Search results for: self-regulated learning theory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11278

Search results for: self-regulated learning theory

8758 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market

Authors: Taylan Kabbani, Ekrem Duman

Abstract:

The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.

Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent

Procedia PDF Downloads 178
8757 Syndromic Surveillance Framework Using Tweets Data Analytics

Authors: David Ming Liu, Benjamin Hirsch, Bashir Aden

Abstract:

Syndromic surveillance is to detect or predict disease outbreaks through the analysis of medical sources of data. Using social media data like tweets to do syndromic surveillance becomes more and more popular with the aid of open platform to collect data and the advantage of microblogging text and mobile geographic location features. In this paper, a Syndromic Surveillance Framework is presented with machine learning kernel using tweets data analytics. Influenza and the three cities Abu Dhabi, Al Ain and Dubai of United Arabic Emirates are used as the test disease and trial areas. Hospital cases data provided by the Health Authority of Abu Dhabi (HAAD) are used for the correlation purpose. In our model, Latent Dirichlet allocation (LDA) engine is adapted to do supervised learning classification and N-Fold cross validation confusion matrix are given as the simulation results with overall system recall 85.595% performance achieved.

Keywords: Syndromic surveillance, Tweets, Machine Learning, data mining, Latent Dirichlet allocation (LDA), Influenza

Procedia PDF Downloads 116
8756 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems

Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano

Abstract:

The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.

Keywords: environmental internet of things, EIoT, machine learning, anomaly detection, environment monitoring

Procedia PDF Downloads 151
8755 A Case Study on English Camp in UNISSA: An Approach towards Interactive Learning Outside the Classroom

Authors: Liza Mariah Hj. Azahari

Abstract:

This paper will look at a case study on English Camp which was an activity coordinated at the Sultan Sharif Ali Islamic University in 2011. English Camp is a fun and motivation filled activity which brings students and teachers together outside of the classroom setting into a more diverse environment. It also enables teacher and students to gain proximate time together for a mutual purpose which is to explore the language in a more dynamic and relaxed way. First of all, the study will look into the background of English Camp, and how it was introduced and implemented from different contexts. Thereafter, it will explain the objectives of the English Camp coordinated at our university, UNISSA, and what types of activities were conducted. It will then evaluate the effectiveness of the camp as to what extent it managed to meet its motto, which was to foster dynamic interactive learning of English Language. To conclude, the paper presents a potential for further research on the topic as well as a guideline for educators who wish to coordinate the activity. Proposal for collaboration in this activity is further highlighted and encouraged within the paper for future implementation and endeavor.

Keywords: English camp, UNISSA, interactive learning, outside

Procedia PDF Downloads 569
8754 A Machine Learning Pipeline for Real-Time Activity Detection on Low Computational Power Devices for Metaverse Applications

Authors: Amit Kumar, Amanpreet Chander, Ashish Sahani

Abstract:

This paper presents our recent work on real-time human activity detection based on the media pipe pipeline and machine learning algorithms. The proposed system can detect human activities, including running, jumping, squatting, bending to the left or right, and standing still. This is a robust solution for developing a yoga, dance, metaverse, and fitness application that checks for the correction of the pose without having any additional monitor like a personal trainer. MediaPipe solution offers an open-source cross-platform which utilizes a two-step detector-tracker ML pipeline for live detection of key landmarks on our body which can be used for motion data collection. The prediction of real-time poses uses a variety of machine learning techniques and different types of analysis. Without primarily relying on powerful desktop environments for inference, our method achieves real-time performance on the majority of contemporary mobile phones, desktops/laptops, Python, or even the web. Experimental results show that our method outperforms the existing method in terms of accuracy and real-time capability, achieving an accuracy of 99.92% on testing datasets.

Keywords: human activity detection, media pipe, machine learning, metaverse applications

Procedia PDF Downloads 179
8753 A Mutually Exclusive Task Generation Method Based on Data Augmentation

Authors: Haojie Wang, Xun Li, Rui Yin

Abstract:

In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.

Keywords: mutex task generation, data augmentation, meta-learning, text classification.

Procedia PDF Downloads 143
8752 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition

Authors: Ali Nadi, Ali Edrissi

Abstract:

Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.

Keywords: disaster management, real-time demand, reinforcement learning, relief demand

Procedia PDF Downloads 316
8751 Artificial Intelligence in Bioscience: The Next Frontier

Authors: Parthiban Srinivasan

Abstract:

With recent advances in computational power and access to enough data in biosciences, artificial intelligence methods are increasingly being used in drug discovery research. These methods are essentially a series of advanced statistics based exercises that review the past to indicate the likely future. Our goal is to develop a model that accurately predicts biological activity and toxicity parameters for novel compounds. We have compiled a robust library of over 150,000 chemical compounds with different pharmacological properties from literature and public domain databases. The compounds are stored in simplified molecular-input line-entry system (SMILES), a commonly used text encoding for organic molecules. We utilize an automated process to generate an array of numerical descriptors (features) for each molecule. Redundant and irrelevant descriptors are eliminated iteratively. Our prediction engine is based on a portfolio of machine learning algorithms. We found Random Forest algorithm to be a better choice for this analysis. We captured non-linear relationship in the data and formed a prediction model with reasonable accuracy by averaging across a large number of randomized decision trees. Our next step is to apply deep neural network (DNN) algorithm to predict the biological activity and toxicity properties. We expect the DNN algorithm to give better results and improve the accuracy of the prediction. This presentation will review all these prominent machine learning and deep learning methods, our implementation protocols and discuss these techniques for their usefulness in biomedical and health informatics.

Keywords: deep learning, drug discovery, health informatics, machine learning, toxicity prediction

Procedia PDF Downloads 357
8750 Opto-Electronic Properties of Novel Structures: Sila-Fulleranes

Authors: Farah Marsusi, Mohammad Qasemnazhand

Abstract:

Density-functional theory (DFT) was applied to investigate the geometry and electronic properties H-terminated Si-fullerene (Si-fullerane). Natural bond orbital (NBO) analysis confirms sp3 hybridization nature of Si-Si bonds in Si-fulleranes. Quantum confinement effect (QCE) does not affect band gap (BG) so strongly in the size between 1 to 1.7 nm. In contrast, the geometry and symmetry of the cage have significant influence on BG. In contrast to their carbon analogues, pentagon rings increase the stability of the cages. Functionalized Si-cages are stable and can be chemically very active. The electronic properties are highly sensitive to the surface chemistry via functionalization with different chemical groups. As a result, BGs and chemical activities of these cages can be drastically tuned through the chemistry of the surface.

Keywords: density functional theory, sila-fullerens, NBO analysis, opto-electronic properties

Procedia PDF Downloads 299
8749 Network Analysis and Sex Prediction based on a full Human Brain Connectome

Authors: Oleg Vlasovets, Fabian Schaipp, Christian L. Mueller

Abstract:

we conduct a network analysis and predict the sex of 1000 participants based on ”connectome” - pairwise Pearson’s correlation across 436 brain parcels. We solve the non-smooth convex optimization problem, known under the name of Graphical Lasso, where the solution includes a low-rank component. With this solution and machine learning model for a sex prediction, we explain the brain parcels-sex connectivity patterns.

Keywords: network analysis, neuroscience, machine learning, optimization

Procedia PDF Downloads 147
8748 Promoting Patients' Adherence to Home-Based Rehabilitation: A Randomised Controlled Trial of a Theory-Driven Mobile Application

Authors: Derwin K. C. Chan, Alfred S. Y. Lee

Abstract:

The integrated model of self-determination theory and the theory of planned behaviour has been successfully applied to explain individuals’ adherence to health behaviours, including behavioural adherence toward rehabilitation. This study was a randomised controlled trial that examined the effectiveness of an mHealth intervention (i.e., mobile application) developed based on this integrated model in promoting treatment adherence of patients of anterior cruciate ligament rupture during their post-surgery home-based rehabilitation period. Subjects were 67 outpatients (aged between 18 and 60) who undertook anterior cruciate ligament (ACL) reconstruction surgery for less than 2 months for this study. Participants were randomly assigned either into the treatment group (who received the smartphone application; N = 32) and control group (who receive standard treatment only; N = 35), and completed psychological measures relating to the theories (e.g., motivations, social cognitive factors, and behavioural adherence) and clinical outcome measures (e.g., subjective knee function (IKDC), laxity (KT-1000), muscle strength (Biodex)) relating to ACL recovery at baseline, 2-month, and 4-month. Generalise estimating equation showed the interaction between group and time was significant on intention was only significant for intention (Wald x² = 5.23, p = .02), that of perceived behavioural control (Wald x² = 3.19, p = .07), behavioural adherence (Wald x² = 3.08, p = .08, and subjective knee evaluation (Wald x² = 2.97, p = .09) were marginally significant. Post-hoc between-subject analysis showed that control group had significant drop of perceived behavioural control (p < .01), subjective norm (p < .01) and intention (p < .01), behavioural adherence (p < .01) from baseline to 4-month, but such pattern was not observed in the treatment group. The treatment group had a significant decrease of behavioural adherence (p < .05) in the 2-month, but such a decrease was not observed in 4-month (p > .05). Although the subjective knee evaluation in both group significantly improved at 2-month and 4-month from the baseline (p < .05), and the improvements in the control group (mean improvement at 4-month = 40.18) were slightly stronger than the treatment group (mean improvement at 4-month = 34.52). In conclusion, the findings showed that the theory driven mobile application ameliorated the decline of treatment intention of home-based rehabilitation. Patients in the treatment group also reported better muscle strength than control group at 4-month follow-up. Overall, the mobile application has shown promises on tackling the problem of orthopaedics outpatients’ non-adherence to medical treatment.

Keywords: self-determination theory, theory of planned behaviour, mobile health, orthopaedic patients

Procedia PDF Downloads 198
8747 Web-Based Cognitive Writing Instruction (WeCWI): A Hybrid e-Framework for Instructional Design

Authors: Boon Yih Mah

Abstract:

Web-based Cognitive Writing Instruction (WeCWI) is a hybrid e-framework that consolidates instructional design and language development towards the development of a web-based instruction (WBI). WeCWI divides instructional design into macro and micro perspectives. In macro perspective, a 21st century educator is encouraged to disseminate knowledge and share ideas with in-class and global learners. By leveraging the virtue of technology, WeCWI aims to transform the educator into an aggregator, curator, publisher, social networker and finally, a web-based instructor. Since the most notable contribution of integrating technology is being a tool of teaching as well as a stimulus for learning, WeCWI focuses on the use of contemporary web tools based on the multiple roles played by the 21st century educator. The micro perspective draws attention to the pedagogical approaches focussing on three main aspects: reading, discussion, and writing. With the effective use of pedagogical approaches, technology adds new dimensions and expands the bounds of learning capacity. Lastly, WeCWI also imparts the fundamental theoretical concepts for web-based instructors’ awareness such as interactionism, e-learning interactional-based model, computer-mediated communication (CMC), cognitive theories, and learning style model.

Keywords: web-based cognitive writing instruction, WeCWI, instructional design, e-framework, web-based instructor

Procedia PDF Downloads 439
8746 Massive Open Online Course about Content Language Integrated Learning: A Methodological Approach for Content Language Integrated Learning Teachers

Authors: M. Zezou

Abstract:

This paper focuses on the design of a Massive Open Online Course (MOOC) about Content Language Integrated Learning (CLIL) and more specifically about how teachers can use CLIL as an educational approach incorporating technology in their teaching as well. All the four weeks of the MOOC will be presented and a step-by-step analysis of each lesson will be offered. Additionally, the paper includes detailed lesson plans about CLIL lessons with proposed CLIL activities and games in which technology plays a central part. The MOOC is structured based on certain criteria, in order to ensure success, as well as a positive experience that the learners need to have after completing this MOOC. It addresses to all language teachers who would like to implement CLIL into their teaching. In other words, it presents the methodology that needs to be followed so as to successfully carry out a CLIL lesson and achieve the learning objectives set at the beginning of the course. Firstly, in this paper, it is very important to give the definitions of MOOCs and LMOOCs, as well as to explore the difference between a structure-based MOOC (xMOOC) and a connectivist MOOC (cMOOC) and present the criteria of a successful MOOC. Moreover, the notion of CLIL will be explored, as it is necessary to fully understand this concept before moving on to the design of the MOOC. Onwards, the four weeks of the MOOC will be introduced as well as lesson plans will be presented: The type of the activities, the aims of each activity and the methodology that teachers have to follow. Emphasis will be placed on the role of technology in foreign language learning and on the ways in which we can involve technology in teaching a foreign language. Final remarks will be made and a summary of the main points will be offered at the end.

Keywords: CLIL, cMOOC, lesson plan, LMOOC, MOOC criteria, MOOC, technology, xMOOC

Procedia PDF Downloads 194
8745 A Critical Reflection of Ableist Methodologies: Approaching Interviews and Go-Along Interviews

Authors: Hana Porkertová, Pavel Doboš

Abstract:

Based on a research project studying the experience of visually disabled people with urban space in the Czech Republic, the conference contribution discusses the limits of social-science methodologies used in sociology and human geography. It draws on actor-network theory, assuming that science does not describe reality but produces it. Methodology connects theory, research questions, ways to answer them (methods), and results. A research design utilizing ableist methodologies can produce ableist realities. Therefore, it was necessary to adjust the methods so that they could mediate blind experience to the scientific community without reproducing ableism. The researchers faced multiple challenges, ranging from questionable validity to how to research experience that differs from that of the researchers who are able-bodied. Finding a suitable theory that could be used as an analytical tool that would demonstrate space and blind experience as multiple, dynamic, and mutually constructed was the first step that could offer a range of potentially productive methods and research questions, as well as bring critically reflected results. Poststructural theory, mainly Deleuze-Guattarian philosophy, was chosen, and two methods were used: interviews and go-along interviews that had to be adjusted to be able to explore blind experience. In spite of a thorough preparation of these methods, new difficulties kept emerging, which exposed the ableist character of scientific knowledge. From the beginning of data collecting, there was an agreement to work in teams with slightly different roles of each of the researchers, which was significant especially during go-along interviews. In some cases, the anticipations of the researchers and participants differed, which led to unexpected and potentially dangerous situations. These were not caused only by the differences between scientific and lay communities but also between able-bodied and disabled people. Researchers were sometimes assigned to the assistants’ roles, and this new position – doing research together – required further negotiations, which also opened various ethical questions.

Keywords: ableist methodology, blind experience, go-along interviews, research ethics, scientific knowledge

Procedia PDF Downloads 165
8744 Exploring the Effectiveness and Challenges of Implementing Self-Regulated Learning to Improve Spoken English

Authors: Md. Shaiful Islam, Mahani Bt. Stapa

Abstract:

To help learners overcome their struggle in developing proficiency in spoken English, self-regulated learning strategies seem to be promising. Students in the private universities in Bangladesh are expected to communicate with the teachers, peers, and staff members in English, but most of them suffer from their inadequate oral communicative competence in English. To address this problem, the researchers adopted a qualitative research approach to answer the research questions. They employed the learner diary method to collect data from the first-semester undergraduate students of a reputed private university in Bangladesh who were involved in writing weekly diaries about their use of self-regulated learning strategies to improve speaking in an English speaking course. The learners were provided with prompts for writing the diaries. The thematic analysis method was applied to analyze the entries of the diaries for the identification of themes. Seven strategies related to the effectiveness of SRL for the improvement of spoken English were identified from the data, and they include goal-setting, strategic planning, identifying the sources of self-motivation, help-seeking, environmental restructuring, self-monitoring, and self-evaluation. However, the students reported in their diaries that they faced challenges that impeded their SRL strategy use. Five challenges were identified, and they entail the complex nature of SRL, lack of literacy on SRL, teachers’ preference for controlling the class, learners’ past habit of learning, and students’ addiction to gadgets. The implications the study addresses include revising the syllabus and curriculum, facilitating SRL training for students and teachers, and integrating SRL in the lessons.

Keywords: private university in Bangladesh, proficiency, self-regulated learning, spoken English

Procedia PDF Downloads 160
8743 Perspectives of Saudi Students on Reasons for Seeking Private Tutors in English

Authors: Ghazi Alotaibi

Abstract:

The current study examined and described the views of secondary school students and their parents on their reasons for seeking private tutors in English. These views were obtained through two group interviews with the students and parents separately. Several causes were brought up during the two interviews. These causes included difficulty of the English language, weak teacher performance, the need to pass exams with high marks, lack of parents’ follow-up of student school performance, social pressure, variability in student comprehension levels at school, weak English foundation in previous school years, repeated student absence from school, large classes, as well as English teachers’ heavy teaching loads. The study started with a description of the EFL educational system in Saudi Arabia and concluded with recommendations for the improvement of the school learning environment.

Keywords: english, learning difficulty, private tutoring, Saudi, teaching practices, learning environment

Procedia PDF Downloads 456
8742 Comparative Analysis of Reinforcement Learning Algorithms for Autonomous Driving

Authors: Migena Mana, Ahmed Khalid Syed, Abdul Malik, Nikhil Cherian

Abstract:

In recent years, advancements in deep learning enabled researchers to tackle the problem of self-driving cars. Car companies use huge datasets to train their deep learning models to make autonomous cars a reality. However, this approach has certain drawbacks in that the state space of possible actions for a car is so huge that there cannot be a dataset for every possible road scenario. To overcome this problem, the concept of reinforcement learning (RL) is being investigated in this research. Since the problem of autonomous driving can be modeled in a simulation, it lends itself naturally to the domain of reinforcement learning. The advantage of this approach is that we can model different and complex road scenarios in a simulation without having to deploy in the real world. The autonomous agent can learn to drive by finding the optimal policy. This learned model can then be easily deployed in a real-world setting. In this project, we focus on three RL algorithms: Q-learning, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO). To model the environment, we have used TORCS (The Open Racing Car Simulator), which provides us with a strong foundation to test our model. The inputs to the algorithms are the sensor data provided by the simulator such as velocity, distance from side pavement, etc. The outcome of this research project is a comparative analysis of these algorithms. Based on the comparison, the PPO algorithm gives the best results. When using PPO algorithm, the reward is greater, and the acceleration, steering angle and braking are more stable compared to the other algorithms, which means that the agent learns to drive in a better and more efficient way in this case. Additionally, we have come up with a dataset taken from the training of the agent with DDPG and PPO algorithms. It contains all the steps of the agent during one full training in the form: (all input values, acceleration, steering angle, break, loss, reward). This study can serve as a base for further complex road scenarios. Furthermore, it can be enlarged in the field of computer vision, using the images to find the best policy.

Keywords: autonomous driving, DDPG (deep deterministic policy gradient), PPO (proximal policy optimization), reinforcement learning

Procedia PDF Downloads 149
8741 Investigating the Behavior of Individual Business Taxpayers: Behavioral Economics Approach

Authors: Yeganeh Mousavi Jahromi, Sahar Dehghan

Abstract:

In Direct Tax Act, penalties and incentives are two strategies for realization of the expected tax revenues. In this study, the interaction between individual businesses' taxpayers' behaviors and National Tax Administration is investigated by using prospect theory which is based on behavioral economics approach. For this purpose, the structure of the tax compliance of the mentioned taxpayers is evaluated via the changes in penalty and incentive rates. In this way, a special questionnaire regarding the items of individual businesses sector of Direct Tax Act was designed for tax compliance evaluation, and the results were obtained using Bayesian Hierarchical method. The results indicate that the investigated individual business taxpayers, at all income levels, were more sensitive toward incentive rates so that this result can be useful for tax policymakers.

Keywords: behavioral economics, prospect theory, tax compliance, penalties, incentives

Procedia PDF Downloads 68
8740 Structural Reliability Analysis Using Extreme Learning Machine

Authors: Mehul Srivastava, Sharma Tushar Ravikant, Mridul Krishn Mishra

Abstract:

In structural design, the evaluation of safety and probability failure of structure is of significant importance, mainly when the variables are random. On real structures, structural reliability can be evaluated obtaining an implicit limit state function. The structural reliability limit state function is obtained depending upon the statistically independent variables. In the analysis of reliability, we considered the statistically independent random variables to be the load intensity applied and the depth or height of the beam member considered. There are many approaches for structural reliability problems. In this paper Extreme Learning Machine technique and First Order Second Moment Method is used to determine the reliability indices for the same set of variables. The reliability index obtained using ELM is compared with the reliability index obtained using FOSM. Higher the reliability index, more feasible is the method to determine the reliability.

Keywords: reliability, reliability index, statistically independent, extreme learning machine

Procedia PDF Downloads 684
8739 Drawings Reveal Beliefs of Japanese University Students

Authors: Sakae Suzuki

Abstract:

Although Japanese students study English for six years in secondary schools, they demonstrate little success with it when they enter higher education. Learners’ beliefs can predict the future behavior of students, so it may be effective to investigate how learners’ beliefs limit their success and how beliefs might be nudged in a positive direction. While many researchers still depend on a questionnaire called BALLI to reveal explicit beliefs, alternative approaches, especially those designed to reveal implicit beliefs, might be helpful for promoting learning. The present study seeks to identify beliefs with a discursive approach using visual metaphors and narratives. Employing a sociocultural framework, this study investigates how students’ beliefs are revealed by drawings of themselves and their surrounding environments and artifacts while they are engaged in language learning. Research questions are: (1) Can we identify beliefs through an analysis of students’ visual narratives? (2) What environments and artifacts can be found in students’ drawings, and what do they mean? (3) To what extent do students see language learning as a solitary, rather than a social, activity? Participants are university students majoring in science and technology in Japan. The questionnaire was administered to 70 entering students in April, 2014. Data included students drawings of themselves as learners of English as well as written descriptions of students’ backgrounds, English-learning experiences, and analogies and metaphors that they used in written descriptions of themselves as learners. Data will be analyzed qualitatively and quantitatively. Anticipated results include students’ perceptions of themselves as language learners, including their sense of agency, awareness of artifacts, and social contexts of language learning. Comments will be made on implications for teaching, as well as the use of visual narratives as research tools, and recommended further research.

Keywords: drawings, learners' beliefs, metaphors, BALLI

Procedia PDF Downloads 492
8738 Learning Predictive Models for Efficient Energy Management of Exhibition Hall

Authors: Jeongmin Kim, Eunju Lee, Kwang Ryel Ryu

Abstract:

This paper addresses the problem of predictive control for energy management of large-scaled exhibition halls, where a lot of energy is consumed to maintain internal atmosphere under certain required conditions. Predictive control achieves better energy efficiency by optimizing the operation of air-conditioning facilities with not only the current but also some future status taken into account. In this paper, we propose to use predictive models learned from past sensor data of hall environment, for use in optimizing the operating plan for the air-conditioning facilities by simulating future environmental change. We have implemented an emulator of an exhibition hall by using EnergyPlus, a widely used building energy emulation tool, to collect data for learning environment-change models. Experimental results show that the learned models predict future change highly accurately on a short-term basis.

Keywords: predictive control, energy management, machine learning, optimization

Procedia PDF Downloads 274
8737 A Higher Order Shear and Normal Deformation Theory for Functionally Graded Sandwich Beam

Authors: R. Bennai, H. Ait Atmane, Jr., A. Tounsi

Abstract:

In this work, a new analytical approach using a refined theory of hyperbolic shear deformation of a beam was developed to study the free vibration of graduated sandwiches beams under different boundary conditions. The effects of transverse shear strains and the transverse normal deformation are considered. The constituent materials of the beam are supposed gradually variable depending the height direction based on a simple power distribution law in terms of the volume fractions of the constituents; the two materials with which we worked are metals and ceramics. The core layer is taken homogeneous and made of an isotropic material; while the banks layers consist of FGM materials with a homogeneous fraction compared to the middle layer. Movement equations are obtained by the energy minimization principle. Analytical solutions of free vibration and buckling are obtained for sandwich beams under different support conditions; these conditions are taken into account by incorporating new form functions. In the end, illustrative examples are presented to show the effects of changes in different parameters such as (material graduation, the stretching effect of the thickness, boundary conditions and thickness ratio - length) on the vibration free and buckling of an FGM sandwich beams.

Keywords: functionally graded sandwich beam, refined shear deformation theory, stretching effect, free vibration

Procedia PDF Downloads 246
8736 A Longitudinal Case Study of Greek as a Second Language

Authors: M. Vassou, A. Karasimos

Abstract:

A primary concern in the field of Second Language Acquisition (SLA) research is to determine the innate mechanisms of second language learning and acquisition through the systematic study of a learner's interlanguage. Errors emerge while a learner attempts to communicate using the target-language and can be seen either as the observable linguistic product of the latent cognitive and language process of mental representations or as an indispensable learning mechanism. Therefore, the study of the learner’s erroneous forms may depict the various strategies and mechanisms that take place during the language acquisition process resulting in deviations from the target-language norms and difficulties in communication. Mapping the erroneous utterances of a late adult learner in the process of acquiring Greek as a second language constitutes one of the main aims of this study. For our research purposes, we created an error-tagged learner corpus composed of the participant’s written texts produced throughout a period of a 4- year instructed language acquisition. Error analysis and interlanguage theory constitute the methodological and theoretical framework, respectively. The research questions pertain to the learner's most frequent errors per linguistic category and per year as well as his choices concerning the Greek Article System. According to the quantitative analysis of the data, the most frequent errors are observed in the categories of the stress system and syntax, whereas a significant fluctuation and/or gradual reduction throughout the 4 years of instructed acquisition indicate the emergence of developmental stages. The findings with regard to the article usage bespeak fossilization of erroneous structures in certain contexts. In general, our results point towards the existence and further development of an established learner’s (inter-) language system governed not only by mother- tongue and target-language influences but also by the learner’s assumptions and set of rules as the result of a complex cognitive process. It is expected that this study will contribute not only to the knowledge in the field of Greek as a second language and SLA generally, but it will also provide an insight into the cognitive mechanisms and strategies developed by multilingual learners of late adulthood.

Keywords: Greek as a second language, error analysis, interlanguage, late adult learner

Procedia PDF Downloads 127
8735 The Moderating Role of Perceived University Environment in the Formation of Entrepreneurial Intention among Creative Industries Students

Authors: Patrick Ebong Ebewo

Abstract:

The trend of high unemployment levels globally is a growing concern, which suggests that university students especially those studying the creative industries are most likely to face unemployment upon completion of their studies. Therefore the effort of university in fostering entrepreneurial knowledge is equally important to the development of student’s soft skill. The purpose of this paper is to assess the significance of perceived university environment and perceived educational support that influencing University students’ intention in starting their own business in the future. Thus, attempting to answer the question 'How does perceived university environment affect students’ attitude towards entrepreneurship as a career option, perceived entrepreneurial abilities, subjective norm and entrepreneurial intentions?' The study is based on the Theory of Planned Behaviour model adapted from previous studies and empirically tested on graduates at the Tshwane University of Technology. A sample of 150 graduates from the Arts and Design graduates took part in the study and data collected were analysed using structural equation modelling (SEM). Our findings seem to suggest the indirect impact of perceived university environment on entrepreneurial intention through perceived environment support and perceived entrepreneurial abilities. Thus, any increase in perceived university environment might influence students to become entrepreneurs. Based on these results, it is recommended that: (a) Tshwane University of Technology and other universities of technology should establish an ‘Entrepreneurship Internship Programme’ as a tool for stimulated work integrated learning. Post-graduation intervention could be implemented by the development of a ‘Graduate Entrepreneurship Program’ which should be embedded in the Bachelor of Technology (B-Tech now Advance Diploma) and Postgraduate courses; (b) Policymakers should consider the development of a coherent national policy framework that addresses entrepreneurship for the Arts/creative industries sector. This would create the enabling environment for the evolution of Higher Education Institutions from merely Teaching, Learning & Research to becoming drivers for creative entrepreneurship.

Keywords: business venture, entrepreneurship education, entrepreneurial intent, university environment

Procedia PDF Downloads 336
8734 Four Decades of Greek Artistic Presence in Paris (1970-2010): Theory and Interpretation

Authors: Sapfo A. Mortaki

Abstract:

This article examines the presence of Greek immigrant artists (painters and sculptors) in Paris during 1970-2010. The aim is to highlight their presence in the French capital through archival research in the daily and periodical press as well as present the impact of their artistic activity on the French intellectual life and society. At the same time, their contribution to the development of cultural life in Greece becomes apparent. The integration of those migrant artists into an environment of cultural coexistence and the understanding of the social phenomenon of their migration, in the context of postmodernity, are being investigated. The cultural relations between the two countries are studied in the context of support mechanisms, such as the Greek community, cultural institutions, museums and galleries. The recognition of the Greek artists by the French society and the social dimension in the context of their activity in Paris, are discussed in terms of the assimilation theory. Since the 1970s, and especially since the fall of the dictatorship in Greece, in opposition to the prior situation, artists' contacts with their homeland have been significantly enhanced, with most of them now travelling to Paris, while others work in parallel in both countries. As a result, not only do the stages of the development of their work through their pursuits become visible, but, most importantly, the artistic world becomes informed about the multifaceted expression of art through the succession of various contemporary currents. Thus, the participation of Greek artists in the international cultural landscape is demonstrated.

Keywords: artistic migration, cultural impact, Greek artists, postmodernity, theory of assimilation

Procedia PDF Downloads 308
8733 A Curricular Approach to Organizational Mentoring Programs: The Integrated Mentoring Curriculum Model

Authors: Christopher Webb

Abstract:

This work presents a new model of mentoring in an organizational environment and has important implications for both practice and research, the model frames the organizational environment as organizational curriculum, which includes the elements that affect learning within the organization. This includes the organizational structure and culture, roles within the organization, and accessibility of knowledge. The program curriculum includes the elements of the mentoring program, including materials, training, and scheduled events for the program participants. The term dyadic curriculum is coined in this work. The dyadic curriculum describes the participation, behavior, and identities of the pairs participating in mentorships. This also includes the identity work of the participants and their views of each other. Much of this curriculum is unprescribed and is unique within each dyad. It describes how participants mediate the elements of organizational and program curricula. These three curricula interact and affect each other in predictable ways. A detailed example of a mentoring program framed in this model is provided.

Keywords: curriculum, mentoring, organizational learning and development, social learning

Procedia PDF Downloads 202
8732 Constant-Roll Warm Inflation within Rastall Gravity

Authors: Rabia Saleem

Abstract:

This research has a recently proposed strategy to find the exact inflationary solution of the Friedman equations in the context of the Rastall theory of gravity (RTG), known as constant-roll warm inflation, including dissipation effects. We establish the model to evaluate the effective potential of inflation and entropy. We develop the inflationary observable like scalar-tensor power spectra, scalar-tensor spectral indices, tensor-to-scalar ratio, and running of spectral-index. The theory parameter $\lambda$ is constrained to observe the compatibility of our model with Planck 2013, Planck TT, TE, EE+lowP (2015), and Planck 2018 bounds. The results are feasible and interesting up to the 2$\sigma$ confidence level.

Keywords: modified gravity, warm inflation, constant-roll limit, dissipation

Procedia PDF Downloads 99
8731 Removing Barriers in Assessment and Feedback for Blind Students in Open Distance Learning

Authors: Sindile Ngubane-Mokiwa

Abstract:

This paper addresses two questions: (1) what barriers do the blind students face with assessment and feedback in open distance learning contexts? And (2) How can these barriers be removed? The paper focuses on the distance education through which most students with disabilities elevate their chances of accessing higher education. Lack of genuine inclusion is also evident in the challenges the blind students face during the assessment. These barriers are experienced at both formative and summative stages. The insights in this paper emanate from a case study that was carried out through qualitative approaches. The data was collected through in-depth interview, life stories, and telephonic interviews. The paper provides a review of local, continental and international views on how best assessment barriers can be removed. A group of five blind students, comprising of two honours students, two master's students and one doctoral student participated in this study. The data analysis was done through thematic analysis. The findings revealed that (a) feedback to the assignment is often inaccessible; (b) the software used is incompatible; (c) learning and assessment are designed in exclusionary approaches; (d) assessment facilities are not conducive; and (e) lack of proactive innovative assessment strategies. The article concludes by recommending ways in which barriers to assessment can be removed. These include addressing inclusive assessment and feedback strategies in professional development initiatives.

Keywords: assessment design, barriers, disabilities, blind students, feedback, universal design for learning

Procedia PDF Downloads 360
8730 Reducing Defects through Organizational Learning within a Housing Association Environment

Authors: T. Hopkin, S. Lu, P. Rogers, M. Sexton

Abstract:

Housing Associations (HAs) contribute circa 20% of the UK’s housing supply. HAs are however under increasing pressure as a result of funding cuts and rent reductions. Due to the increased pressure, a number of processes are currently being reviewed by HAs, especially how they manage and learn from defects. Learning from defects is considered a useful approach to achieving defect reduction within the UK housebuilding industry. This paper contributes to our understanding of how HAs learn from defects by undertaking an initial round table discussion with key HA stakeholders as part of an ongoing collaborative research project with the National House Building Council (NHBC) to better understand how house builders and HAs learn from defects to reduce their prevalence. The initial discussion shows that defect information runs through a number of groups, both internal and external of a HA during both the defects management process and organizational learning (OL) process. Furthermore, HAs are reliant on capturing and recording defect data as the foundation for the OL process. During the OL process defect data analysis is the primary enabler to recognizing a need for a change to organizational routines. When a need for change has been recognized, new options are typically pursued to design out defects via updates to a HAs Employer’s Requirements. Proposed solutions are selected by a review board and committed to organizational routine. After implementing a change, both structured and unstructured feedback is sought to establish the change’s success. The findings from the HA discussion demonstrates that OL can achieve defect reduction within the house building sector in the UK. The paper concludes by outlining a potential ‘learning from defects model’ for the housebuilding industry as well as describing future work.

Keywords: defects, new homes, housing association, organizational learning

Procedia PDF Downloads 316
8729 Reproduction of New Media Art Village around NTUT: Heterotopia of Visual Culture Art Education

Authors: Yu Cheng-Yu

Abstract:

‘Heterotopia’, ‘Visual Cultural Art Education’ and ‘New Media’ of these three subjects seemingly are irrelevant. In fact, there are synchronicity and intertextuality inside. In addition to visual culture, art education inspires students the ability to reflect on popular culture image through visual culture teaching strategies in school. We should get involved in the community to construct the learning environment that conveys visual culture art. This thesis attempts to probe the heterogeneity of space and value from Michel Foucault and to research sustainable development strategy in ‘New Media Art Village’ heterogeneity from Jean Baudrillard, Marshall McLuhan's media culture theory and social construction ideology. It is possible to find a new media group that can convey ‘Visual Culture Art Education’ around the National Taipei University of Technology in this commercial district that combines intelligent technology, fashion, media, entertainment, art education, and marketing network. Let the imagination and innovation of ‘New Media Art Village’ become ‘implementable’ and new media Heterotopia of inter-subjectivity with the engagement of big data and digital media. Visual culture art education will also bring aesthetics into the community by New Media Art Village.

Keywords: social construction, heterogeneity, new media, big data, visual culture art education

Procedia PDF Downloads 248