Search results for: parallel operating generators
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3592

Search results for: parallel operating generators

1072 Achieving Quality of Life and Sustainability in Mexican Cities, the Case of the Housing Complex “Villa del Campo”, Tijuana, Mexico

Authors: María de los Ángeles Zárate López, Juan Antonio Pitones Rubio

Abstract:

Quality of life and sustainability in cities are among the most important challenges faced by designers, city planners and urban managers. The Mexican city of Tijuana has a particular dynamic in its demographics which has been accelerated by its border city condition, putting to the test the ability from authorities to provide the population with the necessary services to aspire for a deserving quality of life. In the recent story of Tijuana, we found that the housing policy and the solutions presented by private housing developers have not met the best living conditions for end users by far, thereby adding issues to current social problems which impact the whole metropolitan area, including damage to the natural environment. Therefore this research presents the case study about the situation of a suburban housing development near Tijuana named “Villa del Campo” and exposes the problems of this specific project (originally labelled as a “sustainable” proposal) demonstrating that, once built, the place does not reflect the quality of life that it promised as a project. Currently, this housing development has a number of problematic issues such as the faulty operating conditions of public utilities and serious cases of crime inside the neighborhood. There is no intention to only expose the negative side of this case study, but to explore some alternatives which could help solving the most serious problems at the place, considering possible architectural and landscape interventions within the housing complex to help achieve the optimal conditions of livability and sustainability required by their inhabitants.

Keywords: suburban, housing, quality of life, sustainability, Tijuana, demographics

Procedia PDF Downloads 368
1071 Agile Smartphone Porting and App Integration of Signal Processing Algorithms Obtained through Rapid Development

Authors: Marvin Chibuzo Offiah, Susanne Rosenthal, Markus Borschbach

Abstract:

Certain research projects in Computer Science often involve research on existing signal processing algorithms and developing improvements on them. Research budgets are usually limited, hence there is limited time for implementing the algorithms from scratch. It is therefore common practice, to use implementations provided by other researchers as a template. These are most commonly provided in a rapid development, i.e. 4th generation, programming language, usually Matlab. Rapid development is a common method in Computer Science research for quickly implementing and testing new developed algorithms, which is also a common task within agile project organization. The growing relevance of mobile devices in the computer market also gives rise to the need to demonstrate the successful executability and performance measurement of these algorithms on a mobile device operating system and processor, particularly on a smartphone. Open mobile systems such as Android, are most suitable for this task, which is to be performed most efficiently. Furthermore, efficiently implementing an interaction between the algorithm and a graphical user interface (GUI) that runs exclusively on the mobile device is necessary in cases where the project’s goal statement also includes such a task. This paper examines different proposed solutions for porting computer algorithms obtained through rapid development into a GUI-based smartphone Android app and evaluates their feasibilities. Accordingly, the feasible methods are tested and a short success report is given for each tested method.

Keywords: SMARTNAVI, Smartphone, App, Programming languages, Rapid Development, MATLAB, Octave, C/C++, Java, Android, NDK, SDK, Linux, Ubuntu, Emulation, GUI

Procedia PDF Downloads 466
1070 Study of Error Analysis and Sources of Uncertainty in the Measurement of Residual Stresses by the X-Ray Diffraction

Authors: E. T. Carvalho Filho, J. T. N. Medeiros, L. G. Martinez

Abstract:

Residual stresses are self equilibrating in a rigid body that acts on the microstructure of the material without application of an external load. They are elastic stresses and can be induced by mechanical, thermal and chemical processes causing a deformation gradient in the crystal lattice favoring premature failure in mechanicals components. The search for measurements with good reliability has been of great importance for the manufacturing industries. Several methods are able to quantify these stresses according to physical principles and the response of the mechanical behavior of the material. The diffraction X-ray technique is one of the most sensitive techniques for small variations of the crystalline lattice since the X-ray beam interacts with the interplanar distance. Being very sensitive technique is also susceptible to variations in measurements requiring a study of the factors that influence the final result of the measurement. Instrumental, operational factors, form deviations of the samples and geometry of analyzes are some variables that need to be considered and analyzed in order for the true measurement. The aim of this work is to analyze the sources of errors inherent to the residual stress measurement process by X-ray diffraction technique making an interlaboratory comparison to verify the reproducibility of the measurements. In this work, two specimens were machined, differing from each other by the surface finishing: grinding and polishing. Additionally, iron powder with particle size less than 45 µm was selected in order to be a reference (as recommended by ASTM E915 standard) for the tests. To verify the deviations caused by the equipment, those specimens were positioned and with the same analysis condition, seven measurements were carried out at 11Ψ tilts. To verify sample positioning errors, seven measurements were performed by positioning the sample at each measurement. To check geometry errors, measurements were repeated for the geometry and Bragg Brentano parallel beams. In order to verify the reproducibility of the method, the measurements were performed in two different laboratories and equipments. The results were statistically worked out and the quantification of the errors.

Keywords: residual stress, x-ray diffraction, repeatability, reproducibility, error analysis

Procedia PDF Downloads 166
1069 Numerical Study on Response of Polymer Electrolyte Fuel Cell (PEFCs) with Defects under Different Load Conditions

Authors: Muhammad Faizan Chinannai, Jaeseung Lee, Mohamed Hassan Gundu, Hyunchul Ju

Abstract:

Fuel cell is known to be an effective renewable energy resource which is commercializing in the present era. It is really important to know about the improvement in performance even when the system faces some defects. This study was carried out to analyze the performance of the Polymer electrolyte fuel cell (PEFCs) under different operating conditions such as current density, relative humidity and Pt loadings considering defects with load changes. The purpose of this study is to analyze the response of the fuel cell system with defects in Balance of Plants (BOPs) and catalyst layer (CL) degradation by maintaining the coolant flow rate as such to preserve the cell temperature at the required level. Multi-Scale Simulation of 3D two-phase PEFC model with coolant was carried out under different load conditions. For detailed analysis and performance comparison, extensive contours of temperature, current density, water content, and relative humidity are provided. The simulation results of the different cases are compared with the reference data. Hence the response of the fuel cell stack with defects in BOP and CL degradations can be analyzed by the temperature difference between the coolant outlet and membrane electrode assembly. The results showed that the Failure of the humidifier increases High-Frequency Resistance (HFR), air flow defects and CL degradation results in the non-uniformity of current density distribution and high cathode activation overpotential, respectively.

Keywords: PEM fuel cell, fuel cell modeling, performance analysis, BOP components, current density distribution, degradation

Procedia PDF Downloads 195
1068 A Study on the Treatment of Municipal Waste Water Using Sequencing Batch Reactor

Authors: Bhaven N. Tandel, Athira Rajeev

Abstract:

Sequencing batch reactor process is a suspended growth process operating under non-steady state conditions which utilizes a fill and draw reactor with complete mixing during the batch reaction step (after filling) and where the subsequent steps of aeration and clarification occur in the same tank. All sequencing batch reactor systems have five steps in common, which are carried out in sequence as follows, (1) fill (2) react (3) settle (sedimentation/clarification) (4) draw (decant) and (5) idle. The study was carried out in a sequencing batch reactor of dimensions 44cmx30cmx70cm with a working volume of 40 L. Mechanical stirrer of 100 rpm was used to provide continuous mixing in the react period and oxygen was supplied by fish tank aerators. The duration of a complete cycle of sequencing batch reactor was 8 hours. The cycle period was divided into different phases in sequence as follows-0.25 hours fill phase, 6 hours react period, 1 hour settling phase, 0.5 hours decant period and 0.25 hours idle phase. The study consisted of two runs, run 1 and run 2. Run 1 consisted of 6 hours aerobic react period and run 2 consisted of 3 hours aerobic react period followed by 3 hours anoxic react period. The influent wastewater used for the study had COD, BOD, NH3-N and TKN concentrations of 308.03±48.94 mg/L, 100.36±22.05 mg/L, 14.12±1.18 mg/L, and 24.72±2.21 mg/L respectively. Run 1 had an average COD removal efficiency of 41.28%, BOD removal efficiency of 56.25%, NH3-N removal efficiency of 86.19% and TKN removal efficiency of 54.4%. Run 2 had an average COD removal efficiency of 63.19%, BOD removal efficiency of 73.85%, NH3-N removal efficiency of 90.74% and TKN removal efficiency of 65.25%. It was observed that run 2 gave better performance than run 1 in the removal of COD, BOD and TKN.

Keywords: municipal waste water, aerobic, anoxic, sequencing batch reactor

Procedia PDF Downloads 527
1067 Relationship between Left Ventricle Position and Hemodynamic Parameters during Cardiopulmonary Resuscitation in a Pig Model

Authors: Hyun Chang Kim, Yong Hun Jung, Kyung Woon Jeung

Abstract:

Background: From the viewpoint of cardiac pump theory, the area of the left ventricle (LV) subjected to compression increases as the LV lies closer to the sternum, possibly resulting in higher blood flow in patients with LV closer to the sternum. However, no study has evaluated LV position during cardiac arrest or its relationship with hemodynamic parameters during cardiopulmonary resuscitation (CPR). The objectives of this study were to determine whether the position of the LV relative to the anterior-posterior axis representing the direction of chest compression shifts during cardiac arrest and to examine the relationship between LV position and hemodynamic parameters during CPR. Methods: Subcostal view echocardiograms were obtained from 15 pigs with the transducer parallel to the long axis of the sternum before inducing ventricular fibrillation (VF) and during cardiac arrest. Computed tomography was performed in three pigs to objectively observe LV position during cardiac arrest. LV position parameters including the shortest distance between the anterior-posterior axis and the mid-point of the LV chamber (DAP-MidLV), the shortest distance between the anterior-posterior axis and the LV apex (DAP-Apex), and the area fraction of the LV located on the right side of the anterior-posterior axis (LVARight/LVATotal) were measured. Results: DAP-MidLV, DAP-Apex, and LVARight/LVATotal decreased progressively during untreated VF and basic life support (BLS), and then increased during advanced cardiovascular life support (ACLS). A repeated measures analysis of variance revealed significant time effects for these parameters. During BLS, the end-tidal carbon dioxide and systolic right atrial pressure were significantly correlated with the LV position parameters. During ACLS, systolic arterial pressure and systolic right atrial pressure were significantly correlated with DAP-MidLV and DAP-Apex. Conclusions: LV position changed significantly during cardiac arrest compared to the pre-arrest baseline. LV position during CPR had significant correlations with hemodynamic parameters.

Keywords: heart arrest, cardiopulmonary resuscitation, heart ventricle, hemodynamics

Procedia PDF Downloads 172
1066 Environment and Social Management Strategy at Kuwait Integrated Petroleum Industries Company

Authors: Hannan Al-Qanai, Haitham Mustafa, Rajeswaran Sivasankar

Abstract:

Kuwait Integrated Petroleum Industries Company (KIPIC, Company), established in 2016 as a subsidiary to Kuwait Petroleum Corporation (KPC), is responsible for operating and managing the largest grassroots integrated complex for refining, petrochemicals manufacture businesses, and liquefied natural gas import facilities at Al-Zour, Kuwait. KIPIC and its Contractors/sub-contractors employ over 69,000 staff in its current projects at Al-Zour during peak construction activity. KIPIC holds a unique responsibility to the society, which includes all stakeholders, and demonstrates its social commitment in developing an integrated environment & social management system (ESMS) and ensuring sustainability. This paper mainly demonstrates the knowledge on corporate branding from a corporate social responsibility (CSR) perspective and presents the achievements and best practices of KIPIC in the field of CSR and the challenges faced in handling social issues. Moreover, the study is based on qualitative data abstracted from KIPIC Health, Safety, Security & Environment Management System (HSSE MS) procedures, audit reports, the outcome of counseling sessions, national and international laws and regulations, and International Guidelines on Environment and Social Management System (ESMS). KIPIC has committed to caring for the environmental concerns and acting on social as they do on profits and economic growth. The main findings of this paper are that the successful implementation and operationalization of CSR within an organization depends on a simple but stringent process with both top-down and bottom-up commitment.

Keywords: welfare, corporate social responsibility, social management, sustainability

Procedia PDF Downloads 196
1065 Corrosion Mitigation in Gas Facilities Piping Through the Use of FBE Coated Pipes and Corrosion Resistant Alloy Girth Welds

Authors: Fadi Chammas, Saad Alkhaldi, Tariq Alghamdi, Stefano Alexandirs

Abstract:

The operating conditions and corrosive nature of the process fluid in the Haradh and Hawiyah areas are subjecting facility piping to undesirable corrosion phenomena. Therefore, production headers inside remote headers have been internally cladded with high alloy material to mitigate the corrosion damage mechanism. Corrosion mitigation in the jump-over lines, constructed between the existing flowlines and the newly constructed facilities to provide operational flexibility, is proposed. This corrosion mitigation system includes the application of fusion bond epoxy (FBE) coating on the internal surface of the pipe and depositing corrosion-resistant alloy (CRA) weld layers at pipe and fittings ends to protect the carbon steel material. In addition, high alloy CRA weld material is used to deposit the girth weld between the 90-degree elbows and mating internally coated segments. A rigorous testing and qualification protocol was established prior to actual adoption at the Haradh and Hawiyah Field Gas Compression Program, currently being executed by Saudi Aramco. The proposed mitigation system, aimed at applying the cladding at the ends of the internally FBE coated pipes/elbows, will resolve field joint coating challenges, eliminate the use of approximately (1700) breakout flanges, and prevent the potential hydrocarbon leaks.

Keywords: pipelines, corrosion, cost-saving, project completion

Procedia PDF Downloads 104
1064 Direct Cost of Anesthesia in Traumatic Patients with Massive Bleeding: A Prospective Micro-Costing Study

Authors: Asamaporn Puetpaiboon, Sunisa Chatmongkolchart, Nalinee Kovitwanawong, Osaree Akaraborworn

Abstract:

Traumatic patients with massive bleeding require intensive resuscitation. The actual cost of anesthesia per case has never been clarified, so our study aimed to quantify the direct cost, and cost-to-charge ratio of anesthetic care in traumatic patients with intraoperative massive bleeding. This study was a prospective, observational, cost analysis study, conducted in Prince of Songkla University hospital, Thailand, with traumatic patients, of any mechanisms being recruited. Massive bleeding was defined as estimated blood loss of at least one blood volume in 24 hours, or a half of blood volume in 3 hours. The cost components were identified by the micro-costing method, and valued by the bottom-up approach. The direct cost was divided into 4 categories: the labor cost, the capital cost, the material cost and the cost of drugs. From September 2017 to August 2018, 10 patients with multiple injuries were included. Seven patients had motorcycle accidents, two patients fell from a height and another one was in a minibus accident. Two patients died on the operating table, and another two died within 48 hours. The median Sequential Organ Failure Assessment (SOFA) score was 8. The median intraoperative blood loss was 3,500 ml. The median direct cost, per case, was 250 United States Dollars (2017 exchange rate), and the cost-to-charge ratio was 0.53. In summary, the direct cost was nearly half of the hospital charge, for these traumatic patients with massive bleeding. However, our study did not analyze the indirect cost.

Keywords: cost, cost-to-charge ratio, micro-costing, trauma

Procedia PDF Downloads 131
1063 Joint Replenishment and Heterogeneous Vehicle Routing Problem with Cyclical Schedule

Authors: Ming-Jong Yao, Chin-Sum Shui, Chih-Han Wang

Abstract:

This paper is developed based on a real-world decision scenario that an industrial gas company that applies the Vendor Managed Inventory model and supplies liquid oxygen with a self-operated heterogeneous vehicle fleet to hospitals in nearby cities. We name it as a Joint Replenishment and Heterogeneous Vehicle Routing Problem with Cyclical Schedule and formulate it as a non-linear mixed-integer linear programming problem which simultaneously determines the length of the planning cycle (PC), the length of the replenishment cycle and the dates of replenishment for each customer and the vehicle routes of each day within PC, such that the average daily operation cost within PC, including inventory holding cost, setup cost, transportation cost, and overtime labor cost, is minimized. A solution method based on genetic algorithm, embedded with an encoding and decoding mechanism and local search operators, is then proposed, and the hash function is adopted to avoid repetitive fitness evaluation for identical solutions. Numerical experiments demonstrate that the proposed solution method can effectively solve the problem under different lengths of PC and number of customers. The method is also shown to be effective in determining whether the company should expand the storage capacity of a customer whose demand increases. Sensitivity analysis of the vehicle fleet composition shows that deploying a mixed fleet can reduce the daily operating cost.

Keywords: cyclic inventory routing problem, joint replenishment, heterogeneous vehicle, genetic algorithm

Procedia PDF Downloads 63
1062 Evaluation of Chemoprotective Effect of NBRIQU16 against N-Methyl-N-Nitro-N-Nitrosoguanidine and NaCl-Induced Gastric Carcinomas in Wistar Rats

Authors: Lubna Azmi, Ila Shukla, Shyam Sundar Gupta, Padam Kant, C. V. Rao

Abstract:

To investigate the chemoprotective potential of NBRIQU16 chemotype isolated from Argyreia speciosa (Family: Convolvulaceae) on N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and NaCl-induced gastric carcinomas in Wistar rats. Forty-six male 6-week-old Wistar rats were divided into two groups. Thirty rats in group A were fed with a diet supplemented with 8 % NaCl for 20 weeks and simultaneously given N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) in drinking water at a concentration of 100 ug/ml for the first 17 weeks. After administration of the carcinogen, 200 and 400 mg/kg of NBRIQU16 were administered orally once a day throughout the study. From week 18, these rats were given normal water. From week 21, these rats were fed with a normal diet for 15 weeks. Group B containing 16 rats was fed standard diet for thirty-five days. It served as control. Ten rats from group A were sacrificed after 20 weeks. Scarification of remaining animals was conducted after 35 weeks. Entire stomach and some part of the duodenum were incised parallel to the greater curvature, and the samples were collected. After opening the stomach location and size of tumors were recorded. The number of tumors with their locations and sizes were recorded. Expression of survivin was examined by recording the Immunohistochemistry of the specimens. The treatment with NBRIQU16 significantly reduced the nodule incidence and nodule multiplicity in the rats after MNNG administration. Surviving expression in glandular stomachs of normal rats, of rats in middle induction period, in adenocarcinomas and NBRIQU16 treated tissues adjacent to tumor were 0, 42.0 %, 79.3%, and 36.4 %, respectively. Expression of survivin was significantly different as compared to the normal rats. Histological observations of stomach tissues too correlated with the biochemical observations.These finding powerfully supports that NBRIQU16 chemopreventive effect by suppressing the tumor burden and restoring the activities of gastric cancer marker enzymes on MNNG and NaCl-induced gastric carcinomas in Wistar rats.

Keywords: Argyreia speciosa, gastric carcinoma, immunochemistry, NBRIQU16

Procedia PDF Downloads 278
1061 A Comparative Study of Substituted Li Ferrites Sintered by the Conventional and Microwave Sintering Technique

Authors: Ibetombi Soibam

Abstract:

Li-Zn-Ni ferrite having the compositional formula Li0.4-0.5xZn0.2NixFe2.4-0.5xO4 where x = 0.02 ≤ x ≤0.1 in steps of 0.02 was fabricated by the citrate precursor method. In this method, metal nitrates and citric acid was used to prepare the gel which exhibit self-propagating combustion behavior giving the required ferrite sample. The ferrite sample was given a pre-firing at 650°C in a programmable conventional furnace for 3 hours with a heating rate of 5°C/min. A series of the sample was finally given conventional sintering (CS) at 1040°C after the pre-firing process. Another series was given microwave sintering (MS) at 1040°C in a programmable microwave furnace which uses a single magnetron operating at 2.45 GHz frequency. X- ray diffraction pattern confirmed the spinel phase structure for both the series. The theoretical and experimental density was calculated. It was observed that densification increases with the increase in Ni concentration in both the series. However, samples sintered by microwave technique was found to be denser. The microstructure of the two series of the sample was examined using scanning electron microscopy (SEM). Dielectric properties have been investigated as a function of frequency and composition for both series of samples sintered by CS and MS technique. The variation of dielectric constant with frequency show dispersion for both the series. It was explained in terms of Koop’s two layer model. From the analysis of dielectric measurement, it was observed that the value of room temperature dielectric constant decreases with the increase in Ni concentration for both the series. The microwave sintered samples show a lower dielectric constant making microwave sintering suitable for high-frequency applications. The possible mechanisms contributing to all the above behavior is being discussed.

Keywords: citrate precursor, dielectric constant, ferrites, microwave sintering

Procedia PDF Downloads 389
1060 Investigation of the Operational Principle and Flow Analysis of a Newly Developed Dry Separator

Authors: Sung Uk Park, Young Su Kang, Sangmo Kang, Young Kweon Suh

Abstract:

Mineral product, waste concrete (fine aggregates), waste in the optical field, industry, and construction employ separators to separate solids and classify them according to their size. Various sorting machines are used in the industrial field such as those operating under electrical properties, centrifugal force, wind power, vibration, and magnetic force. Study on separators has been carried out to contribute to the environmental industry. In this study, we perform CFD analysis for understanding the basic mechanism of the separation of waste concrete (fine aggregate) particles from air with a machine built with a rotor with blades. In CFD, we first performed two-dimensional particle tracking for various particle sizes for the model with 1 degree, 1.5 degree, and 2 degree angle between each blade to verify the boundary conditions and the method of rotating domain method to be used in 3D. Then we developed 3D numerical model with ANSYS CFX to calculate the air flow and track the particles. We judged the capability of particle separation for given size by counting the number of particles escaping from the domain toward the exit among 10 particles issued at the inlet. We confirm that particles experience stagnant behavior near the exit of the rotating blades where the centrifugal force acting on the particles is in balance with the air drag force. It was also found that the minimum particle size that can be separated by the machine with the rotor is determined by its capability to stay at the outlet of the rotor channels.

Keywords: environmental industry, separator, CFD, fine aggregate

Procedia PDF Downloads 580
1059 Distant Speech Recognition Using Laser Doppler Vibrometer

Authors: Yunbin Deng

Abstract:

Most existing applications of automatic speech recognition relies on cooperative subjects at a short distance to a microphone. Standoff speech recognition using microphone arrays can extend the subject to sensor distance somewhat, but it is still limited to only a few feet. As such, most deployed applications of standoff speech recognitions are limited to indoor use at short range. Moreover, these applications require air passway between the subject and the sensor to achieve reasonable signal to noise ratio. This study reports long range (50 feet) automatic speech recognition experiments using a Laser Doppler Vibrometer (LDV) sensor. This study shows that the LDV sensor modality can extend the speech acquisition standoff distance far beyond microphone arrays to hundreds of feet. In addition, LDV enables 'listening' through the windows for uncooperative subjects. This enables new capabilities in automatic audio and speech intelligence, surveillance, and reconnaissance (ISR) for law enforcement, homeland security and counter terrorism applications. The Polytec LDV model OFV-505 is used in this study. To investigate the impact of different vibrating materials, five parallel LDV speech corpora, each consisting of 630 speakers, are collected from the vibrations of a glass window, a metal plate, a plastic box, a wood slate, and a concrete wall. These are the common materials the application could encounter in a daily life. These data were compared with the microphone counterpart to manifest the impact of various materials on the spectrum of the LDV speech signal. State of the art deep neural network modeling approaches is used to conduct continuous speaker independent speech recognition on these LDV speech datasets. Preliminary phoneme recognition results using time-delay neural network, bi-directional long short term memory, and model fusion shows great promise of using LDV for long range speech recognition. To author’s best knowledge, this is the first time an LDV is reported for long distance speech recognition application.

Keywords: covert speech acquisition, distant speech recognition, DSR, laser Doppler vibrometer, LDV, speech intelligence surveillance and reconnaissance, ISR

Procedia PDF Downloads 160
1058 Dry Season Rice Production along Hadejia Valley Irrigation Scheme in Auyo Local Government Area in Jigawa State

Authors: Saifullahi Umar, Baba Mamman Yarima, Mohammed Bello Usman, Hassan Mohammed

Abstract:

This study was conducted along with the Hadejia valley project irrigation under the Hadejia-Jama’are River Basin Development Authority (HRBDA) in Jigawa State. The multi-stage sampling procedure was used to select 72 rice farmers operating along with the Hadejia Valley Irrigation Project. Data for the study were collected using a structured questionnaire. The analytical tools employed for the study were descriptive statistics and Farm budget technique. The result shows that 55% of the farmers were between 31-40 years of age, 66.01% were male, and the result also revealed that the total cost of cultivation of an acre of land for rice production during the dry season was N73,900 with input cost accounting for 63.59% of the total cost of production. The gross return was N332,500, with a net return of N258,600 per acre. The estimated benefit-cost ratio of 3.449 indicates the strong performance of the dry season rice production. The leading constraints to dry season rice production were low access to quality extension services, low access to finance, poor quality fertilizers, and poor prices. The study, therefore, concludes that dry season rice production is a profitable enterprise in the study area hence, to productivity the farmers should be linked to effective extension service delivery institutions, expanding their access to productive sources of finances, the government should strengthen fertilizer quality control measures and comprehensive market linkages for the farmers.

Keywords: Auyo, dry season, Hadejia Valley, rice

Procedia PDF Downloads 144
1057 Kriging-Based Global Optimization Method for Bluff Body Drag Reduction

Authors: Bingxi Huang, Yiqing Li, Marek Morzynski, Bernd R. Noack

Abstract:

We propose a Kriging-based global optimization method for active flow control with multiple actuation parameters. This method is designed to converge quickly and avoid getting trapped into local minima. We follow the model-free explorative gradient method (EGM) to alternate between explorative and exploitive steps. This facilitates a convergence similar to a gradient-based method and the parallel exploration of potentially better minima. In contrast to EGM, both kinds of steps are performed with Kriging surrogate model from the available data. The explorative step maximizes the expected improvement, i.e., favors regions of large uncertainty. The exploitive step identifies the best location of the cost function from the Kriging surrogate model for a subsequent weight-biased linear-gradient descent search method. To verify the effectiveness and robustness of the improved Kriging-based optimization method, we have examined several comparative test problems of varying dimensions with limited evaluation budgets. The results show that the proposed algorithm significantly outperforms some model-free optimization algorithms like genetic algorithm and differential evolution algorithm with a quicker convergence for a given budget. We have also performed direct numerical simulations of the fluidic pinball (N. Deng et al. 2020 J. Fluid Mech.) on three circular cylinders in equilateral-triangular arrangement immersed in an incoming flow at Re=100. The optimal cylinder rotations lead to 44.0% net drag power saving with 85.8% drag reduction and 41.8% actuation power. The optimal results for active flow control based on this configuration have achieved boat-tailing mechanism by employing Coanda forcing and wake stabilization by delaying separation and minimizing the wake region.

Keywords: direct numerical simulations, flow control, kriging, stochastic optimization, wake stabilization

Procedia PDF Downloads 89
1056 The Effect of Sulfur and Calcium on the Formation of Dioxin in a Bubbling Fluidized Bed Incinerator

Authors: Chien-Song Chyang, Wei-Chih Wang

Abstract:

For the incineration process, the inhibition of dioxin formation is an important issue. Many investigations indicate that adding sulfur compounds in the combustion process can be an effectively inhibition for the dioxin formation. In the process, the ratio of sulfur-to-chlorine plays an important role for the reduction efficiency of dioxin formation. Ca-base sorbent is also a common used for the acid gas removing. Moreover, that is also the indirectly way for dioxin inhibition. Although sulfur and calcium can reduce the dioxin formation, it still have some confusion exists between these additives. To understand and clarify the relationship between the dioxin and simultaneous addition of sulfur and calcium are presented in this study. The experimental data conducted in a pilot scale fluidized bed combustion system at various operating conditions are analysis comprehensively. The focus is on the dioxin of fly ash in this study. The experimental data in this study showed that the PCDD/Fs concentration in the fly ash collected from the baghouse is increased slightly as the simultaneous addition of sulfur and calcium. This work described the CO concentration with the addition of sulfur and calcium at the freeboard temperature from 800°C to 900°C, which is raised by the fuel complexity. The positive correlation exists between the dioxin concentration and CO concentration and carbon contained in the fly ash.. At the same sulfur/chlorine ratio, the toxic equivalent quantity (TEQ) can be reduced by increasing the actual concentration of sulfur and calcium. The homologue profiles showed that the P₅CDD and P₅CDF were the two major sources for the toxicity of dioxin. 2,3,7,8-TCDD and 2,3,7,8-TCDF reduced by the addition of pyrite and hydrated lime. The experimental results showed that the trend of PCDD/Fs concentration in the fly ash was different by the different sulfur/chlorine ratio with the addition of sulfur at 800°C.

Keywords: reduction of dioxin emissions, sulfur-to-chlorine ratio, de-chlorination, Ca-based sorbent

Procedia PDF Downloads 135
1055 Determinants of Access to Finance to All Enterprise

Authors: Dilang Thouk Tharjiath

Abstract:

This study seeks to examine determinants of access to finance: the case of micro and small enterprises in bonga town. It identifies the sector as the key to unlocking the economic potentials of the country. For the achievement of the objective of the study simple random and stratified sampling has been used to select 179 respondents, primary and secondary data were used, primary data were collected through face to face interview and preparing questionnaire and secondary data were collected through reviewing firms record and reports, quantitative research approach were used and the data obtained were analyzed using descriptive research design. Access to finance is one of the key obstacles of MSE’s not only when starting the business project but also when operating. Identifying the major determinants of access to finance is therefore quite crucial. Based on descriptive result the financiers specially formal financiers tend to grant credit easily for enterprises which are located near to town, having operators with higher educational level, experienced and with a positive attitudes towards or fulfill their lending procedures, and a firm having collateralized asset, prepare business plan, maintain accounting practice ,large and old enough. Finally the study recommended that As Educational level of entrepreneurs has significant effect on access to credit from bank and the managers or owners education level is low in Bonga town the concerned bodies of both the government and non-governmental institutions in collaboration with Bonga town MSE development office are recommended to create awareness and facilitate the provision of additional training for those with lower educational level.

Keywords: credit, entrepreneur, enterprise, manager

Procedia PDF Downloads 78
1054 Temporal and Spatial Distribution Prediction of Patinopecten yessoensis Larvae in Northern China Yellow Sea

Authors: RuiJin Zhang, HengJiang Cai, JinSong Gui

Abstract:

It takes Patinopecten yessoensis larvae more than 20 days from spawning to settlement. Due to the natural environmental factors such as current, Patinopecten yessoensis larvae are transported to a distance more than hundreds of kilometers, leading to a high instability of their spatial and temporal distribution and great difficulties in the natural spat collection. Therefore predicting the distribution is of great significance to improve the operating efficiency of the collecting. Hydrodynamic model of Northern China Yellow Sea was established and the motions equations of physical oceanography and verified by the tidal harmonic constants and the measured data velocities of Dalian Bay. According to the passivity drift characteristics of the larvae, combined with the hydrodynamic model and the particle tracking model, the spatial and temporal distribution prediction model was established and the spatial and temporal distribution of the larvae under the influence of flow and wind were simulated. It can be concluded from the model results: ocean currents have greatest impacts on the passive drift path and diffusion of Patinopecten yessoensis larvae; the impact of wind is also important, which changed the direction and speed of the drift. Patinopecten yessoensis larvae were generated in the sea along Zhangzi Island and Guanglu-Dachangshan Island, but after two months, with the impact of wind and currents, the larvae appeared in the west of Dalian and the southern of Lvshun, and even in Bohai Bay. The model results are consistent with the relevant literature on qualitative analysis, and this conclusion explains where the larvae come from in the perspective of numerical simulation.

Keywords: numerical simulation, Patinopecten yessoensis larvae, predicting model, spatial and temporal distribution

Procedia PDF Downloads 289
1053 Numerical Simulation of the Flowing of Ice Slurry in Seawater Pipe of Polar Ships

Authors: Li Xu, Huanbao Jiang, Zhenfei Huang, Lailai Zhang

Abstract:

In recent years, as global warming, the sea-ice extent of North Arctic undergoes an evident decrease and Arctic channel has attracted the attention of shipping industry. Ice crystals existing in the seawater of Arctic channel which enter the seawater system of the ship with the seawater were found blocking the seawater pipe. The appearance of cooler paralysis, auxiliary machine error and even ship power system paralysis may be happened if seriously. In order to reduce the effect of high temperature in auxiliary equipment, seawater system will use external ice-water to participate in the cooling cycle and achieve the state of its flow. The distribution of ice crystals in seawater pipe can be achieved. As the ice slurry system is solid liquid two-phase system, the flow process of ice-water mixture is very complex and diverse. In this paper, the flow process in seawater pipe of ice slurry is simulated with fluid dynamics simulation software based on k-ε turbulence model. As the ice packing fraction is a key factor effecting the distribution of ice crystals, the influence of ice packing fraction on the flowing process of ice slurry is analyzed. In this work, the simulation results show that as the ice packing fraction is relatively large, the distribution of ice crystals is uneven in the flowing process of the seawater which has such disadvantage as increase the possibility of blocking, that will provide scientific forecasting methods for the forming of ice block in seawater piping system. It has important significance for the reliability of the operating of polar ships in the future.

Keywords: ice slurry, seawater pipe, ice packing fraction, numerical simulation

Procedia PDF Downloads 351
1052 Evaluation of Liquid Fermentation Strategies to Obtain a Biofertilizer Based on Rhizobium sp.

Authors: Andres Diaz Garcia, Ana Maria Ceballos Rojas, Duvan Albeiro Millan Montano

Abstract:

This paper describes the initial technological development stages in the area of liquid fermentation required to reach the quantities of biomass of the biofertilizer microorganism Rhizobium sp. strain B02, for the application of the unitary stages downstream at laboratory scale. In the first stage, the adjustment and standardization of the fermentation process in conventional batch mode were carried out. In the second stage, various fed-batch and continuous fermentation strategies were evaluated in 10L-bioreactor in order to optimize the yields in concentration (Colony Forming Units/ml•h) and biomass (g/l•h), to make feasible the application of unit operations downstream of process. The growth kinetics, the evolution of dissolved oxygen and the pH profile generated in each of the strategies were monitored and used to make sequential adjustments. Once the fermentation was finished, the final concentration and viability of the obtained biomass were determined and performance parameters were calculated with the purpose of select the optimal operating conditions that significantly improved the baseline results. Under the conditions adjusted and standardized in batch mode, concentrations of 6.67E9 CFU/ml were reached after 27 hours of fermentation and a subsequent noticeable decrease was observed associated with a basification of the culture medium. By applying fed-batch and continuous strategies, significant increases in yields were achieved, but with similar concentration levels, which involved the design of several production scenarios based on the availability of equipment usage time and volume of required batch.

Keywords: biofertilizer, liquid fermentation, Rhizobium sp., standardization of processes

Procedia PDF Downloads 161
1051 Wind Turbine Scaling for the Investigation of Vortex Shedding and Wake Interactions

Authors: Sarah Fitzpatrick, Hossein Zare-Behtash, Konstantinos Kontis

Abstract:

Traditionally, the focus of horizontal axis wind turbine (HAWT) blade aerodynamic optimisation studies has been the outer working region of the blade. However, recent works seek to better understand, and thus improve upon, the performance of the inboard blade region to enhance power production, maximise load reduction and better control the wake behaviour. This paper presents the design considerations and characterisation of a wind turbine wind tunnel model devised to further the understanding and fundamental definition of horizontal axis wind turbine root vortex shedding and interactions. Additionally, the application of passive and active flow control mechanisms – vortex generators and plasma actuators – to allow for the manipulation and mitigation of unsteady aerodynamic behaviour at the blade inboard section is investigated. A static, modular blade wind turbine model has been developed for use in the University of Glasgow’s de Havilland closed return, low-speed wind tunnel. The model components - which comprise of a half span blade, hub, nacelle and tower - are scaled using the equivalent full span radius, R, for appropriate Mach and Strouhal numbers, and to achieve a Reynolds number in the range of 1.7x105 to 5.1x105 for operational speeds up to 55m/s. The half blade is constructed to be modular and fully dielectric, allowing for the integration of flow control mechanisms with a focus on plasma actuators. Investigations of root vortex shedding and the subsequent wake characteristics using qualitative – smoke visualisation, tufts and china clay flow – and quantitative methods – including particle image velocimetry (PIV), hot wire anemometry (HWA), and laser Doppler anemometry (LDA) – were conducted over a range of blade pitch angles 0 to 15 degrees, and Reynolds numbers. This allowed for the identification of shed vortical structures from the maximum chord position, the transitional region where the blade aerofoil blends into a cylindrical joint, and the blade nacelle connection. Analysis of the trailing vorticity interactions between the wake core and freestream shows the vortex meander and diffusion is notably affected by the Reynold’s number. It is hypothesized that the shed vorticity from the blade root region directly influences and exacerbates the nacelle wake expansion in the downstream direction. As the design of inboard blade region form is, by necessity, driven by function rather than aerodynamic optimisation, a study is undertaken for the application of flow control mechanisms to manipulate the observed vortex phenomenon. The designed model allows for the effective investigation of shed vorticity and wake interactions with a focus on the accurate geometry of a root region which is representative of small to medium power commercial HAWTs. The studies undertaken allow for an enhanced understanding of the interplay of shed vortices and their subsequent effect in the near and far wake. This highlights areas of interest within the inboard blade area for the potential use of passive and active flow control devices which contrive to produce a more desirable wake quality in this region.

Keywords: vortex shedding, wake interactions, wind tunnel model, wind turbine

Procedia PDF Downloads 220
1050 Characterization of High Phosphorus Gray Iron for the Stub- Anode Connection in the Aluminium Reduction Cells

Authors: Mohamed M. Ali, Adel Nofal, Amr Kandil, Mahmoud Agour

Abstract:

High phosphorus gray iron (HPGI) is used to connect the steel stub of an anode rod to a prebaked anode carbon block in the aluminium reduction cells. In this paper, a complete characterization for HPGI was done, includes studying the chemical composition of the HPGI collar, anodic voltage drop, collar temperature over 30 days anode life cycle, microstructure and mechanical properties. During anode life cycle, the carbon content in HPGI was lowed from 3.73 to 3.38%, and different changes in the anodic voltage drop at the stub- collar-anode connection were recorded. The collar temperature increases over the anode life cycle and reaches to 850°C in four weeks after anode changing. Significant changes in the HPGI microstructure were observed after 3 and 30 days from the anode changing. To simulate the actual operating conditions in the steel stub/collar/carbon anode connection, a bench-scale experimental set-up was designed and used for electrical resistance and resistivity respectively. The results showed the current HPGI properties needed to modify or producing new alloys with excellent electrical and mechanical properties. The steel stub and HPGI thermal expansion were measured and studied. Considerable permanent expansion was observed for the HPGI collar after the completion of the heating-cooling cycle.

Keywords: high phosphorus gray iron (HPGI), aluminium reduction cells, anodic voltage drop, microstructure, mechanical and electrical properties

Procedia PDF Downloads 438
1049 The Advancement of Environmental Impact Assessment for 5th Transmission Natural Gas Pipeline Project in Thailand

Authors: Penrug Pengsombut, Worawut Hamarn, Teerawuth Suwannasri, Kittiphong Songrukkiat, Kanatip Ratanachoo

Abstract:

PTT Public Company Limited or simply PTT has played an important role in strengthening national energy security of the Kingdom of Thailand by transporting natural gas to customers in power, industrial and commercial sectors since 1981. PTT has been constructing and operating natural gas pipeline system of over 4,500-km network length both onshore and offshore laid through different area classifications i.e., marine, forest, agriculture, rural, urban, and city areas. During project development phase, an Environmental Impact Assessment (EIA) is conducted and submitted to the Office of Natural Resources and Environmental Policy and Planning (ONEP) for approval before project construction commencement. Knowledge and experiences gained and revealed from EIA in the past projects definitely are developed to further advance EIA study process for newly 5th Transmission Natural Gas Pipeline Project (5TP) with approximately 415 kilometers length. The preferred pipeline route is selected and justified by SMARTi map, an advance digital one-map platform with consists of multiple layers geographic and environmental information. Sensitive area impact focus (SAIF) is a practicable impact assessment methodology which appropriate for a particular long distance infrastructure project such as 5TP. An environmental modeling simulation is adopted into SAIF methodology for impact quantified in all sensitive areas whereas other area along pipeline right-of-ways is typically assessed as an impact representative. Resulting time and cost deduction is beneficial to project for early start.

Keywords: environmental impact assessment, EIA, natural gas pipeline, sensitive area impact focus, SAIF

Procedia PDF Downloads 382
1048 Uniqueness and Repeatability Analysis for Slim Tube Determined Minimum Miscibility Pressure

Authors: Waqar Ahmad Butt, Gholamreza Vakili Nezhaad, Ali Soud Al Bemani, Yahya Al Wahaibi

Abstract:

Miscible gas injection processes as secondary recovery methods can be applied to a huge number of mature reservoirs to improve the trapped oil displacement. Successful miscible gas injection processes require an accurate estimation of the minimum miscibility pressure (MMP) to make injection process feasible, economical, and effective. There are several methods of MMP determination like slim tube approach, vanishing interfacial tension and rising bubble apparatus but slim tube is the deployed experimental technique in this study. Slim tube method is assumed to be non-standardized for MMP determination with respect to both operating procedure and design. Therefore, 25 slim tube runs were being conducted with three different coil lengths (12, 18 and 24 m) of constant diameter using three different injection rates (0.08, 0.1 and 0.15 cc/min) to evaluate uniqueness and repeatability of determined MMP. A trend of decrease in MMP with increase in coil length was found. No unique trend was found between MMP and injection rate. Lowest MMP and highest recovery were observed with highest coil length and lowest injection rate. It shows that slim tube measured MMP does not depend solely on interacting fluids characteristics but also affected by used coil selection and injection rate choice. Therefore, both slim tube design and procedure need to be standardized. It is recommended to use lowest possible injection rate and estimated coil length depending upon the distance between injections and producing wells for accurate and reliable MMP determination.

Keywords: coil length, injection rate, minimum miscibility pressure, multiple contacts miscibility

Procedia PDF Downloads 235
1047 An Investigation of the Fracture Behavior of Model MgO-C Refractories Using the Discrete Element Method

Authors: Júlia Cristina Bonaldo, Christophe L. Martin, Martiniano Piccico, Keith Beale, Roop Kishore, Severine Romero-Baivier

Abstract:

Refractory composite materials employed in steel casting applications are prone to cracking and material damage because of the very high operating temperature (thermal shock) and mismatched properties of the constituent phases. The fracture behavior of a model MgO-C composite refractory is investigated to quantify and characterize its thermal shock resistance, employing a cold crushing test and Brazilian test with fractographic analysis. The discrete element method (DEM) is used to generate numerical refractory composites. The composite in DEM is represented by an assembly of bonded particle clusters forming perfectly spherical aggregates and single spherical particles. For the stresses to converge with a low standard deviation and a minimum number of particles to allow reasonable CPU calculation time, representative volume element (RVE) numerical packings are created with various numbers of particles. Key microscopic properties are calibrated sequentially by comparing stress-strain curves from crushing experimental data. Comparing simulations with experiments also allows for the evaluation of crack propagation, fracture energy, and strength. The crack propagation during Brazilian experimental tests is monitored with digital image correlation (DIC). Simulations and experiments reveal three distinct types of fracture. The crack may spread throughout the aggregate, at the aggregate-matrix interface, or throughout the matrix.

Keywords: refractory composite, fracture mechanics, crack propagation, DEM

Procedia PDF Downloads 59
1046 Experimental Study of Particle Deposition on Leading Edge of Turbine Blade

Authors: Yang Xiao-Jun, Yu Tian-Hao, Hu Ying-Qi

Abstract:

Breathing in foreign objects during the operation of the aircraft engine, impurities in the aircraft fuel and products of incomplete combustion can produce deposits on the surface of the turbine blades. These deposits reduce not only the turbine's operating efficiency but also the life of the turbine blades. Based on the small open wind tunnel, the simulation of deposits on the leading edge of the turbine has been carried out in this work. The effect of film cooling on particulate deposition was investigated. Based on the analysis, the adhesive mechanism for the molten pollutants’ reaching to the turbine surface was simulated by matching the Stokes number, TSP (a dimensionless number characterizing particle phase transition) and Biot number of the test facility and that of the real engine. The thickness distribution and growth trend of the deposits have been observed by high power microscope and infrared camera under different temperature of the main flow, the solidification temperature of the particulate objects, and the blowing ratio. The experimental results from the leading edge particulate deposition demonstrate that the thickness of the deposition increases with time until a quasi-stable thickness is reached, showing a striking effect of the blowing ratio on the deposition. Under different blowing ratios, there exists a large difference in the thickness distribution of the deposition, and the deposition is minimal at the specific blow ratio. In addition, the temperature of main flow and the solidification temperature of the particulate have a great influence on the deposition.

Keywords: deposition, experiment, film cooling, leading edge, paraffin particles

Procedia PDF Downloads 132
1045 In-Situ Sludge Minimization Using Integrated Moving Bed Biofilm Reactor for Industrial Wastewater Treatment

Authors: Vijay Sodhi, Charanjit Singh, Neelam Sodhi, Puneet P. S. Cheema, Reena Sharma, Mithilesh K. Jha

Abstract:

The management and secure disposal of the biosludge generated from widely commercialized conventional activated sludge (CAS) treatments become a potential environmental issue. Thus, a sustainable technological upgradation to the CAS for sludge yield minimization has recently been gained serious attention of the scientific community. A number of recently reported studies effectively addressed the remedial technological advancements that in monopoly limited to the municipal wastewater. Moreover, the critical review of the literature signifies side-stream sludge minimization as a complex task to maintain. In this work, therefore, a hybrid moving bed biofilm reactor (MBBR) configuration (named as AMOMOX process) for in-situ minimization of the excess biosludge generated from high organic strength tannery wastewater has been demonstrated. The AMOMOX collectively stands for anoxic MBBR (as AM), aerobic MBBR (OM) and an oxic CAS (OX). The AMOMOX configuration involved a combined arrangement of an anoxic MBBR and oxic MBBR coupled with the aerobic CAS. The AMOMOX system was run in parallel with an identical CAS reactor. Both system configurations were fed with same influent to judge the real-time operational changes. For the AMOMOX process, the strict maintenance of operational strategies resulted about 95% removal of NH4-N and SCOD from tannery wastewater. Here, the nourishment of filamentous microbiota and purposeful promotion of cell-lysis effectively sustained sludge yield (Yobs) lowering upto 0.51 kgVSS/kgCOD. As a result, the volatile sludge scarcity apparent in the AMOMOX system succeeded upto 47% reduction of the excess biosludge. The corroborated was further supported by FE-SEM imaging and thermogravimetric analysis. However, the detection of microbial strains habitat underlying extended SRT (23-26 days) of the AMOMOX system would be the matter of further research.

Keywords: tannery wastewater, moving bed biofilm reactor, sludhe yield, sludge minimization, solids retention time

Procedia PDF Downloads 55
1044 Mathematical Modelling and AI-Based Degradation Analysis of the Second-Life Lithium-Ion Battery Packs for Stationary Applications

Authors: Farhad Salek, Shahaboddin Resalati

Abstract:

The production of electric vehicles (EVs) featuring lithium-ion battery technology has substantially escalated over the past decade, demonstrating a steady and persistent upward trajectory. The imminent retirement of electric vehicle (EV) batteries after approximately eight years underscores the critical need for their redirection towards recycling, a task complicated by the current inadequacy of recycling infrastructures globally. A potential solution for such concerns involves extending the operational lifespan of electric vehicle (EV) batteries through their utilization in stationary energy storage systems during secondary applications. Such adoptions, however, require addressing the safety concerns associated with batteries’ knee points and thermal runaways. This paper develops an accurate mathematical model representative of the second-life battery packs from a cell-to-pack scale using an equivalent circuit model (ECM) methodology. Neural network algorithms are employed to forecast the degradation parameters based on the EV batteries' aging history to develop a degradation model. The degradation model is integrated with the ECM to reflect the impacts of the cycle aging mechanism on battery parameters during operation. The developed model is tested under real-life load profiles to evaluate the life span of the batteries in various operating conditions. The methodology and the algorithms introduced in this paper can be considered the basis for Battery Management System (BMS) design and techno-economic analysis of such technologies.

Keywords: second life battery, electric vehicles, degradation, neural network

Procedia PDF Downloads 39
1043 Numerical Analysis of Heat Transfer in Water Channels of the Opposed-Piston Diesel Engine

Authors: Michal Bialy, Marcin Szlachetka, Mateusz Paszko

Abstract:

This paper discusses the CFD results of heat transfer in water channels in the engine body. The research engine was a newly designed Diesel combustion engine. The engine has three cylinders with three pairs of opposed pistons inside. The engine will be able to generate 100 kW mechanical power at a crankshaft speed of 3,800-4,000 rpm. The water channels are in the engine body along the axis of the three cylinders. These channels are around the three combustion chambers. The water channels transfer combustion heat that occurs the cylinders to the external radiator. This CFD research was based on the ANSYS Fluent software and aimed to optimize the geometry of the water channels. These channels should have a maximum flow of heat from the combustion chamber or the external radiator. Based on the parallel simulation research, the boundary and initial conditions enabled us to specify average values of key parameters for our numerical analysis. Our simulation used the average momentum equations and turbulence model k-epsilon double equation. There was also used a real k-epsilon model with a function of a standard wall. The turbulence intensity factor was 10%. The working fluid mass flow rate was calculated for a single typical value, specified in line with the research into the flow rate of automotive engine cooling pumps used in engines of similar power. The research uses a series of geometric models which differ, for instance, in the shape of the cross-section of the channel along the axis of the cylinder. The results are presented as colourful distribution maps of temperature, speed fields and heat flow through the cylinder walls. Due to limitations of space, our paper presents the results on the most representative geometric model only. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A. and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: Ansys fluent, combustion engine, computational fluid dynamics CFD, cooling system

Procedia PDF Downloads 204