground, So, a design method should include this significant effect of the applied lateral displacement during the stone column instillation in simulation and numerical analysis design.

Keywords: bearing capacity, design, installation, numerical analysis, settlement, stone column

Procedia PDF Downloads 375
3097 CFD Study of Subcooled Boiling Flow at Elevated Pressure Using a Mechanistic Wall Heat Partitioning Model

Authors: Machimontorn Promtong, Sherman C. P. Cheung, Guan H. Yeoh, Sara Vahaji, Jiyuan Tu

Abstract:

The wide range of industrial applications involved with boiling flows promotes the necessity of establishing fundamental knowledge in boiling flow phenomena. For this purpose, a number of experimental and numerical researches have been performed to elucidate the underlying physics of this flow. In this paper, the improved wall boiling models, implemented on ANSYS CFX 14.5, were introduced to study subcooled boiling flow at elevated pressure. At the heated wall boundary, the Fractal model, Force balance approach and Mechanistic frequency model are given for predicting the nucleation site density, bubble departure diameter, and bubble departure frequency. The presented wall heat flux partitioning closures were modified to consider the influence of bubble sliding along the wall before the lift-off, which usually happens in the flow boiling. The simulation was performed based on the Two-fluid model, where the standard k-ω SST model was selected for turbulence modelling. Existing experimental data at around 5 bars were chosen to evaluate the accuracy of the presented mechanistic approach. The void fraction and Interfacial Area Concentration (IAC) are in good agreement with the experimental data. However, the predicted bubble velocity and Sauter Mean Diameter (SMD) are over-predicted. This over-prediction may be caused by consideration of only dispersed and spherical bubbles in the simulations. In the future work, the important physical mechanisms of bubbles, such as merging and shrinking during sliding on the heated wall will be incorporated into this mechanistic model to enhance its capability for a wider range of flow prediction.

Keywords: subcooled boiling flow, computational fluid dynamics (CFD), mechanistic approach, two-fluid model

Procedia PDF Downloads 320
3096 Study of Pseudomonas as Biofertiliser in Salt-Affected Soils of the Northwestern Algeria: Solubilisation of Calcium Phosphate and Growth Promoting of Broad Bean (Vcia faba)

Authors: A. Djoudi, R. Djibaou, H. A. Reguieg Yssaad

Abstract:

Our study focuses on the study of a bacteria belonging to Pseudomonas solubilizing tricalcium phosphate. They were isolated from rhizosphere of a variety of broad bean grown in salt-affected soils (electrical conductivity between 4 and 8 mmhos/cm) of the irrigated perimeter of Mina in northwestern Algeria. Isolates which have advantageous results in the calcium phosphate solubilization index test were subjected to identification using API20 then used to re-inoculate the same soil in pots experimentation to assess the effects of inoculation on the growth of the broad bean (Vicia faba). Based on the results obtained from the in-vitro tests, two isolates P5 and P8 showed a significant effect on the solubilization of tricalcium phosphate with an index I estimated at 314% and 283% sequentially. According to the results of in-vivo tests, the inoculation of the soil with P5 and P8 were significantly and positively influencing the growth in biometric parameters of the broad bean. Inoculation with strain P5 has promoted the growth of the broad bean in stem height, stem fresh weight and stem dry weight of 108.59%, 115.28%, 104.33%, respectively. Inoculation with strain P8 has fostered the growth of the broad bean stem fresh weight of 112.47%. The effect of Pseudomonas on the development of Vicia faba is considered as an interesting process by which PGPR can increase biological production and crop protection.

Keywords: Pseudomonas, Vicia faba, promoting of plant growth, solubilization tricalcium phosphate

Procedia PDF Downloads 330
3095 Efficient Feature Fusion for Noise Iris in Unconstrained Environment

Authors: Yao-Hong Tsai

Abstract:

This paper presents an efficient fusion algorithm for iris images to generate stable feature for recognition in unconstrained environment. Recently, iris recognition systems are focused on real scenarios in our daily life without the subject’s cooperation. Under large variation in the environment, the objective of this paper is to combine information from multiple images of the same iris. The result of image fusion is a new image which is more stable for further iris recognition than each original noise iris image. A wavelet-based approach for multi-resolution image fusion is applied in the fusion process. The detection of the iris image is based on Adaboost algorithm and then local binary pattern (LBP) histogram is then applied to texture classification with the weighting scheme. Experiment showed that the generated features from the proposed fusion algorithm can improve the performance for verification system through iris recognition.

Keywords: image fusion, iris recognition, local binary pattern, wavelet

Procedia PDF Downloads 367
3094 Predicting Blockchain Technology Installation Cost in Supply Chain System through Supervised Learning

Authors: Hossein Havaeji, Tony Wong, Thien-My Dao

Abstract:

1. Research Problems and Research Objectives: Blockchain Technology-enabled Supply Chain System (BT-enabled SCS) is the system using BT to drive SCS transparency, security, durability, and process integrity as SCS data is not always visible, available, or trusted. The costs of operating BT in the SCS are a common problem in several organizations. The costs must be estimated as they can impact existing cost control strategies. To account for system and deployment costs, it is necessary to overcome the following hurdle. The problem is that the costs of developing and running a BT in SCS are not yet clear in most cases. Many industries aiming to use BT have special attention to the importance of BT installation cost which has a direct impact on the total costs of SCS. Predicting BT installation cost in SCS may help managers decide whether BT is to be an economic advantage. The purpose of the research is to identify some main BT installation cost components in SCS needed for deeper cost analysis. We then identify and categorize the main groups of cost components in more detail to utilize them in the prediction process. The second objective is to determine the suitable Supervised Learning technique in order to predict the costs of developing and running BT in SCS in a particular case study. The last aim is to investigate how the running BT cost can be involved in the total cost of SCS. 2. Work Performed: Applied successfully in various fields, Supervised Learning is a method to set the data frame, treat the data, and train/practice the method sort. It is a learning model directed to make predictions of an outcome measurement based on a set of unforeseen input data. The following steps must be conducted to search for the objectives of our subject. The first step is to make a literature review to identify the different cost components of BT installation in SCS. Based on the literature review, we should choose some Supervised Learning methods which are suitable for BT installation cost prediction in SCS. According to the literature review, some Supervised Learning algorithms which provide us with a powerful tool to classify BT installation components and predict BT installation cost are the Support Vector Regression (SVR) algorithm, Back Propagation (BP) neural network, and Artificial Neural Network (ANN). Choosing a case study to feed data into the models comes into the third step. Finally, we will propose the best predictive performance to find the minimum BT installation costs in SCS. 3. Expected Results and Conclusion: This study tends to propose a cost prediction of BT installation in SCS with the help of Supervised Learning algorithms. At first attempt, we will select a case study in the field of BT-enabled SCS, and then use some Supervised Learning algorithms to predict BT installation cost in SCS. We continue to find the best predictive performance for developing and running BT in SCS. Finally, the paper will be presented at the conference.

Keywords: blockchain technology, blockchain technology-enabled supply chain system, installation cost, supervised learning

Procedia PDF Downloads 122
3093 Effect of Poultry Manure and Nitrogen, Phosphorus, and Potassium (15:15:15) Soil Amendment on Growth and Yield of Carrot (Daucus carota)

Authors: Benjamin Osae Agyei, Hypolite Bayor

Abstract:

This present experiment was carried out during the 2012 cropping season, at the Farming for the Future Experimental Field of the University for Development Studies, Nyankpala Campus in the Northern Region of Ghana. The objective of the experiment was to determine the carrot growth and yield responses to poultry manure and N.P.K (15:15:15). Six treatments (Control (no amendment), 20 t/ha poultry manure (PM), 40 t/ha PM, 70 t/ha PM, 35 t/ha PM + 0.11t/ha N.P.K and 0.23 t/ha N.P.K) with three replications for each were laid in a Randomized Complete Block Design (RCBD). Data were collected on plant height, number of leaves per plant, canopy spread, root diameter, root weight, and root length. Microsoft Excel and Genstat Statistical Package (9th edition) were used for the data analysis. The treatment means were compared by using Least Significant Difference at 10%. Generally, the results showed that there were no significant differences (P>0.1) among the treatments with respect to number of leaves per plant, root diameter, root weight, and root length. However, significant differences occurred among plant heights and canopy spreads. Plant height treated with 40 t/ha PM at the fourth week after planting and canopy spread at eight weeks after planting and ten weeks after planting by 70 t/ha PM and 20 t/ha PM respectively showed significant difference (P<0.1). The study recommended that any of the amended treatments can be applied at their recommended rates to plots for carrot production, since there were no significant differences among the treatments.

Keywords: poultry manure, N.P.K., soil amendment, growth, yield, carrot

Procedia PDF Downloads 473
3092 Precipitation Intensity: Duration Based Threshold Analysis for Initiation of Landslides in Upper Alaknanda Valley

Authors: Soumiya Bhattacharjee, P. K. Champati Ray, Shovan L. Chattoraj, Mrinmoy Dhara

Abstract:

The entire Himalayan range is globally renowned for rainfall-induced landslides. The prime focus of the study is to determine rainfall based threshold for initiation of landslides that can be used as an important component of an early warning system for alerting stake holders. This research deals with temporal dimension of slope failures due to extreme rainfall events along the National Highway-58 from Karanprayag to Badrinath in the Garhwal Himalaya, India. Post processed 3-hourly rainfall intensity data and its corresponding duration from daily rainfall data available from Tropical Rainfall Measuring Mission (TRMM) were used as the prime source of rainfall data. Landslide event records from Border Road Organization (BRO) and some ancillary landslide inventory data for 2013 and 2014 have been used to determine Intensity Duration (ID) based rainfall threshold. The derived governing threshold equation, I= 4.738D-0.025, has been considered for prediction of landslides of the study region. This equation was validated with an accuracy of 70% landslides during August and September 2014. The derived equation was considered for further prediction of landslides of the study region. From the obtained results and validation, it can be inferred that this equation can be used for initiation of landslides in the study area to work as a part of an early warning system. Results can significantly improve with ground based rainfall estimates and better database on landslide records. Thus, the study has demonstrated a very low cost method to get first-hand information on possibility of impending landslide in any region, thereby providing alert and better preparedness for landslide disaster mitigation.

Keywords: landslide, intensity-duration, rainfall threshold, TRMM, slope, inventory, early warning system

Procedia PDF Downloads 274
3091 Evaluation of the Analytic for Hemodynamic Instability as a Prediction Tool for Early Identification of Patient Deterioration

Authors: Bryce Benson, Sooin Lee, Ashwin Belle

Abstract:

Unrecognized or delayed identification of patient deterioration is a key cause of in-hospitals adverse events. Clinicians rely on vital signs monitoring to recognize patient deterioration. However, due to ever increasing nursing workloads and the manual effort required, vital signs tend to be measured and recorded intermittently, and inconsistently causing large gaps during patient monitoring. Additionally, during deterioration, the body’s autonomic nervous system activates compensatory mechanisms causing the vital signs to be lagging indicators of underlying hemodynamic decline. This study analyzes the predictive efficacy of the Analytic for Hemodynamic Instability (AHI) system, an automated tool that was designed to help clinicians in early identification of deteriorating patients. The lead time analysis in this retrospective observational study assesses how far in advance AHI predicted deterioration prior to the start of an episode of hemodynamic instability (HI) becoming evident through vital signs? Results indicate that of the 362 episodes of HI in this study, 308 episodes (85%) were correctly predicted by the AHI system with a median lead time of 57 minutes and an average of 4 hours (240.5 minutes). Of the 54 episodes not predicted, AHI detected 45 of them while the episode of HI was ongoing. Of the 9 undetected, 5 were not detected by AHI due to either missing or noisy input ECG data during the episode of HI. In total, AHI was able to either predict or detect 98.9% of all episodes of HI in this study. These results suggest that AHI could provide an additional ‘pair of eyes’ on patients, continuously filling the monitoring gaps and consequently giving the patient care team the ability to be far more proactive in patient monitoring and adverse event management.

Keywords: clinical deterioration prediction, decision support system, early warning system, hemodynamic status, physiologic monitoring

Procedia PDF Downloads 190
3090 Use of Different Plant Extracts in Fungal Disease Management of Onion (Allium cepa. L)

Authors: Shobha U. Jadhav

Abstract:

Onion is most important vegetable crop grown throughout the world. Onion suffers from pest and fungal diseases but these fungicides cause pollution and disturb microbial balance of soil. Under integrated fungal disease management programme cost effective and eco- friendly component like plant extract are used to control plant pathogens. Alternaria porri, Fusarium oxysporium, Stemphylium vesicarium are soil-borne pathogens of onion. Effect of three different plant extracts (Ocimum sanctum L., Xanthium strumarium B. and H. Withania somnifera Dunal)at five different concentration Viz, 10, 25, 50, 75, and 100 percentage on these pathogens was studied by food poisoning technique. Ocimum sanctum gave 84.21% growth of Alternaria porri at 10% extract concentration and 10.52% growth in 100% extract concentration. As compared to Fusarium oxysporium and Stemphylium vesicarium, Alternaria porri give good inhibitory response. In Xanthium strumarium B. and H. at 10% extract concentration 46.42% growth and at 100% extract concentration 28.57% growth of Fusarium oxysporum was observed. Fusarium oxysporum give good inhibitory response as compared to Alternaria porri and Stemphylium vesicarium. In Withania somnifera Dunal in 10% extract concentration 84.21% growth and in 100% extract concentration 21.05% growth of Stemphylium vesicarium was recorded. Stemphylium vesicarium give good inhibitory response as compared to Alternaria porri and Fusarium oxysporum.

Keywords: pathogen, onion, plant, extract

Procedia PDF Downloads 382
3089 Geoelectrical Investigation Around Bomo Area, Kaduna State, Nigeria

Authors: B. S. Jatau, Baba Adama, S. I. Fadele

Abstract:

Electrical resistivity investigation was carried out around Bomo area, Zaria, Kaduna state in order to study the subsurface geologic layer with a view of determining the depth to the bedrock and thickness of the geologic layers. Vertical Electrical Sounding (VES) using Schlumberger array was carried out at fifteen (15) VES stations. ABEM terrameter (SAS 300) was used for the data acquisition. The field data obtained have been analyzed using computer software (IPI2win) which gives an automatic interpretation of the apparent resistivity. The VES results revealed heterogeneous nature of the subsurface geological sequence. The geologic sequence beneath the study area is composed of hard pan top soil (clayey and sandy-lateritic), weathered layer, partly weathered or fractured basement and fresh basement. The resistivity value for the topsoil layer varies from 40Ωm to 450Ωm with thickness ranging from 1.25 to 7.5 m. The weathered basement has resistivity values ranging from 50Ωm to 593Ωm and thickness between 1.37 and 20.1 m. The fractured basement has resistivity values ranging from 218Ωm to 520Ωm and thickness of between 12.9 and 26.3 m. The fresh basement (bedrock) has resistivity values ranging from 1215Ωm to 2150Ωm with infinite depth. However, the depth of the earth’s surface to the bedrock surface varies between 2.63 and 34.99 m. The study further stressed the importance of the findings in civil engineering structures and groundwater prospecting.

Keywords: electrical resistivity, CERT (CT), vertical electrical sounding (VES), top soil (TP), weathered basement (WB), partly weathered basement (PWB), fresh basement (FB)

Procedia PDF Downloads 328
3088 A Prediction of Cutting Forces Using Extended Kienzle Force Model Incorporating Tool Flank Wear Progression

Authors: Wu Peng, Anders Liljerehn, Martin Magnevall

Abstract:

In metal cutting, tool wear gradually changes the micro geometry of the cutting edge. Today there is a significant gap in understanding the impact these geometrical changes have on the cutting forces which governs tool deflection and heat generation in the cutting zone. Accurate models and understanding of the interaction between the work piece and cutting tool leads to improved accuracy in simulation of the cutting process. These simulations are useful in several application areas, e.g., optimization of insert geometry and machine tool monitoring. This study aims to develop an extended Kienzle force model to account for the effect of rake angle variations and tool flank wear have on the cutting forces. In this paper, the starting point sets from cutting force measurements using orthogonal turning tests of pre-machined flanches with well-defined width, using triangular coated inserts to assure orthogonal condition. The cutting forces have been measured by dynamometer with a set of three different rake angles, and wear progression have been monitored during machining by an optical measuring collaborative robot. The method utilizes the measured cutting forces with the inserts flank wear progression to extend the mechanistic cutting forces model with flank wear as an input parameter. The adapted cutting forces model is validated in a turning process with commercial cutting tools. This adapted cutting forces model shows the significant capability of prediction of cutting forces accounting for tools flank wear and different-rake-angle cutting tool inserts. The result of this study suggests that the nonlinear effect of tools flank wear and interaction between the work piece and the cutting tool can be considered by the developed cutting forces model.

Keywords: cutting force, kienzle model, predictive model, tool flank wear

Procedia PDF Downloads 109
3087 Modeling and Monitoring of Agricultural Influences on Harmful Algal Blooms in Western Lake Erie

Authors: Xiaofang Wei

Abstract:

Harmful Algal Blooms are a recurrent disturbing occurrence in Lake Erie that has caused significant negative impacts on water quality and aquatic ecosystem around Great Lakes areas in the United States. Targeting the recent HAB events in western Lake Erie, this paper utilizes satellite imagery and hydrological modeling to monitor HAB cyanobacteria blooms and analyze the impacts of agricultural activities from Maumee watershed, the biggest watershed of Lake Erie and agriculture dominant.SWAT (Soil & Water Assessment Tool) Model for Maumee watershed was established with DEM, land use data, crop data layer, soil data, and weather data, and calibrated with Maumee River gauge stations data for streamflow and nutrients. Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) was applied to remove atmospheric attenuation and cyanobacteria Indices were calculated from Landsat OLI imagery to study the intensity of HAB events in the years 2015, 2017, and 2019. The agricultural practice and nutrients management within the Maumee watershed was studied and correlated with HAB cyanobacteria indices to study the relationship between HAB intensity and nutrient loadings. This study demonstrates that hydrological models and satellite imagery are effective tools in HAB monitoring and modeling in rivers and lakes.

Keywords: harmful algal bloom, landsat OLI imagery, SWAT, HAB cyanobacteria

Procedia PDF Downloads 177
3086 Soil Nutrient Management Implications of Growing Food Crops within the Coffee Gardens

Authors: Pennuel P. Togonave, Bartholomew S. Apis, Emma Kiup, Gure Tumae, Johannes Pakatul, Michael Webb

Abstract:

Interplanting food crops in coffee gardens has increased in recent years. The purpose of this study was to quantify the nutrient management implications of growing food crops within the coffee garden and to investigate the sustainability of this practice through field surveys in two accessible sites (Asaro and Bena) and two remote sites (Marawaka and Baira), in Eastern Highlands Province of Papua New Guinea. Coffee gardens were selected at each site and surveys were conducted to assess the status of intercropping in each of the smallholder coffee gardens. Food crops in the coffee gardens were sampled for nutrient analysis Survey results indicate intercropping as a common practice in coffee gardens and entailed mixed cropping of food crops in an irregular pattern and spacing. More than 40% of the farmers used 40-60% of their total coffee garden area for intercropping. In remote sites, more than 50% of the coffee garden areas closest to the house were intercropped with food crops compared to 40% of inaccessible sites. In both remote and accessible sites, the most common intercropped food crops were 90% banana (Musa spp) varieties and 50% sugarcane (Saccharum spp). Nutrient analysis of the by-products and residuals of some common intercrops shows the potential to replenish the coffee plant's deficient nutrients like Potassium, Magnesium, Phosphorus, Boron and Zinc. Intercropping of coffee gardens is increasing due to land pressure, marketing opportunities, food security and labor supply

Keywords: by-products, coffee, crops, intercropping, nutrients, soil

Procedia PDF Downloads 81
3085 Effects of Plant Growth Promoting Microbes and Mycorrhizal Fungi on Wheat Growth in the Saline Soil

Authors: Ahmed Elgharably, Nivien Nafady

Abstract:

Arbuscular mycorrhizal fungi (AMF) and plant growth promoting microbes (PGPM) can promote plant growth under saline conditions. This study investigated how AMF and PGPM affected the growth and grain yield of wheat at different soil salinity levels (0, 75 and 150 mM NaCl). AMF colonization percentage, grain yield and dry weights and lengths of shoot and root, N, P K, Na, malondialdehyde, chlorophyll and proline contents and shoot relative permeability were determined. Salinity reduced NPK uptake and malondialdehyde and chlorophyll contents, and increased shoot Na concentration, relative permeability, and proline content, and thus declined plant growth. PGPM inoculation enhanced AMF colonization, P uptake, and K/Na ratio, but alone had no significant effect on plant growth and grain yield. AMF inoculation significantly enhanced NPK uptake, increased chlorophyll content and decreased shoot relative permeability, proline and Na contents, and thus promoted the plant growth. The inoculation of PGPM significantly enhanced the positive effects of AMF in controlling Na uptake and in increasing chlorophyll and NPK contents. Compared to AMF inoculation alone, dual inoculation with AMF and PGPM resulted in approximately 10, 25 and 25% higher grain yield at 0, 75 and 150 mM NaCl, respectively. The results provide that PGPM inoculation can maximize the effects of AMF inoculation in alleviating the deleterious effects of NaCl salts on wheat growth.

Keywords: mycorrhizal fungi, salinity, sodium, wheat

Procedia PDF Downloads 182
3084 Internet of Things-Based Smart Irrigation System

Authors: Ahmed Abdulfatah Yusuf, Collins Oduor Ondiek

Abstract:

The automation of farming activities can have a transformational impact on the agricultural sector, especially from the emerging new technologies such as the Internet of Things (IoT). The system uses water level sensors and soil moisture sensors that measure the content of water in the soil as the values generated from the sensors enable the system to use an appropriate quantity of water, which avoids over or under irrigation. Due to the increase in the world’s population, there is a need to increase food production. With this demand in place, it is difficult to increase crop yield using the traditional manual approaches that lead to the wastage of water, thus affecting crop production. Food insecurity has become a scourge greatly affecting the developing countries and agriculture is an essential part of human life and tends to be the mainstay of the economy in most developing nations. Thus, without the provision of adequate food supplies, the population of those living in poverty is likely to multiply. The project’s main objective is to design and develop an IoT (Internet of Things) microcontroller-based Smart Irrigation System. In addition, the specific research objectives are to find out the challenges with traditional irrigation approaches and to determine the benefits of IoT-based smart irrigation systems. Furthermore, the system includes Arduino, a website and a database that works simultaneously in collecting and storing the data. The system is designed to pave the way in attaining the Sustainable Development Goal (SDG 1), which aims to end extreme poverty in all forms by 2030. The research design aimed at this project is a descriptive research design. Data was gathered through online questionnaires that used both quantitative and qualitative in order to triangulate the data. Out of the 32 questionnaires sent, there were 32 responses leading to a 100% response rate. In terms of sampling, the target group of this project is urban farmers, which account for about 25% of the population of Nairobi. From the findings of the research carried out, it is evident that there is a need to move away from manual irrigation approaches due to the high wastage of water to the use of smart irrigation systems that propose a better way of conserving water while maintaining the quality and moisture of the soil. The research also found out that urban farmers are willing to adopt this system to better their farming practices. However, this system can be improved in the future by incorporating it with other features and deploying it to a larger geographical area.

Keywords: crop production, food security, smart irrigation system, sustainable development goal

Procedia PDF Downloads 151
3083 Digital Twin for Retail Store Security

Authors: Rishi Agarwal

Abstract:

Digital twins are emerging as a strong technology used to imitate and monitor physical objects digitally in real time across sectors. It is not only dealing with the digital space, but it is also actuating responses in the physical space in response to the digital space processing like storage, modeling, learning, simulation, and prediction. This paper explores the application of digital twins for enhancing physical security in retail stores. The retail sector still relies on outdated physical security practices like manual monitoring and metal detectors, which are insufficient for modern needs. There is a lack of real-time data and system integration, leading to ineffective emergency response and preventative measures. As retail automation increases, new digital frameworks must control safety without human intervention. To address this, the paper proposes implementing an intelligent digital twin framework. This collects diverse data streams from in-store sensors, surveillance, external sources, and customer devices and then Advanced analytics and simulations enable real-time monitoring, incident prediction, automated emergency procedures, and stakeholder coordination. Overall, the digital twin improves physical security through automation, adaptability, and comprehensive data sharing. The paper also analyzes the pros and cons of implementation of this technology through an Emerging Technology Analysis Canvas that analyzes different aspects of this technology through both narrow and wide lenses to help decision makers in their decision of implementing this technology. On a broader scale, this showcases the value of digital twins in transforming legacy systems across sectors and how data sharing can create a safer world for both retail store customers and owners.

Keywords: digital twin, retail store safety, digital twin in retail, digital twin for physical safety

Procedia PDF Downloads 73
3082 Effect of Fines on Liquefaction Susceptibility of Sandy Soil

Authors: Ayad Salih Sabbar, Amin Chegenizadeh, Hamid Nikraz

Abstract:

Investigation of liquefaction susceptibility of materials that have been used in embankments, slopes, dams, and foundations is very essential. Many catastrophic geo-hazards such as flow slides, declination of foundations, and damage to earth structure are associated with static liquefaction that may occur during abrupt shearing of these materials. Many artificial backfill materials are mixtures of sand with fines and other composition. In order to provide some clarifications and evaluations on the role of fines in static liquefaction behaviour of sand sandy soils, the effect of fines on the liquefaction susceptibility of sand was experimentally examined in the present work over a range of fines content, relative density, and initial confining pressure. The results of an experimental study on various sand-fines mixtures are presented. Undrained static triaxial compression tests were conducted on saturated Perth sand containing 5% bentonite at three different relative densities (10, 50, and 90%), and saturated Perth sand containing both 5% bentonite and slag (2%, 4%, and 6%) at single relative density 10%. Undrained static triaxial tests were performed at three different initial confining pressures (100, 150, and 200 kPa). The brittleness index was used to quantify the liquefaction potential of sand-bentonite-slag mixtures. The results demonstrated that the liquefaction susceptibility of sand-5% bentonite mixture was more than liquefaction susceptibility of clean sandy soil. However, liquefaction potential decreased when both of two fines (bentonite and slag) were used. Liquefaction susceptibility of all mixtures decreased with increasing relative density and initial confining pressure.  

Keywords: liquefaction, bentonite, slag, brittleness index

Procedia PDF Downloads 221
3081 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, Hemantkumar B. Mehta

Abstract:

Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.

Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant

Procedia PDF Downloads 293
3080 Category-Base Theory of the Optimum Signal Approximation Clarifying the Importance of Parallel Worlds in the Recognition of Human and Application to Secure Signal Communication with Feedback

Authors: Takuro Kida, Yuichi Kida

Abstract:

We show a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detailed algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory and it is indicated that introducing conversations with feedback does not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.

Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, conditional optimization

Procedia PDF Downloads 158
3079 Effectiveness of Lowering the Water Table as a Mitigation Measure for Foundation Settlement in Liquefiable Soils Using 1-g Scale Shake Table Test

Authors: Kausar Alam, Mohammad Yazdi, Peiman Zogh, Ramin Motamed

Abstract:

An earthquake is an unpredictable natural disaster. It induces liquefaction, which causes considerable damage to the structure, life support, and piping systems because of ground settlement. As a result, people are incredibly concerned about how to resolve the situation. Previous researchers adopted different ground improvement techniques to reduce the settlement of the structure during earthquakes. This study evaluates the effectiveness of lowering the water table as a technique to mitigate foundation settlement in liquefiable soil. The performance will be evaluated based on foundation settlement and the reduction of excessive pore water pressure. In this study, a scaled model was prepared based on a full-scale shale table experiment conducted at the University of California, San Diego (UCSD). The model ground consists of three soil layers having a relative density of 55%, 45%, and 90%, respectively. A shallow foundation is seated over an unsaturated crust layer. After preparation of the model ground, the water table was measured to be at 45, 40, and 35 cm (from the bottom). Then, the input motions were applied for 10 seconds, with a peak acceleration of 0.25g and a constant frequency of 2.73 Hz. Based on the experimental results, the effectiveness of the lowering water table in reducing the foundation settlement and excess pore water pressure was evident. The foundation settlement was reduced from 50 mm to 5 mm. In addition, lowering the water table as a mitigation measure is a cost-effective way to decrease liquefaction-induced building settlement.

Keywords: foundation settlement, ground water table, liquefaction, hake table test

Procedia PDF Downloads 114
3078 Establishment of Landslide Warning System Using Surface or Sub-Surface Sensors Data

Authors: Neetu Tyagi, Sumit Sharma

Abstract:

The study illustrates the results of an integrated study done on Tangni landslide located on NH-58 at Chamoli, Uttarakhand. Geological, geo-morphological and geotechnical investigations were carried out to understand the mechanism of landslide and to plan further investigation and monitoring. At any rate, the movements were favored by continuous rainfall water infiltration from the zones where the phyllites/slates and Dolomites outcrop. The site investigations were carried out including the monitoring of landslide movements and of the water level fluctuations due to rainfall give us a better understanding of landslide dynamics that have been causing in time soil instability at Tangni landslide site. The Early Warning System (EWS) installed different types of sensors and all sensors were directly connected to data logger and raw data transfer to the Defence Terrain Research Laboratory (DTRL) server room with the help of File Transfer Protocol (FTP). The slip surfaces were found at depths ranging from 8 to 10 m from Geophysical survey and hence sensors were installed to the depth of 15m at various locations of landslide. Rainfall is the main triggering factor of landslide. In this study, the developed model of unsaturated soil slope stability is carried out. The analysis of sensors data available for one year, indicated the sliding surface of landslide at depth between 6 to 12m with total displacement up to 6cm per year recorded at the body of landslide. The aim of this study is to set the threshold and generate early warning. Local peoples already alert towards landslide, if they have any types of warning system.

Keywords: early warning system, file transfer protocol, geo-morphological, geotechnical, landslide

Procedia PDF Downloads 158
3077 Nitrogen, Phosphorus, Potassium (NPK) Hydroxyapatite Nano-Hybrid Slow Release Fertilizer

Authors: Tinomuvonga Manenji Zhou, Eubert Mahofa, Tatenda Crispen Madzokere

Abstract:

The nanostructured formulation can increase fertilizer efficacy and uptake ratio of the soil nutrients in agriculture production and save fertilizer resources. Controlled release modes have properties of both release rate and release pattern of nutrients, for fertilizers that are soluble in water might be correctly controlled. Nanoparticles can reduce the rate at which fertilizer nutrients are in the soil by leaching. A slow release NPK-hydroxyapatite nano hybrid fertilizer was synthesized using exfoliated bentonite as filler material. A simple, scalable method was used to synthesize the nitrogen-phosphorus hydroxyapatite nano fertilizer, where calcium hydroxide, phosphoric acid, and urea were used as precursor material, followed by the incorporation of potassium through a liquid grinding method. The product obtained was an NPK-hydroxyapatite nano hybrid fertilizer. A quantitative analysis was done to determine the percentage of nitrogen, phosphorus, and potassium in the hybrid fertilizer. AAS was used to determine the percentage of potassium in the fertilizer. An accelerated water test was conducted to compare the nutrient release behavior of nutrients between the synthesized NPK-hydroxyapatite nano hybrid fertilizer and commercial NPK fertilizer. The rate of release of Nitrogen, phosphorus, and potassium was significantly lower in the synthesized NPK hydroxyapatite nano hybrid fertilizer than in the convectional NPK fertilizer. The synthesized fertilizer was characterized using XRD. NPK hydroxyapatite nano hybrid fertilizer encapsulated in exfoliated bentonite thus prepared can be used as an environmentally friendly fertilizer formulation which could be extended to solve one of the major problems faced in the global fertilization of low nitrogen, phosphorus, and potassium use efficiency in agriculture.

Keywords: NPK hydroxyapatite nano hybrid fertilizer, bentonite, encapsulation, low release

Procedia PDF Downloads 98
3076 Phosphorus Uptake of Triticale (Triticosecale Wittmack) Genotypes at Different Growth Stages

Authors: Imren Kutlu, Nurdilek Gulmezoglu

Abstract:

Triticale (Triticosecale Wittmack) is a man-made crop developed by crossing wheat (Triticum L.) and rye (Secale cereale L.). Triticale has until now been used mostly for animal feed; however, it can be consumed by humans in the form of biscuits, cookies, and unleavened bread. Moreover, one of the reasons for the development of triticale is that it is more efficient in nutrient deficient soil than wheat cultivars. After nitrogen fertilizer, phosphorus (P) is the most used fertilizer for crop production because P fixation occurs highly when it is applied the soil. The aim of the present study was to evaluate P uptake of winter triticale genotypes under different P fertilizer rates in different growth stages. The experiment was conducted in Eskisehir, Central Anatolia, Turkey. Treatments consisted of five triticale lines and one triticale cultivars (Samursortu) with four rates of P fertilization (0, 30, 60 and 120 kg P2O5 ha⁻¹). Phosphorus uptake of triticale genotypes in tillering, heading, as well as grain and straw at harvest stage and yield of grain and straw were determined. The results showed that a P rate of 60 kg/ha and the TCL-25 genotype produced the highest yields of straw and grain at harvest. Phosphorus uptake was the highest in tillering stage, and it decreased towards to harvest time. Phosphorus uptake of all growth stage increased as P rates raised and the application of 120 kg/ha P₂O₅ had the highest P uptake. Phosphorus uptake of genotypes was found differently. The regression analyses indicated that P uptake at tillering stage was the most effective on grain yield. These results will provide useful information to triticale growers about suitable phosphorus fertilization for both forage and food usage.

Keywords: grain yield, growth stage, phosphorus fertilization, phosphorus uptake, triticale

Procedia PDF Downloads 146
3075 Assessment the Manner of Obtaining Hierarchies and Privacy of Traditional Houses Entrance in Providing a Safe Place-Case Study: Traditional Houses in Shiraz

Authors: Zahra A. Barzegar, Maryam B. Golboo

Abstract:

In this paper, the manner of obtaining hierarchies and privacy entry of traditional houses in providing a safe place in the city of Shiraz will be evaluated by qualitative–descriptive methods and 6 old houses are the case study. The houses of Shiraz, as the houses in other cities in Iran are a response to climate and physical features. The old part of Shiraz has a compressed and dense texture in which the houses are in narrow and tight alleys. In this regard, the principles of traditional house entrance design have been introduced. The results show that every house has a private entrance. Direction of the entry of most houses is toward the south and with a turn to the South-East side. Entrance to yard path in all the cases is not straight, and this had been done by using 90 degrees rotates of the corridor leading to the yard. Vestibule provides a private place for the house and entrance stairway to the rooftop is located inside it.

Keywords: entrance, components of entrance, hierarchy, frontage, Shiraz houses

Procedia PDF Downloads 309
3074 A Framework on Data and Remote Sensing for Humanitarian Logistics

Authors: Vishnu Nagendra, Marten Van Der Veen, Stefania Giodini

Abstract:

Effective humanitarian logistics operations are a cornerstone in the success of disaster relief operations. However, for effectiveness, they need to be demand driven and supported by adequate data for prioritization. Without this data operations are carried out in an ad hoc manner and eventually become chaotic. The current availability of geospatial data helps in creating models for predictive damage and vulnerability assessment, which can be of great advantage to logisticians to gain an understanding on the nature and extent of the disaster damage. This translates into actionable information on the demand for relief goods, the state of the transport infrastructure and subsequently the priority areas for relief delivery. However, due to the unpredictable nature of disasters, the accuracy in the models need improvement which can be done using remote sensing data from UAVs (Unmanned Aerial Vehicles) or satellite imagery, which again come with certain limitations. This research addresses the need for a framework to combine data from different sources to support humanitarian logistic operations and prediction models. The focus is on developing a workflow to combine data from satellites and UAVs post a disaster strike. A three-step approach is followed: first, the data requirements for logistics activities are made explicit, which is done by carrying out semi-structured interviews with on field logistics workers. Second, the limitations in current data collection tools are analyzed to develop workaround solutions by following a systems design approach. Third, the data requirements and the developed workaround solutions are fit together towards a coherent workflow. The outcome of this research will provide a new method for logisticians to have immediately accurate and reliable data to support data-driven decision making.

Keywords: unmanned aerial vehicles, damage prediction models, remote sensing, data driven decision making

Procedia PDF Downloads 380
3073 Financial Fraud Prediction for Russian Non-Public Firms Using Relational Data

Authors: Natalia Feruleva

Abstract:

The goal of this paper is to develop the fraud risk assessment model basing on both relational and financial data and test the impact of the relationships between Russian non-public companies on the likelihood of financial fraud commitment. Relationships mean various linkages between companies such as parent-subsidiary relationship and person-related relationships. These linkages may provide additional opportunities for committing fraud. Person-related relationships appear when firms share a director, or the director owns another firm. The number of companies belongs to CEO and managed by CEO, the number of subsidiaries was calculated to measure the relationships. Moreover, the dummy variable describing the existence of parent company was also included in model. Control variables such as financial leverage and return on assets were also implemented because they describe the motivating factors of fraud. To check the hypotheses about the influence of the chosen parameters on the likelihood of financial fraud, information about person-related relationships between companies, existence of parent company and subsidiaries, profitability and the level of debt was collected. The resulting sample consists of 160 Russian non-public firms. The sample includes 80 fraudsters and 80 non-fraudsters operating in 2006-2017. The dependent variable is dichotomous, and it takes the value 1 if the firm is engaged in financial crime, otherwise 0. Employing probit model, it was revealed that the number of companies which belong to CEO of the firm or managed by CEO has significant impact on the likelihood of financial fraud. The results obtained indicate that the more companies are affiliated with the CEO, the higher the likelihood that the company will be involved in financial crime. The forecast accuracy of the model is about is 80%. Thus, the model basing on both relational and financial data gives high level of forecast accuracy.

Keywords: financial fraud, fraud prediction, non-public companies, regression analysis, relational data

Procedia PDF Downloads 121
3072 A Robust Digital Image Watermarking Against Geometrical Attack Based on Hybrid Scheme

Authors: M. Samadzadeh Mahabadi, J. Shanbehzadeh

Abstract:

This paper presents a hybrid digital image-watermarking scheme, which is robust against varieties of attacks and geometric distortions. The image content is represented by important feature points obtained by an image-texture-based adaptive Harris corner detector. These feature points are extracted from LL2 of 2-D discrete wavelet transform which are obtained by using the Harris-Laplacian detector. We calculate the Fourier transform of circular regions around these points. The amplitude of this transform is rotation invariant. The experimental results demonstrate the robustness of the proposed method against the geometric distortions and various common image processing operations such as JPEG compression, colour reduction, Gaussian filtering, median filtering, and rotation.

Keywords: digital watermarking, geometric distortions, geometrical attack, Harris Laplace, important feature points, rotation, scale invariant feature

Procedia PDF Downloads 501
3071 Evaluation of the Need for Seismic Retrofitting of the Foundation of a Five Story Steel Building Because of Adding of a New Story

Authors: Mohammadreza Baradaran, F. Hamzezarghani

Abstract:

Every year in different points of the world it occurs with different strengths and thousands of people lose their lives because of this natural phenomenon. One of the reasons for destruction of buildings because of earthquake in addition to the passing of time and the effect of environmental conditions and the wearing-out of a building is changing the uses of the building and change the structure and skeleton of the building. A large number of structures that are located in earthquake bearing areas have been designed according to the old quake design regulations which are out dated. In addition, many of the major earthquakes which have occurred in recent years, emphasize retrofitting to decrease the dangers of quakes. Retrofitting structural quakes available is one of the most effective methods for reducing dangers and compensating lack of resistance caused by the weaknesses existing. In this article the foundation of a five-floor steel building with the moment frame system has been evaluated for quakes and the effect of adding a floor to this five-floor steel building has been evaluated and analyzed. The considered building is with a metallic skeleton and a piled roof and clayed block which after addition of a floor has increased to a six-floor foundation of 1416 square meters, and the height of the sixth floor from ground state has increased 18.95 meters. After analysis of the foundation model, the behavior of the soil under the foundation and also the behavior of the body or element of the foundation has been evaluated and the model of the foundation and its type of change in form and the amount of stress of the soil under the foundation for some of the composition has been determined many times in the SAFE software modeling and finally the need for retrofitting of the building's foundation has been determined.

Keywords: seismic, rehabilitation, steel building, foundation

Procedia PDF Downloads 281
3070 Field Environment Sensing and Modeling for Pears towards Precision Agriculture

Authors: Tatsuya Yamazaki, Kazuya Miyakawa, Tomohiko Sugiyama, Toshitaka Iwatani

Abstract:

The introduction of sensor technologies into agriculture is a necessary step to realize Precision Agriculture. Although sensing methodologies themselves have been prevailing owing to miniaturization and reduction in costs of sensors, there are some difficulties to analyze and understand the sensing data. Targeting at pears ’Le Lectier’, which is particular to Niigata in Japan, cultivation environmental data have been collected at pear fields by eight sorts of sensors: field temperature, field humidity, rain gauge, soil water potential, soil temperature, soil moisture, inner-bag temperature, and inner-bag humidity sensors. With regard to the inner-bag temperature and humidity sensors, they are used to measure the environment inside the fruit bag used for pre-harvest bagging of pears. In this experiment, three kinds of fruit bags were used for the pre-harvest bagging. After over 100 days continuous measurement, volumes of sensing data have been collected. Firstly, correlation analysis among sensing data measured by respective sensors reveals that one sensor can replace another sensor so that more efficient and cost-saving sensing systems can be proposed to pear farmers. Secondly, differences in characteristic and performance of the three kinds of fruit bags are clarified by the measurement results by the inner-bag environmental sensing. It is found that characteristic and performance of the inner-bags significantly differ from each other by statistical analysis. Lastly, a relational model between the sensing data and the pear outlook quality is established by use of Structural Equation Model (SEM). Here, the pear outlook quality is related with existence of stain, blob, scratch, and so on caused by physiological impair or diseases. Conceptually SEM is a combination of exploratory factor analysis and multiple regression. By using SEM, a model is constructed to connect independent and dependent variables. The proposed SEM model relates the measured sensing data and the pear outlook quality determined on the basis of farmer judgement. In particularly, it is found that the inner-bag humidity variable relatively affects the pear outlook quality. Therefore, inner-bag humidity sensing might help the farmers to control the pear outlook quality. These results are supported by a large quantity of inner-bag humidity data measured over the years 2014, 2015, and 2016. The experimental and analytical results in this research contribute to spreading Precision Agriculture technologies among the farmers growing ’Le Lectier’.

Keywords: precision agriculture, pre-harvest bagging, sensor fusion, structural equation model

Procedia PDF Downloads 314
3069 Recovery of Fried Soybean Oil Using Bentonite as an Adsorbent: Optimization, Isotherm and Kinetics Studies

Authors: Prakash Kumar Nayak, Avinash Kumar, Uma Dash, Kalpana Rayaguru

Abstract:

Soybean oil is one of the most widely consumed cooking oils, worldwide. Deep-fat frying of foods at higher temperatures adds unique flavour, golden brown colour and crispy texture to foods. But it brings in various changes like hydrolysis, oxidation, hydrogenation and thermal alteration to oil. The presence of Peroxide value (PV) is one of the most important factors affecting the quality of the deep-fat fried oil. Using bentonite as an adsorbent, the PV can be reduced, thereby improving the quality of the soybean oil. In this study, operating parameters like heating time of oil (10, 15, 20, 25 & 30 h), contact time ( 5, 10, 15, 20, 25 h) and concentration of adsorbent (0.25, 0.5, 0.75, 1.0 and 1.25 g/ 100 ml of oil) have been optimized by response surface methodology (RSM) considering percentage reduction of PV as a response. Adsorption data were analysed by fitting with Langmuir and Freundlich isotherm model. The results show that the Langmuir model shows the best fit compared to the Freundlich model. The adsorption process was also found to follow a pseudo-second-order kinetic model.

Keywords: bentonite, Langmuir isotherm, peroxide value, RSM, soybean oil

Procedia PDF Downloads 375