Search results for: plastic optical fibers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3260

Search results for: plastic optical fibers

770 Optimization of Highly Oriented Pyrolytic Graphite Crystals for Neutron Optics

Authors: Hao Qu, Xiang Liu, Michael Crosby, Brian Kozak, Andreas K. Freund

Abstract:

The outstanding performance of highly oriented pyrolytic graphite (HOPG) as an optical element for neutron beam conditioning is unequaled by any other crystalline material in the applications of monochromator, analyzer, and filter. This superiority stems from the favorable nuclear properties of carbon (small absorption and incoherent scattering cross-sections, big coherent scattering length) and the specific crystalline structure (small thermal diffuse scattering cross-section, layered crystal structure). The real crystal defect structure revealed by imaging techniques is correlated with the parameters used in the mosaic model (mosaic spread, mosaic block size, uniformity). The diffraction properties (rocking curve width as determined by both the intrinsic mosaic spread and the diffraction process, peak and integrated reflectivity, filter transmission) as a function of neutron wavelength or energy can be predicted with high accuracy and reliability by diffraction theory using empirical primary extinction coefficients extracted from a great amount of existing experimental data. The results of these calculations are given as graphs and tables permitting to optimize HOPG characteristics (mosaic spread, thickness, curvature) for any given experimental situation.

Keywords: neutron optics, pyrolytic graphite, mosaic spread, neutron scattering, monochromator, analyzer

Procedia PDF Downloads 129
769 Modelling of Pipe Jacked Twin Tunnels in a Very Soft Clay

Authors: Hojjat Mohammadi, Randall Divito, Gary J. E. Kramer

Abstract:

Tunnelling and pipe jacking in very soft soils (fat clays), even with an Earth Pressure Balance tunnel boring machine (EPBM), can cause large ground displacements. In this study, the short-term and long-term ground and tunnel response is predicted for twin, pipe-jacked EPBM 3 meter diameter tunnels with a narrow pillar width. Initial modelling indicated complete closure of the annulus gap at the tail shield onto the centrifugally cast, glass-fiber-reinforced, polymer mortar jacking pipe (FRP). Numerical modelling was employed to simulate the excavation and support installation sequence, examine the ground response during excavation, confirm the adequacy of the pillar width and check the structural adequacy of the installed pipe. In the numerical models, Mohr-Coulomb constitutive model with the effect of unloading was adopted for the fat clays, while for the bedrock layer, the generalized Hoek-Brown was employed. The numerical models considered explicit excavation sequences and different levels of ground convergence prior to support installation. The well-studied excavation sequences made the analysis possible for this study on a very soft clay, otherwise, obtaining the convergency in the numerical analysis would be impossible. The predicted results indicate that the ground displacements around the tunnel and its effect on the pipe would be acceptable despite predictions of large zones of plastic behaviour around the tunnels and within the entire pillar between them due to excavation-induced ground movements.

Keywords: finite element modeling (FEM), pipe-jacked tunneling, very soft clay, EPBM

Procedia PDF Downloads 71
768 Determination of the Water Needs of Some Crops Irrigated with Treated Water from the Sidi Khouiled Wastewater Treatment Plant in Ouargla, Algeria

Authors: Dalila Oulhaci, Mehdi Benlarbi, Mohammed Zahaf

Abstract:

The irrigation method is fundamental for maintaining a wet bulb around the roots of the crop. This is the case with localized irrigation, where soil moisture can be maintained permanently around the root system between the two water content extremes. Also, one of the oldest methods used since Roman times throughout North Africa and the Near East is based on the frequent dumping of water into porous pottery vases buried in the ground. In this context, these two techniques have been combined by replacing the pottery vase with plastic bottles filled with sand that discharge water through their perforated walls into the surrounding soil. The first objective of this work is the theoretical determination using CLIMWAT and CROPWAT software of the irrigation doses of some crops (palm, wheat, and onion) and experimental by measuring the humidity of the soil before and after watering. The second objective is to determine the purifying power of the sand filter in the bottle. Based on the CROPWAT software results, the date palm needs 18.5 mm in the third decade of December, 57.2 mm in January, and 73.7 mm in February, whereas the doses received by experimentally determined by means of soil moisture before and after irrigation are 19.5 mm respectively, 79.66 mm and 95.66 mm. The onion needs 14.3 mm in the third decade of December of, 59.1 mm in January, and 80 mm in February, whereas the experimental dose received is 15.07 mm, respectively, 64.54 and 86.8 mm. The total requirements for the vegetative period are estimated at 1642.6 mm for date palms, 277.4 mm for wheat, and 193.5 mm for onions. The removal rate of the majority of pollutants from the bottle is 80%. This work covers, on the one hand, the context of water conservation, sustainable development, and protection of the environment, and on the other, the agricultural field.

Keywords: irrigation, sand, filter, humidity, bottle

Procedia PDF Downloads 52
767 Determination of the Structural Parameters of Calcium Phosphate for Biomedical Use

Authors: María Magdalena Méndez-González, Miguel García Rocha, Carlos Manuel Yermo De la Cruz

Abstract:

Calcium phosphate (Ca5(PO4)3(X)) is widely used in orthopedic applications and is widely used as powder and granules. However, their presence in bone is in the form of nanometric needles 60 nm in length with a non-stoichiometric phase of apatite contains CO3-2, Na+, OH-, F-, and other ions in a matrix of collagen fibers. The crystal size, morphology control and interaction with cells are essential for the development of nanotechnology. The structural results of calcium phosphate, synthesized by chemical precipitation with crystal size of 22.85 nm are presented in this paper. The calcium phosphate powders were analyzed by X-ray diffraction, energy dispersive spectroscopy (EDS), infrared spectroscopy and FT-IR transmission electron microscopy. Network parameters, atomic positions, the indexing of the planes and the calculation of FWHM (full width at half maximum) were obtained. The crystal size was also calculated using the Scherer equation d (hkl) = cλ/βcosѲ. Where c is a constant related to the shape of the crystal, the wavelength of the radiation used for a copper anode is 1.54060Å, Ѳ is the Bragg diffraction angle, and β is the width average peak height of greater intensity. Diffraction pattern corresponding to the calcium phosphate called hydroxyapatite phase of a hexagonal crystal system was obtained. It belongs to the space group P63m with lattice parameters a = 9.4394 Å and c = 6.8861 Å. The most intense peak is obtained 2Ѳ = 31.55 (FWHM = 0.4798), with a preferred orientation in 121. The intensity difference between the experimental data and the calculated values is attributable to the temperature at which the sintering was performed. The intensity of the highest peak is at angle 2Ѳ = 32.11. The structure of calcium phosphate obtained was a hexagonal configuration. The intensity changes in the peaks of the diffraction pattern, in the lattice parameters at the corners, indicating the possible presence of a dopant. That each calcium atom is surrounded by a tetrahedron of oxygen and hydrogen was observed by infrared spectra. The unit cell pattern corresponds to hydroxyapatite and transmission electron microscopic crystal morphology corresponding to the hexagonal phase with a preferential growth along the c-plane was obtained.

Keywords: structure, nanoparticles, calcium phosphate, metallurgical and materials engineering

Procedia PDF Downloads 493
766 Effect of Anisotropy on Steady Creep in a Whisker Reinforced Functionally Graded Composite Disc

Authors: V. K. Gupta, Tejeet Singh

Abstract:

In many whisker reinforced composites, anisotropy may result due to material flow during processing operations such as forging, extrusion etc. The consequence of anisotropy, introduced during processing of disc material, has been investigated on the steady state creep deformations of the rotating disc. The disc material is assumed to undergo plastic deformations according to Hill’s anisotropic criterion. Steady state creep has been analyzed in a constant thickness rotating disc made of functionally graded 6061Al-SiCw (where the subscript ‘w’ stands for whisker) using Hill’s The content of reinforcement (SiCw) in the disc is assumed to decrease linearly from the inner to outer radius. The stresses and strain rates in the disc are estimated by solving the force equilibrium equation along with the constitutive equations describing multi-axial creep. The results obtained for anisotropic FGM disc have been compared with those estimated for isotropic FGM disc having the same average whisker content. The anisotropic constants, appearing in Hill’s yield criterion, have been obtained from the available experimental results. The results show that the presence of anisotropy reduces the tangential stress in the middle of the disc but near the inner and outer radii the tangential stress is higher when compared to isotropic disc. On the other hand, the steady state creep rates in the anisotropic disc are reduced significantly over the entire disc radius, with the maximum reduction observed at the inner radius. Further, in the presence of anisotropy the distribution of strain rate becomes relatively uniform over the entire disc, which may be responsible for reducing the extent of distortion in the disc.

Keywords: anisotropy, creep, functionally graded composite, rotating disc

Procedia PDF Downloads 381
765 Synthesis and Characterization of Un-Doped and Velvet Tamarind Doped ZnS Crystals, Using Sol Gel Method

Authors: Uchechukwu Vincent Okpala

Abstract:

Under the Sun, energy is a key factor for the sustenance of life and its environment. The need to protect the environment as energy is generated and consumed has called for renewable and green energy sources. To be part of this green revolution, we synthesized and characterized undoped and velvet tamarind doped zinc sulfide (ZnS) crystals using sol-gel methods. Velvet tamarind was whittled down using the top-down approach of nanotechnology. Sodium silicate, tartaric acid, zinc nitrate, and thiourea were used as precursors. The grown samples were annealed at 105°C. Structural, optical, and compositional analyses of the grown samples revealed crystalline structures with varied crystallite sizes influenced by doping. Energy-dispersive X-ray spectroscopy confirmed elemental compositions of Zn, S, C and O in the films. Atomic percentages of the elements varied with VT doping. FT-IR analysis indicated the presence of functional groups like O-H stretching (alcohol), C=C=C stretching (alkene group), C=C bending, C-H stretching (alkane), N-H stretching (aliphatic primary amine) and N=C=S stretching (isothiocyanate) constituent in the film. The transmittance of the samples increased from the visible region to the infrared region making the samples good for poultry and solar energy applications. The bandgap energy of the films decreased as the number of VT drops increased, from 2.4 to 2.2. They were wide band gap materials and were good for optoelectronic, photo-thermal, high temperature, high power and solar cell applications.

Keywords: doping, sol-gel, velvet tamarind, ZnS.

Procedia PDF Downloads 37
764 Effect of Substituting Groundnut Cake with Remnant of Food Composite on Survival and Growth of Clarias gariepinus and Oreochromis niloticus Fingerlings

Authors: M. Y. Abubakar, M. Yunisa, A. N. Muhammad

Abstract:

Constraining the production Clarias gariepinus and Oreochromis niloticus culture is the prohibitive cost of feed. We assess the performance of the species fingerlings on diets substituted with composite. Four dietary treatments (0%, 25%, 45%, and 75%) for C. gariepinus and five (0%, 25%, 50%, 75%, and whole food composite) for O. niloticus were formulated and each fed to 15 fingerlings for C. gariepinus and 10 fingerlings for O. niloticus stocked in 75ltrs plastic bowls, replicated trice in a completely randomized design. The experiment lasted 56 days. Percent survival rate was significantly (p < 0.05) higher (57.78 ± 9.69) in C. gariepinus fed diet III. The growth and nutrient utilization indices were least in the fish fed diet IV, which was significantly (p < 0.05) lower than in other treatments. Fish fed dietary treatment III, recorded the best in growth and nutrient utilization indices and was significantly higher (p < 0.05) than those fed dietary treatments I & II which were non-significant (p > 0.05) and higher than those fed 75% substitution. Better profit index was in the fish fed diet with 50% substitution level. For O. niloticus, the survival (172.62 ± 39.03) was significantly higher (p < 0.05) in those fed 25% substituted diet. For growth indices, the least performed were those fed whole composite while other treatments were non-significant (p > 0.05) different from each other. In terms of nutrient utilization, fish fed diet substituted at 0%, 25%, 50% and 75% food composite had similar food conversion ratio and protein efficiency ratio. However, there was no significant difference in the profit index among the whole treatment. It can be concluded that food composite from Sokoto house-holds can optimally replace groundnut cake up to 50% level as a protein source in the diets of Clarias gariepinus and O. niloticus fingerlings without adverse effects on survival, growth, and nutrient utilization.

Keywords: food composite, nutrient utilization, C. gariepinus, O. niloticus household, substitution levels

Procedia PDF Downloads 176
763 Synthesising Highly Luminescent CdTe Quantum Dots Using Cannula Hot Injection Method

Authors: Erdem Elibol, Musa Cadırcı, Nedim Tutkun

Abstract:

Recently, colloidal quantum dots (CQDs) have drawn increasing attention due to their unique size tunability, which makes them potential candidates for numerous applications including photovoltaic, LEDs, and imaging. However, the main challenge to exploit CQDs properly is that there has not been an effective method to produce them with highly crystalline form and narrow size dispersion. Hot injection method is one of the widely used techniques to produce high-quality nanoparticles. In this method, the key parameter is to reduce the time for injection of the precursors into each other, which yields fast and constant nucleation rate and hence to highly monodisperse QDs. In conventional hot injection method, the injection of precursors is carried out using standard lab syringes with long needles. However, this technique is relatively slow and thus will result in poor optical properties in QDs. In this work, highly luminescent CdTe QDs were synthesised by transferring hot precursors into each other using cannula method. Unlike regular syringe technique, with the help of high pressure difference between two precursors’ flasks and wide cross-section of cannula, the hot cannulation process is too short which yields narrow size distribution and high quantum yield of CdTe QDs. Here QDs with full width half maximum (FWHM) of 28 nm was achieved. In addition, the photoluminescence quantum yield of our samples was measured to be about 21 ± 0.9 which is at least twice the previous record values for CdTe QDs wherein syringe was used to transfer precursors.

Keywords: CdTe, hot injection method, luminescent, quantum dots

Procedia PDF Downloads 309
762 Synthesis, Structural, Magnetic, Optical, and Dielectric Characterization of Nickel-Substituted Cobalt Ferrite Nanoparticles and Potential Antibacterial Applications

Authors: Tesfay Gebremicheal Reda, K. Samatha, Paul Douglas Sanasi, D. Parajuli

Abstract:

Nanoparticle technology is fast progressing and is being employed in innumerable medical applications. At this time, the public's health is seriously threatened by the rise of bacterial strains resistant to several medications. Metal nanoparticles are a potential alternate approach for tackling this global concern, and this is the main focus of this study. The citrate precursor sol-gel synthesis method was used to synthesize the Niₓ Co₁₋ₓ Fe₂ O₄, (where x = 0.0:0.2:1.0) nanoparticle. XRD identified the development of the cubic crystal structure to have a preferential orientation along (311), and the average particle size was found to be 29-38 nm. The average crystallizes assessed with ImageJ software and origin 22 of the SEM are nearly identical to the XRD results. In the created NCF NPs, the FT-IR spectroscopy reveals structural examinations and the redistribution of cations between octahedral (505-428 cm⁻¹) and tetrahedral (653-603 cm⁻¹) locales. As the Co²⁺ cation is substituted with Ni²⁺, the coercive fields HC decrease from 2384 Oe to 241.93 Oe. Band gap energy rises as Ni concentration increases, which may be attributed to the fact that the ionic radii of Ni²⁺ ions are smaller than that of Co²⁺ ions, which results in a strong electrostatic interaction. On the contrary, except at x = 0.4, the dielectric constant decreases as the nickel concentration increases. According to the findings of this research work, nanoparticles are composed of Ni₀.₄ Co₀.₆ Fe₂ O₄ have demonstrated a promising value against S. aureus and E. coli, and it suggests a proposed model for their potential use as a source of antibacterial agent.

Keywords: antimicrobial, band gap, citrate precursor, dielectric, nanoparticle

Procedia PDF Downloads 54
761 Strengthening of Reinforced Concrete Columns Using Advanced Composite Materials to Resist Earthquakes

Authors: Mohamed Osama Hassaan

Abstract:

Recent earthquakes have demonstrated the vulnerability of older reinforced concrete buildings to fail under imposed seismic loads. Accordingly, the need to strengthen existing reinforced concrete structures, mainly columns, to resist high seismic loads has increased. Conventional strengthening techniques such as using steel plates, steel angles and concrete overlay are used to achieve the required increase in strength or ductility. However, techniques using advanced composite materials are established. The column's splice zone is the most critical zone that failed under seismic loads. There are three types of splice zone failure that can be observed under seismic action, namely, Failure of the flexural plastic hinge region, shear failure and failure due to short lap splice. A lapped splice transfers the force from one bar to another through the concrete surrounding both bars. At any point along the splice, force is transferred from one bar by a bond to the surrounding concrete and also by a bond to the other bar of the pair forming the splice. The integrity of the lap splice depends on the development of adequate bond length. The R.C. columns built in seismic regions are expected to undergo a large number of inelastic deformation cycles while maintaining the overall strength and stability of the structure. This can be ensured by proper confinement of the concrete core. The last type of failure is focused in this research. There are insufficient studies that address the problem of strengthening existing reinforced concrete columns at splice zone through confinement with “advanced composite materials". Accordingly, more investigation regarding the seismic behavior of strengthened reinforced concrete columns using the new generation of composite materials such as (Carbon fiber polymer), (Glass fiber polymer), (Armiad fiber polymer).

Keywords: strengthening, columns, advanced composite materials, earthquakes

Procedia PDF Downloads 65
760 Synthesis and Characterization of Cassava Starch-Zinc Nanocomposite Film for Food Packaging Application

Authors: Adeshina Fadeyibi

Abstract:

Application of pure thermoplastic film in food packaging is greatly limited because of its poor service performance, often enhanced by the addition of organic or inorganic particles in the range of 1–100 nm. Thus, this study was conducted to develop cassava starch zinc-nanocomposite films for applications in food packaging. Three blending ratios of 1000 g cassava starch, 45–55 % (w/w) glycerol and 0–2 % (w/w) zinc nanoparticles were formulated, mixed and mechanically homogenized to form the nanocomposite. Thermoplastic were prepared, from a dispersed mixture of 24 g of the nanocomposite and 600 ml of distilled water, and heated to 90oC for 30 minutes. Plastic molds of 350 ×180 mm dimension and 8, 10 and 12 mm depths were used for film casting and drying at 60oC and 80 % RH for 24 hour. The average thicknesses of the dried films were found to be 15, 16 and 17 µm. The films were characterized based on their barrier, thermal, mechanical and structural properties. The results show that the oxygen and water vapor barrier properties increased with glycerol concentration and decreased with thickness; but the full width at half maximum (FWHM) and d- spacing increased with thickness. The higher degree of d- spacing obtained is a consequence of higher polymer intercalation and exfoliation. Also, only 2 % weight degradation was observed when the films were exposed to temperature between 30–60oC; indicating that they are thermally stable and can be used for packaging applications in the tropics. The mechanical properties of the film were higher than that of the pure thermoplastic but comparable with the LDPE films. The information on the characterized attributes and optimization of the cassava starch zinc-nanocomposite films justifies their alternative application to pure thermoplastic and conventional films for food packaging.

Keywords: synthesis, characterization, casaava Starch, nanocomposite film, packaging

Procedia PDF Downloads 108
759 Effect of Barium Doping on Structural, Morphological, Optical and Photocatalytic Properties of Sprayed ZnO Thin Films

Authors: H. Djaaboube, I. Loucif, Y. Bouachiba, R. Aouati, A. Maameri, A. Taabouche, A. Bouabellou

Abstract:

Thin films of pure and barium-doped zinc oxide (ZnO) were prepared using a spray pyrolysis process. The films were deposited on glass substrates at 450°C. The different samples are characterized by X-ray diffraction (XRD) and UV-Vis spectroscopy. X-ray diffraction patterns reveal the formation of a single ZnO Wurtzite structure and the good crystallinity of the films. The substitution of Ba ions influences the texture of the layers and makes the (002) plane a preferential growth plane. At concentrations below 6% Ba, the hexagonal structure of ZnO undergoes compressive stresses due to barium ions which have a radius twice of the Zn ions. This result leads to the decrees of a and c parameters and, therefore, the volume of the unit cell. This result is confirmed by the decrease in the number of crystallites and the increase in the size of the crystallites. At concentrations above 6%, barium substitutes the zinc atom and modifies the structural parameters of the thin layers. The bandgap of ZnO films decreased with increasing doping; this decrease is probably due to the 4d orbitals of the Ba atom due to the sp-d spin-exchange interactions between the band electrons and the localized d-electrons of the substituted Ba ion. Although, the Urbache energy undergoes an increase which implies the creation of energy levels below the conduction band and decreases the band gap width. The photocatalytic activity of ZnO doped 9% Ba was evaluated by the photodegradation of methylene blue under UV irradiation.

Keywords: barium, doping, photodegradation, spray pyrolysis, ZnO

Procedia PDF Downloads 67
758 A Basic Modeling Approach for the 3D Protein Structure of Insulin

Authors: Daniel Zarzo Montes, Manuel Zarzo Castelló

Abstract:

Proteins play a fundamental role in biology, but their structure is complex, and it is a challenge for teachers to conceptually explain the differences between their primary, secondary, tertiary, and quaternary structures. On the other hand, there are currently many computer programs to visualize the 3D structure of proteins, but they require advanced training and knowledge. Moreover, it becomes difficult to visualize the sequence of amino acids in these models, and how the protein conformation is reached. Given this drawback, a simple and instructive procedure is proposed in order to teach the protein structure to undergraduate and graduate students. For this purpose, insulin has been chosen because it is a protein that consists of 51 amino acids, a relatively small number. The methodology has consisted of the use of plastic atom models, which are frequently used in organic chemistry and biochemistry to explain the chirality of biomolecules. For didactic purposes, when the aim is to teach the biochemical foundations of proteins, a manipulative system seems convenient, starting from the chemical structure of amino acids. It has the advantage that the bonds between amino acids can be conveniently rotated, following the pattern marked by the 3D models. First, the 51 amino acids were modeled, and then they were linked according to the sequence of this protein. Next, the three disulfide bonds that characterize the stability of insulin have been established, and then the alpha-helix structure has been formed. In order to reach the tertiary 3D conformation of this protein, different interactive models available on the Internet have been visualized. In conclusion, the proposed methodology seems very suitable for biology and biochemistry students because they can learn the fundamentals of protein modeling by means of a manipulative procedure as a basis for understanding the functionality of proteins. This methodology would be conveniently useful for a biology or biochemistry laboratory practice, either at the pre-graduate or university level.

Keywords: protein structure, 3D model, insulin, biomolecule

Procedia PDF Downloads 40
757 Delamination Fracture Toughness Benefits of Inter-Woven Plies in Composite Laminates Produced through Automated Fibre Placement

Authors: Jayden Levy, Garth M. K. Pearce

Abstract:

An automated fibre placement method has been developed to build through-thickness reinforcement into carbon fibre reinforced plastic laminates during their production, with the goal of increasing delamination fracture toughness while circumventing the additional costs and defects imposed by post-layup stitching and z-pinning. Termed ‘inter-weaving’, the method uses custom placement sequences of thermoset prepreg tows to distribute regular fibre link regions in traditionally clean ply interfaces. Inter-weaving’s impact on mode I delamination fracture toughness was evaluated experimentally through double cantilever beam tests (ASTM standard D5528-13) on [±15°]9 laminates made from Park Electrochemical Corp. E-752-LT 1/4” carbon fibre prepreg tape. Unwoven and inter-woven automated fibre placement samples were compared to those of traditional laminates produced from standard uni-directional plies of the same material system. Unwoven automated fibre placement laminates were found to suffer a mostly constant 3.5% decrease in mode I delamination fracture toughness compared to flat uni-directional plies. Inter-weaving caused significant local fracture toughness increases (up to 50%), though these were offset by a matching overall reduction. These positive and negative behaviours of inter-woven laminates were respectively found to be caused by fibre breakage and matrix deformation at inter-weave sites, and the 3D layering of inter-woven ply interfaces providing numerous paths of least resistance for crack propagation.

Keywords: AFP, automated fibre placement, delamination, fracture toughness, inter-weaving

Procedia PDF Downloads 175
756 Reaching a Mobile and Dynamic Nose after Rhinoplasty: A Pilot Study

Authors: Guncel Ozturk

Abstract:

Background: Rhinoplasty is the most commonly performed cosmetic operations in plastic surgery. Maneuvers used in rhinoplasty lead to a firm and stiff nasal tip in the early postoperative months. This unnatural stability of the nose may easily cause distortion in the reshaped nose after severe trauma. Moreover, a firm nasal tip may cause difficulties in performing activities such as touching, hugging, or kissing. Decreasing the stability and increasing the mobility of the nasal tip would help rhinoplasty patients to avoid these small but relatively important problems. Methods: We use delivery approach with closed rhinoplasty and changed positions of intranasal incisions to reach a dynamic and mobile nose. A total of 203 patients who had undergone primary closed rhinoplasty in private practice were inspected retrospectively. Posterior strut flap that was connected with connective tissues in the caudal of septum and the medial crurals were formed. Cartilage of the posterior strut graft was left 2 mm thick in the distal part of septum, it was cut vertically, and the connective tissue in the distal part was preserved. Results: The median patient age was 24 (range 17-42) years. The median follow-up period was15.2 (range12-26) months. Patient satisfaction was assessed with the 'Rhinoplasty Outcome Evaluation' (ROE) questionnaire. Twelve months after surgeries, 87.5% of patients reported excellent outcomes, according to ROE. Conclusion: The soft tissue connections between that segment and surrounding structures should be preserved to save the support of the tip while having a mobile tip at the same time with this method. These modifications would access to a mobile, non-stiff, and dynamic nasal tip in the early postoperative months. Further and prospective studies should be performed for supporting this method.

Keywords: closed rhinoplasty, dynamic, mobile, tip

Procedia PDF Downloads 121
755 Effect of Intrinsic Point Defects on the Structural and Optical Properties of SnO₂ Thin Films Grown by Ultrasonic Spray Pyrolysis Method

Authors: Fatiha Besahraoui, M'hamed Guezzoul, Kheira Chebbah, M'hamed Bouslama

Abstract:

SnO₂ thin film is characterized by Atomic Force Microscopy (AFM) and Photoluminescence Spectroscopies. AFM images show a dense surface of columnar grains with a roughness of 78.69 nm. The PL measurements at 7 K reveal the presence of PL peaks centered in IR and visible regions. They are attributed to radiative transitions via oxygen vacancies, Sn interstitials, and dangling bonds. A bands diagram model is presented with the approximate positions of intrinsic point defect levels in SnO₂ thin films. The integrated PL measurements demonstrate the good thermal stability of our sample, which makes it very useful in optoelectronic devices functioning at room temperature. The unusual behavior of the evolution of PL peaks and their full width at half maximum as a function of temperature indicates the thermal sensitivity of the point defects present in the band gap. The shallower energy levels due to dangling bonds and/or oxygen vacancies are more sensitive to the temperature. However, volume defects like Sn interstitials are thermally stable and constitute deep and stable energy levels for excited electrons. Small redshifting of PL peaks is observed with increasing temperature. This behavior is attributed to the reduction of oxygen vacancies.

Keywords: transparent conducting oxide, photoluminescence, intrinsic point defects, semiconductors, oxygen vacancies

Procedia PDF Downloads 70
754 Upconversion Nanoparticles for Imaging and Controlled Photothermal Release of Anticancer Drug in Breast Cancer

Authors: Rishav Shrestha, Yong Zhang

Abstract:

The Anti-Stoke upconversion process has been used extensively for bioimaging and is recently being used for photoactivated therapy in cancer utilizing upconversion nanoparticles (UCNs). The UCNs have an excitation band at 980nm; 980nm laser excitation used to produce UV/Visible emissions also produce a heating effect. Light-to-heat conversion has been observed in nanoparticles(NPs) doped with neodymium(Nd) or ytterbium(Yb)/erbium(Er) ions. Despite laser-induced heating in Rare-earth doped NPs being proven to be a relatively efficient process, only few attempts to use them as photothermal agents in biosystems have been made up to now. Gold nanoparticles and carbon nanotubes are the most researched and developed for photothermal applications. Both have large heating efficiency and outstanding biocompatibility. However, they show weak fluorescence which makes them harder to track in vivo. In that regard, UCNs are attractive due to their excellent optical features in addition to their light-to-heat conversion and excitation by NIR, for imaging and spatiotemporally releasing drugs. In this work, we have utilized a simple method to coat Nd doped UCNs with thermoresponsive polymer PNIPAM on which 4-Hydroxytamoxifen (4-OH-T) is loaded. Such UCNs demonstrate a high loading efficiency and low leakage of 4-OH-T. Encouragingly, the release of 4-OH-T can be modulated by varying the power and duration of the NIR. Such UCNs were then used to demonstrate imaging and controlled photothermal release of 4-OH-T in MCF-7 breast cancer cells.

Keywords: cancer therapy, controlled release, photothermal release, upconversion nanoparticles

Procedia PDF Downloads 415
753 Comparison of Physicochemical Properties of DNA-Ionic Liquids Complexes

Authors: Ewelina Nowak, Anna Wisla-Swider, Gohar Khachatryan, Krzysztof Danel

Abstract:

Complexes of ionic liquids with different heterocyclic-rings were synthesized by ion exchange reactions with pure salmon DNA. Ionic liquids (ILs) like 1-hexyl-3-methylimidazolium chloride, 1-butyl-4-methylpyridinium chloride and 1-ethyl-1-methylpyrrolidinium bromide were used. The ILs were built into helical state and confirmed by IR spectrometric techniques. Patterns of UV-Vis, photoluminescence, IR, and CD spectra indicated inclusion of small molecules into DNA structure. Molecular weight and radii of gyrations values of ILs-DNA complexes chains were established by HPSEC–MALLS–RI method. Modification DNA with 1-ethyl-1-methylpyrrolidinium bromide gives more uniform material and leads to elimination of high molecular weight chains. Thus, the incorporation DNA double helical structure with both 1-hexyl-3-methylimidazolium chloride and 1-butyl-4-methylpyridinium chloride exhibited higher molecular weight values. Scanning electron microscopy images indicate formation of nanofibre structures in all DNA complexes. Fluorescence depends strongly on the environment in which the chromophores are inserted and simultaneously on the molecular interactions with the biopolymer matrix. The most intensive emission was observed for DNA-imidazole ring complex. Decrease in intensity UV-Vis peak absorption is a consequence of a reduction in the spatial order of polynucleotide strands and provides different π–π stacking structure. Changes in optical properties confirmed by spectroscopy methods make DNA-ILs complexes potential biosensor applications.

Keywords: biopolymers, biosensors, cationic surfactant, DNA, DNA-gels

Procedia PDF Downloads 176
752 Identification and Classification of Fiber-Fortified Semolina by Near-Infrared Spectroscopy (NIR)

Authors: Amanda T. Badaró, Douglas F. Barbin, Sofia T. Garcia, Maria Teresa P. S. Clerici, Amanda R. Ferreira

Abstract:

Food fortification is the intentional addition of a nutrient in a food matrix and has been widely used to overcome the lack of nutrients in the diet or increasing the nutritional value of food. Fortified food must meet the demand of the population, taking into account their habits and risks that these foods may cause. Wheat and its by-products, such as semolina, has been strongly indicated to be used as a food vehicle since it is widely consumed and used in the production of other foods. These products have been strategically used to add some nutrients, such as fibers. Methods of analysis and quantification of these kinds of components are destructive and require lengthy sample preparation and analysis. Therefore, the industry has searched for faster and less invasive methods, such as Near-Infrared Spectroscopy (NIR). NIR is a rapid and cost-effective method, however, it is based on indirect measurements, yielding high amount of data. Therefore, NIR spectroscopy requires calibration with mathematical and statistical tools (Chemometrics) to extract analytical information from the corresponding spectra, as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). PCA is well suited for NIR, once it can handle many spectra at a time and be used for non-supervised classification. Advantages of the PCA, which is also a data reduction technique, is that it reduces the data spectra to a smaller number of latent variables for further interpretation. On the other hand, LDA is a supervised method that searches the Canonical Variables (CV) with the maximum separation among different categories. In LDA, the first CV is the direction of maximum ratio between inter and intra-class variances. The present work used a portable infrared spectrometer (NIR) for identification and classification of pure and fiber-fortified semolina samples. The fiber was added to semolina in two different concentrations, and after the spectra acquisition, the data was used for PCA and LDA to identify and discriminate the samples. The results showed that NIR spectroscopy associate to PCA was very effective in identifying pure and fiber-fortified semolina. Additionally, the classification range of the samples using LDA was between 78.3% and 95% for calibration and 75% and 95% for cross-validation. Thus, after the multivariate analysis such as PCA and LDA, it was possible to verify that NIR associated to chemometric methods is able to identify and classify the different samples in a fast and non-destructive way.

Keywords: Chemometrics, fiber, linear discriminant analysis, near-infrared spectroscopy, principal component analysis, semolina

Procedia PDF Downloads 199
751 Multi-Temporal Cloud Detection and Removal in Satellite Imagery for Land Resources Investigation

Authors: Feng Yin

Abstract:

Clouds are inevitable contaminants in optical satellite imagery, and prevent the satellite imaging systems from acquiring clear view of the earth surface. The presence of clouds in satellite imagery bring negative influences for remote sensing land resources investigation. As a consequence, detecting the locations of clouds in satellite imagery is an essential preprocessing step, and further remove the existing clouds is crucial for the application of imagery. In this paper, a multi-temporal based satellite imagery cloud detection and removal method is proposed, which will be used for large-scale land resource investigation. The proposed method is mainly composed of four steps. First, cloud masks are generated for cloud contaminated images by single temporal cloud detection based on multiple spectral features. Then, a cloud-free reference image of target areas is synthesized by weighted averaging time-series images in which cloud pixels are ignored. Thirdly, the refined cloud detection results are acquired by multi-temporal analysis based on the reference image. Finally, detected clouds are removed via multi-temporal linear regression. The results of a case application in Hubei province indicate that the proposed multi-temporal cloud detection and removal method is effective and promising for large-scale land resource investigation.

Keywords: cloud detection, cloud remove, multi-temporal imagery, land resources investigation

Procedia PDF Downloads 265
750 Study on Technological Development for Reducing the Sulfur Dioxide Residue Problem in Fresh Longan for Exporting

Authors: Wittaya Apai, Satippong Rattanakam, Suttinee Likhittragulrung, Nuttanai Tungmunkongvorakul, Sompetch Jaroensuk

Abstract:

The objective of this study was to find some alternative ways to decrease sulfur dioxide (SO₂) residue problem and prolong storage life in fresh longan for export. Office of Agricultural Research and Development Region 1, Chiang Mai province conducted the research and development from 2016-2018. A grade longan cv. Daw fruit with panicle attached was placed in 11.5 kg commercial perforated plastic basket. They had 5 selected treatments comprising of 3 baskets as replication for each treatment, i.e. 1.5% SO₂ fumigation prior to insert SO₂-generated pads (Uvasys®) (1.5% SO₂+SO₂ pad), dipping in 5% hydrochloric acid (HCl) mixed with 1% sodium metabisulfite (SMS) for 5 min (5% HCl +1% SMS), ozone (O₃) fumigation for 1 hours (h) prior to 1.5% SO₂ fumigation (O₃ 1 h+1.5% SO₂), 1.5% SO₂ fumigation prior to O₃ fumigation for 1 h (1.5% SO₂+O₃ 1 h) and 1.5% SO₂ fumigation alone as commercial treatment (1.5% SO₂). They were stored at 5 ˚C, 90% relative humidity (RH) for 40-80 days. The results found that the possible treatments were 1.5% SO₂+O₃ 1 h and 5% HCl +1% SMS respectively and prevented pericarp browning for 80 days at 5 ºC. There were no significant changes in some parameters in any treatments; 1.5% SO₂+O₃ 1 h and 1.5% SO₂ during storage, i.e., pericarp browning, flesh discoloration, disease incidence (%) and sensory evaluation during storage. Application 1.5% SO₂+O₃ 1 h had a tendency less both SO₂ residue in fruit and disease incidence (%) including brighter pericarp color as compared with commercial 1.5% SO₂ alone. Moreover, HCl 5%+SMS 1% showed the least SO₂ residue in whole fruit below codex tolerance at 50 mg/kg throughout period of time. The fruit treated with 1.5% SO₂+O₃ 1 h, 1.5% SO₂, 5% HCl+1% SMS, O₃ 1 h+1.5% SO₂, and 1.5% SO₂+SO₂ pad could prolong storage life for 40, 40, 40, 30 and 30 days respectively at 5°C, 90% RH. Thus, application 1.5% SO₂+O₃ 1 h and/or 5% HCl +1% SMS could be used for extending shelf life fresh longan exported to restricted countries due to less SO₂ residue and fruit quality was maintained as compared with the conventional method.

Keywords: longan, sulfur dioxide, ozone fumigation, sodium metabisulfite

Procedia PDF Downloads 114
749 Experimental Modelling Gear Contact with TE77 Energy Pulse Setup

Authors: Zainab Mohammed Shukur, Najlaa Ali Alboshmina, Ali Safa Alsaegh

Abstract:

The project was investigated tribological behavior of polyether ether ketone (PEEK1000) against PEEK1000 rolling sliding (non-conformal) configuration with slip ratio 83.3%, were tested applications using a TE77 wear mechanisms and friction coefficient test rig. Under marginal lubrication conditions and the absence of film thick conditions, load 100 N was used to simulate the torque in gears 7 N.m. The friction coefficient and wear mechanisms of PEEK were studied under reciprocating roll/slide conditions with water, ethylene glycol, silicone, and base oil. Tribological tests were conducted on a TE77 high-frequency tribometer, with a disc-on-plate slide/roll (the energy pulse criterion) configuration. An Alicona G5 optical 3D micro-coordinate measurement microscope was used to investigate the surface topography and wear mechanisms. The surface roughness had been a significant effect on the friction coefficient for the PEEK/PEEK the rolling sliding contact test ethylene glycol and on the wear mechanisms. When silicone, ethylene glycol, and oil were used as a lubricant, the steady state of friction coefficient was reached faster than the other lubricant. Results describe the effect of the film thick with slip ratio of 83.3% on the tribological performance.

Keywords: polymer, rolling- sliding, energy pulse, gear contact

Procedia PDF Downloads 130
748 Greywater Treatment Using Activated Biochar Produced from Agricultural Waste

Authors: Pascal Mwenge, Tumisang Seodigeng

Abstract:

The increase in urbanisation in South Africa has led to an increase in water demand and a decline in freshwater supply. Despite this, poor water usage is still a major challenge in South Africa, for instance, freshwater is still used for non-drinking applications. The freshwater shortage can be alleviated by using other sources of water for non-portable purposes such as greywater treated with activated biochar produced from agricultural waste. The success of activated biochar produced from agricultural waste to treat greywater can be both economically and environmentally beneficial. Greywater treated with activated biochar produced from agricultural waste is considered a cost-effective wastewater treatment.  This work was aimed at determining the ability of activated biochar to remove Total Suspended Solids (TSS), Ammonium (NH4-N), Nitrate (NO3-N), and Chemical Oxygen Demand (COD) from greywater. The experiments were carried out in 800 ml laboratory plastic cylinders used as filter columns. 2.5 cm layer of gravel was used at the bottom and top of the column to sandwich the activated biochar material. Activated biochar (200 g and 400 g) was loaded in a column and used as a filter medium for greywater. Samples were collected after a week and sent for analysis. Four types of greywater were treated: Kitchen, floor cleaning water, shower and laundry water. The findings showed: 95% removal of TSS, 76% of NO3-N and 63% of COD on kitchen greywater and 85% removal of NH4-N on bathroom greywater, as highest removal of efficiency of the studied pollutants. The results showed that activated biochar produced from agricultural waste reduces a certain amount of pollutants from greywater. The results also indicated the ability of activated biochar to treat greywater for onsite non-potable reuse purposes.

Keywords: activated biochar produced from agriculture waste, ammonium, NH₄-N, chemical oxygen demand, COD, greywater, nitrate, NO₃-N, total suspended solids, TSS

Procedia PDF Downloads 192
747 DCDNet: Lightweight Document Corner Detection Network Based on Attention Mechanism

Authors: Kun Xu, Yuan Xu, Jia Qiao

Abstract:

The document detection plays an important role in optical character recognition and text analysis. Because the traditional detection methods have weak generalization ability, and deep neural network has complex structure and large number of parameters, which cannot be well applied in mobile devices, this paper proposes a lightweight Document Corner Detection Network (DCDNet). DCDNet is a two-stage architecture. The first stage with Encoder-Decoder structure adopts depthwise separable convolution to greatly reduce the network parameters. After introducing the Feature Attention Union (FAU) module, the second stage enhances the feature information of spatial and channel dim and adaptively adjusts the size of receptive field to enhance the feature expression ability of the model. Aiming at solving the problem of the large difference in the number of pixel distribution between corner and non-corner, Weighted Binary Cross Entropy Loss (WBCE Loss) is proposed to define corner detection problem as a classification problem to make the training process more efficient. In order to make up for the lack of Dataset of document corner detection, a Dataset containing 6620 images named Document Corner Detection Dataset (DCDD) is made. Experimental results show that the proposed method can obtain fast, stable and accurate detection results on DCDD.

Keywords: document detection, corner detection, attention mechanism, lightweight

Procedia PDF Downloads 343
746 Dynamics of Antioxidant and Anti-Radical Activity of the Extracts of Certain Plants of Kazakhstan

Authors: A. Kazbekova, A. Kudaibergenov, G. Atazhanova, S. Adekenov

Abstract:

In recent years, it achieved some progress such a direction as to study the possibility of correlation between different types of biological activity. In particular, in our work, we consider questions such as: the impact of the qualitative composition of total substances in the example of plant extracts on antioxidant and antiradical activity, the presents of correlation between these types of activity, etc. It is known that there is a relationship between the values of optical density of working solutions of extracts and corresponding bioactivity in vitro, in particular, the antioxidant and hepatoprotective effects. In this study, we have identified that among some studied species of wormwood (Artemisia viridis Wild, Artemisia jacutica Drob, Artemisia annua L, Artemisia siversiana Wild, Artemisia adamsii Bess, Artemisia tianschanica, Artemisia obtusiloba Ledeb., Artemisia heptopotamica), as well as extracts of Inula caspica, Аjania tenuifolia, Abies sibirica, Galatella songorica, Mentha asiatica and Thymus mugodzharicus it was identified that the highest content of polyphenol compounds is in Thymus mugodzharicus. At the same time, we determined the antioxidant and antiradical activity, which was the highest for the Thymus mugodzharicus. Butylhydroxyanisole and ascorbic acid were used as comparison substances. Also, it was established that antioxidant and anti-radical activities depend on the concentration of the of all investigated samples. Based on obtained data, we believe that the extract of Thymus mugodzharicus can be recommended for further study on the antioxidant and antiradical activity in vivo, as well as the opportunity of this sample to demonstrate hepatoprotective effect. The study was sponsored by SANTO academic program.

Keywords: in vitro, in vivo, antioxidant, hepatoprotective effect

Procedia PDF Downloads 307
745 Characterization of Kevlar 29 for Multifunction Applications

Authors: Doaa H. Elgohary, Dina M. Hamoda, S. Yahia

Abstract:

Technical textiles refer to textile materials that are engineered and designed to have specific functionalities and performance characteristics beyond their traditional use as apparel or upholstery fabrics. These textiles are usually developed for their unique properties such as strength, durability, flame retardancy, chemical resistance, waterproofing, insulation and other special properties. The development and use of technical textiles are constantly evolving, driven by advances in materials science, manufacturing technologies and the demand for innovative solutions in various industries. Kevlar 29 is a type of aramid fiber developed by DuPont. It is a high-performance material known for its exceptional strength and resistance to impact, abrasion, and heat. Kevlar 29 belongs to the Kevlar family, which includes different types of aramid fibers. Kevlar 29 is primarily used in applications that require strength and durability, such as ballistic protection, body armor, and body armor for military and law enforcement personnel. It is also used in the aerospace and automotive industries to reinforce composite materials, as well as in various industrial applications. Two different Kevlar samples were used coated with cooper lithium silicate (CLS); ten different mechanical and physical properties (weight, thickness, tensile strength, elongation, stiffness, air permeability, puncture resistance, thermal conductivity, stiffness, and spray test) were conducted to approve its functional performance efficiency. The influence of different mechanical properties was statistically analyzed using an independent t-test with a significant difference at P-value = 0.05. The radar plot was calculated and evaluated to determine the best-performing samples. The results of the independent t-test observed that all variables were significantly affected by yarn counts except water permeability, which has no significant effect. All properties were evaluated for samples 1 and 2, a radar chart was used to determine the best attitude for samples. The radar chart area was calculated, which shows that sample 1 recorded the best performance, followed by sample 2. The surface morphology of all samples and the coating materials was determined using a scanning electron microscope (SEM), also Fourier Transform Infrared Spectroscopy Measurement for the two samples.

Keywords: cooper lithium silicate, independent t-test, kevlar, technical textiles.

Procedia PDF Downloads 63
744 Influence of Aluminium on Grain Refinement in As-Rolled Vanadium-Microalloyed Steels

Authors: Kevin Mark Banks, Dannis Rorisang Nkarapa Maubane, Carel Coetzee

Abstract:

The influence of aluminium content, reheating temperature, and sizing (final) strain on the as-rolled microstructure was systematically investigated in vanadium-microalloyed and C-Mn plate steels. Reheating, followed by hot rolling and air cooling simulations were performed on steels containing a range of aluminium and nitrogen contents. Natural air cooling profiles, corresponding to 6 and 20mm thick plates, were applied. The austenite and ferrite/pearlite microstructures were examined using light optical microscopy. Precipitate species and volume fraction were determined on selected specimens. No influence of aluminium content was found below 0.08% on the as-rolled grain size in all steels studied. A low Al-V-steel produced the coarsest initial austenite grain size due to AlN dissolution at low temperatures leading to abnormal grain growth. An Al-free V-N steel had the finest initial microstructure. Although the as-rolled grain size for 20mm plate was similar in all steels tested, the grain distribution was relatively mixed. The final grain size in 6mm plate was similar for most compositions; the exception was an as-cast V low N steel, where the size of the second phase was inversely proportional to the sizing strain. This was attributed to both segregation and a low VN volume fraction available for effective pinning of austenite grain boundaries during cooling. Increasing the sizing strain refined the microstructure significantly in all steels.

Keywords: aluminium, grain size, nitrogen, reheating, sizing strain, steel, vanadium

Procedia PDF Downloads 135
743 In vitro Study of Laser Diode Radiation Effect on the Photo-Damage of MCF-7 and MCF-10A Cell Clusters

Authors: A. Dashti, M. Eskandari, L. Farahmand, P. Parvin, A. Jafargholi

Abstract:

Breast Cancer is one of the most considerable diseases in the United States and other countries and is the second leading cause of death in women. Common breast cancer treatments would lead to adverse side effects such as loss of hair, nausea, and weakness. These complications arise because these cancer treatments damage some healthy cells while eliminating the cancer cells. In an effort to address these complications, laser radiation was utilized and tested as a targeted cancer treatment for breast cancer. In this regard, tissue engineering approaches are being employed by using an electrospun scaffold in order to facilitate the growth of breast cancer cells. Polycaprolacton (PCL) was used as a material for scaffold fabricating because of its biocompatibility, biodegradability, and supporting cell growth. The specific breast cancer cells have the ability to create a three-dimensional cell cluster due to the spontaneous accumulation of cells in the porosity of the scaffold under some specific conditions. Therefore, we are looking for a higher density of porosity and larger pore size. Fibers showed uniform diameter distribution and final scaffold had optimum characteristics with approximately 40% porosity. The images were taken by SEM and the density and the size of the porosity were determined with the Image. After scaffold preparation, it has cross-linked by glutaraldehyde. Then, it has been washed with glycine and phosphate buffer saline (PBS), in order to neutralize the residual glutaraldehyde. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) results have represented approximately 91.13% viability of the scaffolds for cancer cells. In order to create a cluster, Michigan Cancer Foundation-7 (MCF-7, breast cancer cell line) and Michigan Cancer Foundation-10A (MCF-10A, human mammary epithelial cell line) cells were cultured on the scaffold in 24 well plate for five days. Then, we have exposed the cluster to the laser diode 808 nm radiation to investigate the effect of laser on the tumor with different power and time. Under the same conditions, cancer cells lost their viability more than the healthy ones. In conclusion, laser therapy is a viable method to destroy the target cells and has a minimum effect on the healthy tissues and cells and it can improve the other method of cancer treatments limitations.

Keywords: breast cancer, electrospun scaffold, polycaprolacton, laser diode, cancer treatment

Procedia PDF Downloads 134
742 Fluorescing Aptamer-Gold Nanoparticle Complex for the Sensitive Detection of Bisphenol A

Authors: Eunsong Lee, Gae Baik Kim, Young Pil Kim

Abstract:

Bisphenol A (BPA) is one of the endocrine disruptors (EDCs), which have been suspected to be associated with reproductive dysfunction and physiological abnormality in human. Since the BPA has been widely used to make plastics and epoxy resins, the leach of BPA from the lining of plastic products has been of major concern, due to its environmental or human exposure issues. The simple detection of BPA based on the self-assembly of aptamer-mediated gold nanoparticles (AuNPs) has been reported elsewhere, yet the detection sensitivity still remains challenging. Here we demonstrate an improved AuNP-based sensor of BPA by using fluorescence-combined AuNP colorimetry in order to overcome the drawback of traditional AuNP sensors. While the anti-BPA aptamer (full length or truncated ssDNA) triggered the self-assembly of unmodified AuNP (citrate-stabilized AuNP) in the presence of BPA at high salt concentrations, no fluorescence signal was observed by the subsequent addition of SYBR Green, due to a small amount of free anti-BPA aptamer. In contrast, the absence of BPA did not cause the self-assembly of AuNPs (no color change by salt-bridged surface stabilization) and high fluorescence signal by SYBP Green, which was due to a large amount of free anti-BPA aptamer. As a result, the quantitative analysis of BPA was achieved using the combination of absorption of AuNP with fluorescence intensity of SYBR green as a function of BPA concentration, which represented more improved detection sensitivity (as low as 1 ppb) than did in the AuNP colorimetric analysis. This method also enabled to detect high BPA in water-soluble extracts from thermal papers with high specificity against BPS and BPF. We suggest that this approach will be alternative for traditional AuNP colorimetric assays in the field of aptamer-based molecular diagnosis.

Keywords: bisphenol A, colorimetric, fluoroscence, gold-aptamer nanobiosensor

Procedia PDF Downloads 176
741 Characterization the Internal Corrosion Behavior by Using Natural Inhibitor in Crude Oil of Low Carbon Steel Pipeline

Authors: Iman Adnan Annon, Kadhim F. Alsultan

Abstract:

This study investigate the internal corrosion of low carbon steel pipelines in the crude oil, as well as prepare and use natural and locally available plant as a natural corrosion inhibiter, the nature extraction achieved by two types of solvents in order to show the solvent effect on inhibition process, the first being distilled water and the second is diethyl ether. FT-IR spectra and using a chemical reagents achieved to detection the presence of many active groups and the presence of tannins, phenols, and alkaloids in the natural extraction. Some experiments were achieved to estimate the performance of a new inhibitor, one of these tests include corrosion measurement by simple immersion in crude oil within and without inhibitors which added in different amounts 30,40,50and 60 ppm at tow temperature 300 and 323k, where the best inhibition efficiencies which get when added the inhibitors in a critical amounts or closest to it, since for the aqueous extract (EB-A) the inhibition efficiency reached (94.4) and (86.71)% at 300 and 323k respectively, and for diethyl ether extract (EB-D) reached (82.87) and (84.6)% at 300 and 323k respectively. Optical microscopy examination have been conducted to evaluate the corrosion nature where it show a clear difference in the topography of the immersed samples surface after add the inhibitors at two temperatures. The results show that the new corrosion inhibitor is not only equivalent to a chemical inhibitor but has greatly improvement properties such as: high efficiency, low cost, non-toxic, easily to produce, and nonpolluting as compared with chemical inhibitor.

Keywords: corrosion in pipeline, inhibitors, crude oil, carbon steel, types of solvent

Procedia PDF Downloads 128