Search results for: biomolecular sequence synthesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3284

Search results for: biomolecular sequence synthesis

794 Double Functionalization of Magnetic Colloids with Electroactive Molecules and Antibody for Platelet Detection and Separation

Authors: Feixiong Chen, Naoufel Haddour, Marie Frenea-Robin, Yves MéRieux, Yann Chevolot, Virginie Monnier

Abstract:

Neonatal thrombopenia occurs when the mother generates antibodies against her baby’s platelet antigens. It is particularly critical for newborns because it can cause coagulation troubles leading to intracranial hemorrhage. In this case, diagnosis must be done quickly to make platelets transfusion immediately after birth. Before transfusion, platelet antigens must be tested carefully to avoid rejection. The majority of thrombopenia (95 %) are caused by antibodies directed against Human Platelet Antigen 1a (HPA-1a) or 5b (HPA-5b). The common method for antigen platelets detection is polymerase chain reaction allowing for identification of gene sequence. However, it is expensive, time-consuming and requires significant blood volume which is not suitable for newborns. We propose to develop a point-of-care device based on double functionalized magnetic colloids with 1) antibodies specific to antigen platelets and 2) highly sensitive electroactive molecules in order to be detected by an electrochemical microsensor. These magnetic colloids will be used first to isolate platelets from other blood components, then to capture specifically platelets bearing HPA-1a and HPA-5b antigens and finally to attract them close to sensor working electrode for improved electrochemical signal. The expected advantages are an assay time lower than 20 min starting from blood volume smaller than 100 µL. Our functionalization procedure based on amine dendrimers and NHS-ester modification of initial carboxyl colloids will be presented. Functionalization efficiency was evaluated by colorimetric titration of surface chemical groups, zeta potential measurements, infrared spectroscopy, fluorescence scanning and cyclic voltammetry. Our results showed that electroactive molecules and antibodies can be immobilized successfully onto magnetic colloids. Application of a magnetic field onto working electrode increased the detected electrochemical signal. Magnetic colloids were able to capture specific purified antigens extracted from platelets.

Keywords: Magnetic Nanoparticles , Electroactive Molecules, Antibody, Platelet

Procedia PDF Downloads 265
793 How Did a Blind Child Begin Understanding Her “Blind Self”?: A Longitudinal Analysis Of Conversation between Her and Adults

Authors: Masahiro Nochi

Abstract:

This study explores the process in which a Japanese child with congenital blindness deepens understanding of the condition of being “unable to see” and develops the idea of “blind self,” despite having no direct experience of vision. The rehabilitation activities of a child with a congenital visual impairment that were video-recorded from 1 to 6 years old were analyzed qualitatively. The duration of the video was about 80 hours. The recordings were transcribed verbatim, and the episodes in which the child used the words related to the act of “looking” were extracted. Detailed transcripts were constructed referencing the notations of conversation analysis. Characteristics of interactions in those episodes were identified and compared longitudinally. Results showed that the child used the expression "look" under certain interaction patterns and her body expressions and interaction with adults developed in conjunction with the development of language use. Four stages were identified. At the age of 1, interactions involving “look” began to occur. The child said "Look" in the sequence: the child’s “Look,” an adult’s “I’m looking,” certain performances by the child, and the adult’s words of praise. At the age of 3, the child began to behave in accordance with the spatial attributes of the act of "looking," such as turning her face to the adult’s voice before saying, “Look.” She also began to use the expression “Keep looking,” which seemed to reflect her understanding of the temporality of the act of “looking.” At the age of 4, the use of “Look” or “Keep looking” became three times more frequent. She also started to refer to the act of looking in the future, such as “Come and look at my puppy someday.” At the age of 5, she moved her hands toward the adults when she was holding something she wanted to show them. She seemed to understand that people could see the object more clearly when it was in close priximity. About that time, she began to say “I cannot see” to her mother, which suggested a heightened understanding of her own blindness. The findings indicate that as she grew up, the child came to utilize nonverbal behavior before and after the order "Look" to make the progress of the interaction with adults even more certain. As a result, actions that reflect the characteristics of the sighted person's visual experience were incorporated into the interaction chain. The purpose of "Look," with which she intended to attract the adult's attention at first, changed and became something that requests a confirmation she was unable to make herself. It is considered that such a change in the use of the word as well as interaction with sighted adults reflected her heightened self-awareness as someone who could not do what sighted people could do easily. A blind child can gradually deepen their understanding of their own characteristics of blindness among sighted people around them. The child can also develop “blind self” by learning how to interact with others even without direct visual experiences.

Keywords: blindness, child development, conversation analysis, self-concept

Procedia PDF Downloads 117
792 Doped and Co-doped ZnO Based Nanoparticles and their Photocatalytic and Gas Sensing Property

Authors: Neha Verma, Manik Rakhra

Abstract:

Statement of the Problem: Nowadays, a tremendous increase in population and advanced industrialization augment the problems related to air and water pollutions. Growing industries promoting environmental danger, which is an alarming threat to the ecosystem. For safeguard, the environment, detection of perilous gases and release of colored wastewater is required for eutrophication pollution. Researchers around the globe are trying their best efforts to save the environment. For this remediation advanced oxidation process is used for potential applications. ZnO is an important semiconductor photocatalyst with high photocatalytic and gas sensing activities. For efficient photocatalytic and gas sensing properties, it is necessary to prepare a doped/co-doped ZnO compound to decrease the electron-hole recombination rates. However, lanthanide doped and co-doped metal oxide is seldom studied for photocatalytic and gas sensing applications. The purpose of this study is to describe the best photocatalyst for the photodegradation of dyes and gas sensing properties. Methodology & Theoretical Orientation: Economical framework has to be used for the synthesis of ZnO. In the depth literature survey, a simple combustion method is utilized for gas sensing and photocatalytic activities. Findings: Rare earth doped and co-doped ZnO nanoparticles were the best photocatalysts for photodegradation of organic dyes and different gas sensing applications by varying various factors such as pH, aging time, and different concentrations of doping and codoping metals in ZnO. Complete degradation of dye was observed only in min. Gas sensing nanodevice showed a better response and quick recovery time for doped/co-doped ZnO. Conclusion & Significance: In order to prevent air and water pollution, well crystalline ZnO nanoparticles were synthesized by rapid and economic method, which is used as photocatalyst for photodegradation of organic dyes and gas sensing applications to sense the release of hazardous gases from the environment.

Keywords: ZnO, photocatalyst, photodegradation of dye, gas sensor

Procedia PDF Downloads 152
791 Hierarchical Porous Carbon Composite Electrode for High Performance Supercapacitor Application

Authors: Chia-Chia Chang, Jhen-Ting Huang, Hu-Cheng Weng, An-Ya Lo

Abstract:

This study developed a simple hierarchical porous carbon (HPC) synthesis process and used for supercapacitor application. In which, mesopore provides huge specific surface area, meanwhile, macropore provides excellent mass transfer. Thus the hierarchical porous electrode improves the charge-discharge performance. On the other hand, cerium oxide (CeO2) have also got a lot research attention owing to its rich in content, low in price, environmentally friendly, good catalytic properties, and easy preparation. Besides, a rapid redox reaction occurs between trivalent cerium and tetravalent cerium releases oxygen atom and increase the conductivity. In order to prevent CeO2 from disintegration under long-term charge-discharge operation, the CeO2 carbon porous materials were was integrated as composite material in this study. For in the ex-situ analysis, scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electron microscope (TEM) analysis were adopted to identify the surface morphology, crystal structure, and microstructure of the composite. 77K Nitrogen adsorption-desorption analysis was used to analyze the porosity of each specimen. For the in-situ test, cyclic voltammetry (CV) and chronopotentiometry (CP) were conducted by potentiostat to understand the charge and discharge properties. Ragone plot was drawn to further analyze the resistance properties. Based on above analyses, the effect of macropores/mespores and the CeO2/HPC ratios on charge-discharge performance were investigated. As a result, the capacitance can be greatly enhanced by 2.6 times higher than pristine mesoporous carbon electrode.

Keywords: hierarchical porous carbon, cerium oxide, supercapacitor

Procedia PDF Downloads 121
790 Plasma-Assisted Nitrogen Fixation for the Elevation of Seed Germination and Plant Growth

Authors: Pradeep Lamichhane

Abstract:

Plasma-assisted nitrogen fixation is a process by which atomic nitrogen generated by plasma is converted into ammonia (NH₃) or related nitrogenous compounds. Nitrogen fixation is essential to plant because fixed inorganic nitrogen compounds are required to them for the biosynthesis of all nitrogen-containing organic compounds, such as amino acids and proteins, nucleoside triphosphates and nucleic acid. Most of our atmosphere is composed of nitrogen; however, the plant cannot absorb it directly from the air ambient. As a portion of the nitrogen cycle, nitrogen fixation fundamental for agriculture and the manufacture of fertilizer. In this study, plasma-assisted nitrogen fixation was performed by exposing a non-thermal atmospheric pressure nitrogen plasma generated a sinusoidal power supply (with an applied voltage of 10 kV and frequency of 33 kHz) on a water surface. Besides this, UV excitation of water molecules at the water interface was also done in order to disassociate water. Hydrogen and hydroxyl radical obtained from this UV photolysis electrochemically combine with nitrogen atom obtained from plasma. As a result of this, nitrogen fixation on plasma-activated water (PAW) significantly enhanced. The amount of nitrogen-based products like NOₓ and ammonia (NH₃) synthesized by this combined process of UV and plasma are 1.4 and 2.8 times higher than those obtained by plasma alone. In every 48 hours, 20 ml of plasma-activated water (pH≈3.15) for 10 minutes with moderate concentrations of NOₓ, NH₃ and hydrogen peroxide (H₂O₂) was irrigated on each corn plant (Zea Mays). It was found that the PAW has shown a significant impact on seeds germination rate and improved seedling growth. The result obtained from this experiment suggested that crop yield could increase in a short duration. In the future, this experiment could open boundless opportunities in plasma agriculture to mobilize nitrogen because nitrite, nitrate, and ammonia are more suitable for plant uptake.

Keywords: plasma-assisted nitrogen fixation, nitrogen plasma, UV excitation of water, ammonia synthesis

Procedia PDF Downloads 131
789 Detection and Quantification of Ochratoxin A in Food by Aptasensor

Authors: Moez Elsaadani, Noel Durand, Brice Sorli, Didier Montet

Abstract:

Governments and international instances are trying to improve the food safety system to prevent, reduce or avoid the increase of food borne diseases. This food risk is one of the major concerns for the humanity. The contamination by mycotoxins is a threat to the health and life of humans and animals. One of the most common mycotoxin contaminating feed and foodstuffs is Ochratoxin A (OTA), which is a secondary metabolite, produced by Aspergillus and Penicillium strains. OTA has a chronic toxic effect and proved to be mutagenic, nephrotoxic, teratogenic, immunosuppressive, and carcinogenic. On the other side, because of their high stability, specificity, affinity, and their easy chemical synthesis, aptamer based methods are applied to OTA biosensing as alternative to traditional analytical technique. In this work, five aptamers have been tested to confirm qualitatively and quantitatively their binding with OTA. In the same time, three different analytical methods were tested and compared based on their ability to detect and quantify the OTA. The best protocol that was established to quantify free OTA from linked OTA involved an ultrafiltration method in green coffee solution with. OTA was quantified by HPLC-FLD to calculate the binding percentage of all five aptamers. One aptamer (The most effective with 87% binding with OTA) has been selected to be our biorecognition element to study its electrical response (variation of electrical properties) in the presence of OTA in order to be able to make a pairing with a radio frequency identification (RFID). This device, which is characterized by its low cost, speed, and a simple wireless information transmission, will implement the knowledge on the mycotoxins molecular sensors (aptamers), an electronic device that will link the information, the quantification and make it available to operators.

Keywords: aptamer, aptasensor, detection, Ochratoxin A

Procedia PDF Downloads 175
788 The Plant Hormone Auxin Impacts the Profile of Aroma Compounds in Tomato Fruits (Solanum lycopersicum)

Authors: Vanessa Caroline De Barros Bonato, Bruna Lima Gomes, Luciano Freschi, Eduardo Purgatto

Abstract:

The plant hormone ethylene is closely related to the metabolic changes that occur during fruit ripening, including volatile biosynthesis. Although knowledge about the biochemistry pathways that produce flavor compounds and the importance of ethylene to these processes are extensively covered, little is known about the regulation mechanisms. In addition, growing body of evidences indicates that auxin is also involved in controlling ripening. However, there is scarce information about the involvement of auxin in fruit volatile production. This study aimed to assess auxin-ethylene interactions and its influence on tomato fruit volatile profile. Fruits from tomato cultivar Micro-Tom were treated with IAA and ethylene, separately and in combination. The hormonal treatment was performed by injection (IAA) or gas exposure (ethylene) and the volatiles were extracted by Solid Phase Microextraction (SPME) and analyzed by GC-MS. Ethylene levels and color were measured by gas chromatography and colorimetry, respectively. The results indicate that the treatment with IAA (even in the presence of high concentrations of exogenous ethylene), impacted the profile of volatile compounds derived from fatty acids, amino acids, carbohydrates and isoprenoids. Ethylene is a well-known regulator of the transition from green to red color and also is implicated in the biosynthesis of characteristic volatile compounds of tomato fruit. The effects observed suggest the existence of a crosstalk between IAA and ethylene in the aroma volatile formation in the fruit. A possible interference of IAA in the ethylene sensitivity in the fruit flesh is discussed. The data suggest that auxin plays an important role in the volatile synthesis in the tomato fruit and introduce a new level of complexity in the regulation of the fruit aroma formation during ripening.

Keywords: aroma compounds, fruit ripening, fruit quality, phytohormones

Procedia PDF Downloads 390
787 A Nucleic Acid Extraction Method for High-Viscosity Floricultural Samples

Authors: Harunori Kawabe, Hideyuki Aoshima, Koji Murakami, Minoru Kawakami, Yuka Nakano, David D. Ordinario, C. W. Crawford, Iri Sato-Baran

Abstract:

With the recent advances in gene editing technologies allowing the rewriting of genetic sequences, additional market growth in the global floriculture market beyond previous trends is anticipated through increasingly sophisticated plant breeding techniques. As a prerequisite for gene editing, the gene sequence of the target plant must first be identified. This necessitates the genetic analysis of plants with unknown gene sequences, the extraction of RNA, and comprehensive expression analysis. Consequently, a technology capable of consistently and effectively extracting high-purity DNA and RNA from plants is of paramount importance. Although model plants, such as Arabidopsis and tobacco, have established methods for DNA and RNA extraction, floricultural species such as roses present unique challenges. Different techniques to extract DNA and RNA from various floricultural species were investigated. Upon sampling and grinding the petals of several floricultural species, it was observed that nucleic acid extraction from the ground petal solutions of low viscosity was straightforward; solutions of high viscosity presented a significant challenge. It is postulated that the presence of substantial quantities of polysaccharides and polyphenols in the plant tissue was responsible for the inhibition of nucleic acid extraction. Consequently, attempts were made to extract high-purity DNA and RNA by improving the CTAB method and combining it with commercially available nucleic acid extraction kits. The quality of the total extracted DNA and RNA was evaluated using standard methods. Finally, the effectiveness of the extraction method was assessed by determining whether it was possible to create a library that could be applied as a suitable template for a next-generation sequencer. In conclusion, a method was developed for consistent and accurate nucleic acid extraction from high-viscosity floricultural samples. These results demonstrate improved techniques for DNA and RNA extraction from flowers, help facilitate gene editing of floricultural species and expand the boundaries of research and commercial opportunities.

Keywords: floriculture, gene editing, next-generation sequencing, nucleic acid extraction

Procedia PDF Downloads 0
786 Synergistic Effects of Hydrogen Sulfide and Melatonin in Alleviating Vanadium Toxicity in Solanum lycopersicum L. Plants

Authors: Abazar Ghorbani, W. M. Wishwajith W. Kandegama, Seyed Mehdi Razavi, Moxian Chen

Abstract:

The roles of hydrogen sulfide (H₂S) and melatonin (MT) as gasotransmitters in plants are widely recognised. Nevertheless, the precise nature of their involvement in defensive reactions remains uncertain. This study investigates the impact of the ML-H2S interaction on tomato plants exposed to vanadium (V) toxicity, focusing on synthesising secondary metabolites and V metal sequestration. The treatments applied in this study included a control (T1), V stress (T2), MT+V (T3), MT+H2S+V (T4), MT+hypotaurine (HT)+V (T5), and MT+H2S+HT+V (T6). These treatments were administered: MT (150 µM) as a foliar spray pre-treatment (3X), HT treatment (0.1 mM, an H2S scavenger) as root immersion for 12 hours as pre-treatments, and H2S (NaHS, 0.2 mM) and V (40 mg/L) treatments added to the Hoagland solution for 2 weeks. Results demonstrate that ML and H2S+ML treatments alleviate V toxicity by promoting the transcription of key genes (ANS, F3H, CHS, DFR, PAL, and CHI) involved in phenolic and anthocyanin biosynthesis. Moreover, they decreased V uptake and accumulation and enhanced the transcription of genes involved in glutathione and phytochelatin synthesis (GSH1, PCS, and ABC1), leading to V sequestration in roots and protection against V-induced damage. Additionally, ML and H2S+ML treatments optimize chlorophyll metabolism, and increase internal H2S levels, thereby promoting tomato growth under V stress. The combined treatment of ML+H2S shows superior effects compared to ML alone, suggesting synergistic/interactive effects between these two substances. Furthermore, inhibition of the beneficial impact of ML+H2S and ML treatments by HT, an H2S scavenger, underscores the significant involvement of H₂S in the signaling pathway activated by ML during V toxicity. Overall, these findings suggest that ML requires the presence of endogenous H₂S to mitigate V-induced adverse effects on tomato seedlings.

Keywords: vanadium toxicity, secondary metabolites, vanadium sequestration, h2s-melatonin crosstalk

Procedia PDF Downloads 37
785 Role of Cellulose Fibers in Tuning the Microstructure and Crystallographic Phase of α-Fe₂O₃ and α-FeOOH Nanoparticles

Authors: Indu Chauhan, Bhupendra S. Butola, Paritosh Mohanty

Abstract:

It is very well known that properties of material changes as their size approach to nanoscale level due to the high surface area to volume ratio. However, in last few decades, a tenet ‘structure dictates function’ is quickly being adopted by researchers working with nanomaterials. The design and exploitation of nanoparticles with tailored shape and size has become one of the primary goals of materials science researchers to expose the properties of nanostructures. To date, various methods, including soft/hard template/surfactant assisted route hydrothermal reaction, seed mediated growth method, capping molecule-assisted synthesis, polyol process, etc. have been adopted to synthesize the nanostructures with controlled size and shape and monodispersity. However controlling the shape and size of nanoparticles is an ultimate challenge of modern material research. In particular, many efforts have been devoted to rational and skillful control of hierarchical and complex nanostructures. Thus in our research work, role of cellulose in manipulating the nanostructures has been discussed. Nanoparticles of α-Fe₂O₃ (diameter ca. 15 to 130 nm) were immobilized on the cellulose fiber surface by a single step in situ hydrothermal method. However, nanoflakes of α-FeOOH having thickness ca. ~25 nm and length ca. ~250 nm were obtained by the same method in absence of cellulose fibers. A possible nucleation and growth mechanism of the formation of nanostructures on cellulose fibers have been proposed. The covalent bond formation between the cellulose fibers and nanostructures has been discussed with supporting evidence from the spectroscopic and other analytical studies such as Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The role of cellulose in manipulating the nanostructures has been discussed.

Keywords: cellulose fibers, α-Fe₂O₃, α-FeOOH, hydrothermal, nanoflakes, nanoparticles

Procedia PDF Downloads 144
784 Sun-Light Driven Photocatalytic Degradation of Tetracycline Antibiotics Employing Hydrothermally Synthesized sno₂/mnv₂o₆ Heterojunction

Authors: Sandeep Kaushal

Abstract:

Tetracycline (TC) is a widespread antibiotic that is utilised in a multitude of countries, particularly China, India, and the United States of America, due to its low cost and potency in boosting livestock production. Unfortunately, certain antibiotics can be hazardous to living beings due to metal complexation and aggregation, which can lead to teratogenicity and carcinogenicity. Heterojunction photocatalysts are promising for the effective removal of pollutants like antibiotics. Herein, a simple, economical, and pollution-less hydrothermal technique was used to construct SnO₂/MnV₂O₆heterojunction with varying amounts of tin dioxide (SO₂). Various sophisticated techniques like XRD, FTIR, XPS, FESEM, HRTEM, and PLand Raman spectroscopy demonstrated the successful synthesis of SnO₂/MnV₂O₆ heterojunction photocatalysts.BET surface area analysis revealed that the as-synthesized heterojunction has a favorable surface area and surface properties for efficacious degradation of tetracycline. Under the direct sunlight exposure, the SnO₂/MnV₂O₆ heterojunction possessed superior photodegradation activity toward TC than the pristine SnO₂ and MnV2O6owing to their excellent adsorption abilities suitable band positions, large surface areas along with the effective charge-transfer ability of the heterojunction. The SnO₂/MnV₂O₆ heterojunction possessed extraordinary efficiency for the photocatalytic degradation of TC antibiotic (98% in 60 min) with an apparent rate constant of 0.092 min–1. In the degradation experiments, photocatalytic activities of as-synthesized heterojunction were studied by varying different factors such as time contact, catalyst dose, and solution pH. The role of reactive species in antibiotics was validated by radical scavenging studies, which indicated that.OH, radical has a critical role in photocatalytic degradation. Moreover, liquid chromatography-mass spectrometry (LC-MS) investigations were employed to anticipate a plausible mechanism for TC degradation.

Keywords: photocatalytic degradation, tetracycline, heterojunction, LC-MS

Procedia PDF Downloads 102
783 Synthesis and Characterization of Chiral Dopant Based on Schiff's Base Structure

Authors: Hong-Min Kim, Da-Som Han, Myong-Hoon Lee

Abstract:

CLCs (Cholesteric liquid crystals) draw tremendous interest due to their potential in various applications such as cholesteric color filters in LCD devices. CLC possesses helical molecular orientation which is induced by a chiral dopant molecules mixed with nematic liquid crystals. The efficiency of a chiral dopant is quantified by the HTP (helical twisting power). In this work, we designed and synthesized a series of new chiral dopants having a Schiff’s base imine structure with different alkyl chain lengths (butyl, hexyl and octyl) from chiral naphthyl amine by two-step reaction. The structures of new chiral dopants were confirmed by 1H-NMR and IR spectroscopy. The properties were investigated by DSC (differential scanning calorimetry calorimetry), POM (polarized optical microscopy) and UV-Vis spectrophotometer. These solid state chiral dopants showed excellent solubility in nematic LC (MLC-6845-000) higher than 17wt%. We prepared the CLC(Cholesteric Liquid Crystal) cell by mixing nematic LC (MLC-6845-000) with different concentrations of chiral dopants and injecting into the sandwich cell of 5μm cell gap with antiparallel alignment. The cholesteric liquid crystal phase was confirmed from POM, in which all the samples showed planar phase, a typical phase of the cholesteric liquid crystals. The HTP (helical twisting power) is one of the most important properties of CLC. We measured the HTP values from the UV-Vis transmittance spectra of CLC cells with varies chiral dopant concentration. The HTP values with different alkyl chains are as follows: butyl chiral dopant=29.8μm-1; hexyl chiral dopant= 31.8μm-1; octyl chiral dopant=27.7μm-1. We obtained the red, green and blue reflection color from CLC cells, which can be used as color filters in LCDs applications.

Keywords: cholesteric liquid crystal, color filter, display, HTP

Procedia PDF Downloads 264
782 Molecular Evolutionary Relationships Between O-Antigens of Enteric Bacteria

Authors: Yuriy A. Knirel

Abstract:

Enteric bacteria Escherichia coli is the predominant facultative anaerobe of the colonic flora, and some specific serotypes are associated with enteritis, hemorrhagic colitis, and hemolytic uremic syndrome. Shigella spp. are human pathogens that cause diarrhea and bacillary dysentery (shigellosis). They are in effect E. coli with a specific mode of pathogenicity. Strains of Salmonella enterica are responsible for a food-borne infection (salmonellosis), and specific serotypes cause typhoid fever and paratyphoid fever. All these bacteria are closely related in respect to structure and genetics of the lipopolysaccharide, including the O-polysaccharide part (O‑antigen). Being exposed to the bacterial cell surface, the O antigen is subject to intense selection by the host immune system and bacteriophages giving rise to diverse O‑antigen forms and providing the basis for typing of bacteria. The O-antigen forms of many bacteria are unique, but some are structurally and genetically related to others. The sequenced O-antigen gene clusters between conserved galF and gnd genes were analyzed taking into account the O-antigen structures established by us and others for all S. enterica and Shigella and most E. coli O-serogroups. Multiple genetic mechanisms of diversification of the O-antigen forms, such as lateral gene transfer and mutations, were elucidated and are summarized in the present paper. They include acquisition or inactivation of genes for sugar synthesis or transfer or recombination of O-antigen gene clusters or their parts. The data obtained contribute to our understanding of the origins of the O‑antigen diversity, shed light on molecular evolutionary relationships between the O-antigens of enteric bacteria, and open a way for studies of the role of gene polymorphism in pathogenicity.

Keywords: enteric bacteria, O-antigen gene cluster, polysaccharide biosynthesis, polysaccharide structure

Procedia PDF Downloads 138
781 Synthesis of La0.8Sr0.05Ca0.15Fe0.8Co0.2O3-δ -Ce0.9Gd0.1O1.95 Composite Cathode Material for Solid Oxide Fuel Cell with Lanthanum and Cerium Recycled from Wasted Glass Polishing Powder

Authors: Jun-Lun Jiang, Bing-Sheng Yu

Abstract:

Processing of flat-panel displays generates huge amount of wasted glass polishing powder, with high concentration of cerium and other elements such as lanthanum. According to the current statistics, consumption of polishing powder was approximately ten thousand tons per year in the world. Nevertheless, wasted polishing powder was usually buried or burned. If the lanthanum and cerium compounds in the wasted polishing powder could be recycled, that will greatly reduce enterprise cost and implement waste circulation. Cathodes of SOFCs are the principal consisting of rare earth elements such as lanthanum and cerium. In this study, we recycled the lanthanum and cerium from wasted glass polishing powder by acid-solution method, and synthesized La0.8Sr0.05Ca0.15Fe0.8Co0.8O3-δ and Gd0.1Ce0.9O2 (LSCCF-GDC) composite cathode material for SOFCs by glycinenitrate combustion (GNP) method. The results show that the recovery rates of lanthanum and cerium could accomplish up to 80% and 100% under 10N nitric acid solution within one hour. Comparing with the XRD data of the commercial LSCCF-GDC powder and the LSCCF-GDC product synthesized with chemicals, we find that the LSCCF-GDC was successfully synthesized with the recycled La & Ce solution by GNP method. The effect of adding ammonia to the product was also discussed, the grain size is finer and recovery rate of the product is higher without the addition of ammonia to the solution.

Keywords: glass polishing powder, acid solution, recycling, composite cathodes of solid oxide fuel, cell (SOFC), perovskite, glycine-nitrate combustion(GNP) method

Procedia PDF Downloads 269
780 Backwash Optimization for Drinking Water Treatment Biological Filters

Authors: Sarra K. Ikhlef, Onita Basu

Abstract:

Natural organic matter (NOM) removal efficiency using drinking water treatment biological filters can be highly influenced by backwashing conditions. Backwashing has the ability to remove the accumulated biomass and particles in order to regenerate the biological filters' removal capacity and prevent excessive headloss buildup. A lab scale system consisting of 3 biological filters was used in this study to examine the implications of different backwash strategies on biological filtration performance. The backwash procedures were evaluated based on their impacts on dissolved organic carbon (DOC) removals, biological filters’ biomass, backwash water volume usage, and particle removal. Results showed that under nutrient limited conditions, the simultaneous use of air and water under collapse pulsing conditions lead to a DOC removal of 22% which was significantly higher (p>0.05) than the 12% removal observed under water only backwash conditions. Employing a bed expansion of 20% under nutrient supplemented conditions compared to a 30% reference bed expansion while using the same amount of water volume lead to similar DOC removals. On the other hand, utilizing a higher bed expansion (40%) lead to significantly lower DOC removals (23%). Also, a backwash strategy that reduced the backwash water volume usage by about 20% resulted in similar DOC removals observed with the reference backwash. The backwash procedures investigated in this study showed no consistent impact on biological filters' biomass concentrations as measured by the phospholipids and the adenosine tri-phosphate (ATP) methods. Moreover, none of these two analyses showed a direct correlation with DOC removal. On the other hand, dissolved oxygen (DO) uptake showed a direct correlation with DOC removals. The addition of the extended terminal subfluidization wash (ETSW) demonstrated no apparent impact on DOC removals. ETSW also successfully eliminated the filter ripening sequence (FRS). As a result, the additional water usage resulting from implementing ETSW was compensated by water savings after restart. Results from this study provide insight to researchers and water treatment utilities on how to better optimize the backwashing procedure for the goal of optimizing the overall biological filtration process.

Keywords: biological filtration, backwashing, collapse pulsing, ETSW

Procedia PDF Downloads 269
779 The Selective Reduction of a Morita-baylis-hillman Adduct-derived Ketones Using Various Ketoreductase Enzyme Preparations

Authors: Nompumelelo P. Mathebula, Roger A. Sheldon, Daniel P. Pienaar, Moira L. Bode

Abstract:

The preparation of enantiopure Morita-Baylis-Hillman (MBH) adducts remains a challenge in organic chemistry. MBH adducts are highly functionalised compounds which act as key intermediates in the preparation of compounds of medicinal importance. MBH adducts are prepared in racemic form by reacting various aldehydes and activated alkenes in the presence of DABCO. Enantiopure MBH adducts can be obtained by employing Enzymatic kinetic resolution (EKR). This technique has been successfully demonstrated in our group, amongst others, using lipases in either hydrolysis or transesterification reactions. As these methods only allow 50% of each enantiomer to be obtained, our interest grew in exploring other enzymatic methods for the synthesis of enantiopure MBH adducts where, theoretically, 100% of the desired enantiomer could be obtained.Dehydrogenase enzymes can be employed on prochiral substrates to obtain optically pure compounds by reducing carbon-carbon double bonds or carbonyl groups of ketones. Ketoreductases have been used historically to obtain enantiopure secondary alcohols on an industrial scale. Ketoreductases are NAD(P)H-dependent enzymes and thus require nicotinamide as a cofactor. This project focuses on employing ketoreductase enzymes to selectively reduce ketones derived from Morita-Baylis-Hillman (MBH) adducts in order to obtain these adducts in enantiopure form.Results obtained from this study will be reported. Good enantioselectivity was observed using a range of different ketoreductases, however, reactions were complicated by the formation of an unexpected by-product, which was characterised employing single crystal x-ray crystallography techniques. Methods to minimise by-product formation are currently being investigated.

Keywords: ketoreductase, morita-baylis-hillman, selective reduction, x-ray crystallography

Procedia PDF Downloads 61
778 Reusability of Coimmobilized Enzymes

Authors: Aleksandra Łochowicz, Daria Świętochowska, Loredano Pollegioni, Nazim Ocal, Franck Charmantray, Laurence Hecquet, Katarzyna Szymańska

Abstract:

Multienzymatic cascade reactions are nowadays widely used in pharmaceutical, chemical and cosmetics industries to produce high valuable compounds. They can be carried out in two ways, step by step and one-pot. If two or more enzymes are in the same reaction vessel is necessary to work out the compromise to run the reaction in optimal conditions for each enzyme. So far most of the reports of multienzymatic cascades concern on usage of free enzymes. Unfortunately using free enzymes as catalysts of reactions accomplish high cost. What is more, free enzymes are soluble in solvents which makes reuse impossible. To overcome this obstacle enzymes can be immobilized what provides heterogeneity of biocatalyst that enables reuse and easy separation of the enzyme from solvents and reaction products. Usually, immobilization increase also the thermal and operational stability of enzyme. The advantages of using immobilized multienzymes are enhanced enzyme stability, improved cascade enzymatic activity via substrate channeling, and ease of recovery for reuse. The one-pot immobilized multienzymatic cascade can be carried out in mixed or coimmobilized type. When biocatalysts are coimmobilized on the same carrier the are in close contact to each other which increase the reaction rate and catalytic efficiency, and eliminate the lag time. However, in this type providing the optimal conditions both in the process of immobilization and cascade reaction for each enzyme is complicated. Herein, we examined immobilization of 3 enzymes: D-amino acid oxidase from Rhodotorula gracilis, commercially available catalase and transketolase from Geobacillus stearothermophilus. As a support we used silica monoliths with hierarchical structure of pores. Then we checked their stability and reusability in one-pot cascade of L-erythrulose and hydroxypuryvate acid synthesis.

Keywords: biocatalysts, enzyme immobilization, multienzymatic reaction, silica carriers

Procedia PDF Downloads 146
777 Synthesis and Physiochemical Properties of 3-Propanenitrile Imidazolium - Based Dual Functionalized Ionic Liquids Incorporating Dioctyl Sulfosuccinate Anion

Authors: Abobakr Khidir Ziyada, Cecilia Devi Wilfred

Abstract:

In the present work, a new series of 3-propanenitrile imidazolium-based Room Temperature Ionic Liquids (RTILs), incorporating dioctyl sulfosuccinate (DOSS) were prepared by reacting imidazole with acrylonitrile and then reacting the product with allyl chloride, 2-chloroethanol, and benzyl chloride. After the reaction had been completed, metathesis reaction was carried out using sodium dioctyl sulfosuccinate. The densities and viscosities of the present RTILs were measured at atmospheric pressure at T=293.15 to 353.15 K, the refractive index was measured at T=293.15 to 333.15 K, whereas, the start and decomposition temperatures were determined at heating rate 10°C. min^-1. The thermal expansion coefficient, densities at a range of temperatures and pressures, molecular volume, molar refraction, standard entropy and the lattice energy of these RTILs were also estimated. The present RTILs showed higher densities, similar refractive indices, and higher viscosities compared to the other 1-alkyl-3-propanenitrile imidazolium-based RTILs. The densities of the present synthesized RTILs are lower compared to the other nitrile-functionalized ILs. These present RTILs showed a weak temperature dependence on the thermal expansion coefficients, αp=5.0 × 10^−4 to 7.50 × 10−4 K^-1. Empirical correlations were proposed to represent the present data on the physical properties. The lattice energy for the present RTILs was similar to other nitrile–based imidazolium RTILs. The present RTILs showed very high molar refraction when compared similar RTILs incorporating other anions.

Keywords: dioctyl sulfosuccinate, nitrile ILs, 3-propanenitrile, anion, room temperature ionic liquids, RTIL

Procedia PDF Downloads 330
776 Synthesis of Pd Nanoparticles Confined in Graphene Oxide Framework as Nano Catalyst with Improved Activity and Recyclability in Suzuki-Miyaura Cross-Coupling Reaction

Authors: Thuy Phuong Nhat Tran, Ashutosh Thakur, Toshiaki Taniike

Abstract:

Recently, covalently linked graphene oxide frameworks (GOFs) have attracted considerable attention in gas absorbance and water purification as well-defined microporous materials. In spite of their potential advantages such as a controllable pore dimension, adjustable hydrophobicity, and structural stability, these materials have been scarcely employed in heterogeneous catalysis. Here we demonstrate a novel and facile method to synthesize Pd nanoparticles (NPs) confined in a GOF (Pd@GOF). The GOF with uniform interlayer space was obtained by the intercalation of diboronic acid between graphene oxide layers. It was found that Pd NPs were generated inside the graphitic gallery spaces of the GOF, and thus, formed Pd NPs were well-dispersed with a narrow particle size distribution. The synthesized Pd@GOF emerged as an efficient nanocatalyst based on its superior performance (product yield and recyclability) toward Suzuki-Miyaura cross-coupling reaction in both polar and apolar solvents, which has been hardly observed for previously reported graphene-based Pd nanocatalysts. Furthermore, the rational comparison of the catalytic performance between two kinds of Pd@GOF (Pd NPs encapsulated in a diboronic ester-intercalated GOF and in a monoboronic ester-intercalated GOF) firmly confirmed the essential role of a rigid framework design in the stabilization of Pd NPs. Based on these results, the covalently assembled GOF was proposed as a promising scaffold for hosting noble metal NPs to construct desired metal@GOF nanocatalysts with improved activity and durability.

Keywords: graphene oxide framework, palladium nanocatalyst, pore confinement, Suzuki-Miyaura cross-coupling reaction

Procedia PDF Downloads 132
775 An Interpretative Phenomenological Analysis on the Concept of Friends of Children in Conflict with the Law

Authors: Karla Kristine Bay, Jovie Ann Gabin, Allana Joyce Sasotona

Abstract:

This research employed an Interpretative Phenomenological Analysis to explore the experiences of Children in Conflict with the Law (CICL) which gave light to their concept of ‘friends’. Derived from this context are the following objectives of the study: 1) determining the differentiation of the forms of friends of the CICL; 2) presenting the process of attachment towards detachment in the formation of friendship; and 3) discussing the experiences, and reflections of the CICL on the ‘self’ out of their encounter with friendship. Using the data gathered from the individual drawings of the CICL of their representations of the self, family, friends, community, and Bahay Kalinga as subjects in the meaning-making process utilizing Filipino Psychology methods of pagtatanong-tanong (interview), and pakikipagkwentuhan (conversation), data analysis produced a synthesis of seventeen individual cases. Overall results generated three superordinate themes on the differentiation of the forms of friends which include friends with good influences, friends with bad influences, and friends within the family. While two superordinate themes were produced on the process of attachment towards detachment, namely social, emotional, and psychological experiences on the process of attachment, and emotional and psychological experiences on the process of detachment. Lastly, two superordinate themes were created on the experiences, and reflections of the CICL on the ‘self’ out of their encounter with friendship. This consists of the recognition of the ‘self’ as a responsible agent in developing healthy relationships between the self and others, and reconstruction of the self from the collective experiences of healing, forgiveness, and acceptance. These findings, together with supporting theories discussed the impact of friendship on the emergence of criminal behavior and other dispositions; springing from the child’s dissociation from the family that led to finding belongingness from an external group called friends.

Keywords: children in conflict with the law, criminal behavior, friends, interpretative phenomenological analysis

Procedia PDF Downloads 230
774 Biological Studies of N-O Donor 4-Acypyrazolone Heterocycle and Its Pd/Pt Complexes of Therapeutic Importance

Authors: Omoruyi Gold Idemudia, Alexander P. Sadimenko

Abstract:

The synthesis of N-heterocycles with novel properties, having broad spectrum biological activities that may become alternative medicinal drugs, have been attracting a lot of research attention due to the emergence of medicinal drug’s limitations such as disease resistance and their toxicity effects among others. Acylpyrazolones have been employed as pharmaceuticals as well as analytical reagent and their application as coordination complexes with transition metal ions have been well established. By way of a condensation reaction with amines acylpyrazolone ketones form a more chelating and superior group of compounds known as azomethines. 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one was reacted with phenylhydrazine to get a new phenylhydrazone which was further reacted with aqueous solutions of palladium and platinum salts, in an effort towards the discovery of transition metal based synthetic drugs. The compounds were characterized by means of analytical, spectroscopic, thermogravimetric analysis TGA, as well as x-ray crystallography. 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one phenylhydrazone crystallizes in a triclinic crystal system with a P-1 (No. 2) space group based on x-ray crystallography. The bidentate ON ligand formed a square planar geometry on coordinating with metal ions based on FTIR, electronic and NMR spectra as well as magnetic moments. Reported compounds showed antibacterial activities against the nominated bacterial isolates using the disc diffusion technique at 20 mg/ml in triplicates. The metal complexes exhibited a better antibacterial activity with platinum complex having an MIC value of 0.63 mg/ml. Similarly, ligand and complexes also showed antioxidant scavenging properties against 2, 2-diphenyl-1-picrylhydrazyl DPPH radical at 0.5mg/ml relative to ascorbic acid (standard drug).

Keywords: acylpyrazolone, antibacterial studies, metal complexes, phenylhydrazone, spectroscopy

Procedia PDF Downloads 248
773 Synthesis, Characterization and Biological Evaluation of Some Pyrazole Derivatives

Authors: Afifa Hafidh, Hedia Chaabane

Abstract:

This work mainly focused on the synthetic strategies and biological activities associated with pyrazoles. Pyrazole derivatives have been successfully synthesized by simple and facile method and studied for their antibacterial activity. These compounds were prepared from pyrazolic difunctional compounds as starting materials, by reaction with salicylic acid, paracetamol and thiosemicarbazide respectively. Structure of all the prepared compounds confirmation were proved using (FT-IR), (1H-NMR) and (13C-NMR) spectra in addition to melting points. The screening of the antimicrobial activity of the pyrazolic derivatives was examined against different microorganisms in the present study. They were screened for their antimicrobial activities against gram positive bacteria, gram negative bacteria and Candida albicans. The synthesized compounds were found to exhibit high antibacterial and antifungal efficiency against several tested bacterial strains, using agar diffusion method and filter paper disc-diffusion method. Ampicillin was used as positive control for all strains except Candida albicans for which Nystatin was used. The obtained results reveal that the antibacterial activity of some pyrazolic derivatives is comparable to that observed for the control samples (Ampicilin and Nystatin), suggesting a strong antibacterial activity. The analysis of these results shows that synthesized products react on the surfaces cell walls that are disrupted. When these products are in contact with the bacteria, they damage the membrane, leading to the perturbation of different cellular processes and then leakage of cytoplasm, resulting in the death of the cells. The results will be presented in details. The obtained products constitute effective antibacterial agents and important compounds for biological systems.

Keywords: salicylic acid, antimicrobial activities, antioxidant activity, paracetamol, pyrazole, thiosemicarbazide

Procedia PDF Downloads 169
772 Literary Interpretation and Systematic-Structural Analysis of the Titles of the Works “The Day Lasts More than a Hundred Years”, “Doomsday”

Authors: Bahor Bahriddinovna Turaeva

Abstract:

The article provides a structural analysis of the titles of the famous Kyrgyz writer Chingiz Aitmatov’s creative works “The Day Lasts More Than a Hundred Years”, “Doomsday”. The author’s creative purpose in naming the work of art, the role of the elements of the plot, and the composition of the novels in revealing the essence of the title are explained. The criteria that are important in naming the author’s works in different genres are classified, and the titles that mean artistic time and artistic space are studied separately. Chronotope is being concerned as the literary-aesthetic category in world literary studies, expressing the scope of the universe interpretation, the author’s outlook and imagination regarding the world foundation, defining personages, and the composition means of expressing the sequence and duration of the events. A creative comprehension of the chronotope as a means of arranging the work composition, structure and constructing an epic field of the text demands a special approach to understanding the aesthetic character of the work. Since the chronotope includes all the elements of a fictional work, it is impossible to present the plot, composition, conflict, system of characters, feelings, and mood of the characters without the description of the chronotope. In the following development of the scientific-theoretical thought in the world, the chronotope is accepted to be one of the poetic means to demonstrate reality as well as to be a literary process that is basic for the expression of reality in the compositional construction and illustration of the plot relying on the writer’s intention and the ideological conception of the literary work. Literary time enables one to cognate the literary world picture created by the author in terms of the descriptive subject and object of the work. Therefore, one of the topical tasks of modern Uzbek literary studies is to describe historical evidence, event, the life of outstanding people, the chronology of the near past based on the literary time; on the example of the creative works of a certain period, creators or an individual writer are analyzed in separate or comparative-typological aspect.

Keywords: novel, title, chronotope, motive, epigraph, analepsis, structural analysis, plot line, composition

Procedia PDF Downloads 73
771 Polygenetic Iron Mineralization in the Baba-Ali and Galali Deposits, Further Evidences from Stable (S, O, H) Isotope Data, NW Hamedan, Iran

Authors: Ghodratollah Rostami Paydar

Abstract:

The Baba-Ali and Galali iron deposits are located in northwest Hamedan and the Iranian Sanandaj-Sirjan geological structural zone. The host rocks of these deposits are metavolcanosedimentary successions of Songhor stratigraphic series with permo-trriassic age. Field investigation, ore geometry, textures and structures and paragenetic sequence of minerals, all indicate that the ore minerals are crystallized in four stages: primary volcanosedimentary stage, secondary regional metamorphism with formation of ductile shear zones, contact metamorphism and metasomatism stage and the finally late hydrothermal mineralization within uplift and exposure. Totally 29 samples of sulfide, oxide-silicate and carbonate minerals of iron orees and gangue has been purified for stable isotope analysis. The isotope ratio data assure that occurrence of dynamothermal metamorphism in these areas typically involves a lengthy period of time, which results in a tendency toward isotopic homogenization specifically in O and H stable isotopes and showing the role of metamorphic waters in mineralization process. Measurement of δ34S (CDT) in first generation of pyrite is higher than another ones, so it confirms the volcanogenic origin of primary iron mineralization. δ13C data measurements in Galali carbonate country rocks show a marine origin. δ18O in magnetite and skarn forming silicates, δ18O and δ13C in limestone and skarn calcite and δ34S in sulphides are all consistent with the interaction of a magmatic-equilibrated fluid with Galali limestone, and a dominantly magmatic source for S. All these data imply skarn formation and mineralisation in a magmatic-hydrothermal system that maintained high salinity to relatively late stages resulting in the formation of the regional Na metasomatic alteration halo. Late stage hydrothermal quartz-calcite veinlets are important for gold mineralization, but the economic evaluation is required to detailed geochemical studies.

Keywords: iron, polygenetic, stable isotope, BabaAli, Galali

Procedia PDF Downloads 296
770 Synthesis of Highly Porous Cyclowollastonite Bioactive Ceramic

Authors: Mehieddine Bouatrous

Abstract:

Recently bioactive ceramic materials have been applied in the biomedical field as bulk, granular, or coating materials for more than half a century. More recently, bone tissue engineering scaffolds made of highly porous bioactive ceramic, glass-ceramic, and composite materials have also been created. As a result, recent bioactive ceramic structures have a high bioactivity rate, an open pores network, and good mechanical characteristics simulating cortical bone. Cyclowollastonite frameworks are also suggested for use as a graft material. As a porogenous agent, various amounts of the polymethyl methacrylate (PMMA) powders were used in this study successfully to synthesize a highly interrelated, nanostructured porous cyclowollastonite with a large specific surface area where the morphology and porosity were investigated. Porous cyclowollastonite bioactive ceramics were synthesized with a cost-effective and eco-friendly wet chemical method. The synthesized biomaterial is bioactive according to in vitro tests and can be used for bone tissue engineering scaffolds where cyclowollastonite sintered dense discs were submerged in simulated body fluid (S.B.F.) for various periods of time (1-4 weeks), resulting in the formation of a dense and consistent layer of hydroxyapatite on the surface of the ceramics, indicating its good in vitro bioactivity. Therefore, the cyclowollastonite framework exhibits good in vitro bioactivity due to its highly interconnecting porous structure and open macropores. The results demonstrate that even after soaking for several days, the surface of cyclowollastonite ceramic can generate a dense and consistent layer of hydroxyapatite. The results showed that cyclowollastonite framework exhibits good in vitro bioactivity due to highly interconnecting porous structure and open macropores.

Keywords: porous, bioactive, biomaterials, S.B.F, cyclowollastonite, biodegradability

Procedia PDF Downloads 73
769 Preparation of Nano-Scaled linbo3 by Polyol Method

Authors: Gabriella Dravecz, László Péter, Zsolt Kis

Abstract:

Abstract— The growth of optical LiNbO3 single crystal and its physical and chemical properties are well known on the macroscopic scale. Nowadays the rare-earth doped single crystals became important for coherent quantum optical experiments: electromagnetically induced transparency, slow down of light pulses, coherent quantum memory. The expansion of applications is increasingly requiring the production of nano scaled LiNbO3 particles. For example, rare-earth doped nanoscaled particles of lithium niobate can be act like single photon source which can be the bases of a coding system of the quantum computer providing complete inaccessibility to strangers. The polyol method is a chemical synthesis where oxide formation occurs instead of hydroxide because of the high temperature. Moreover the polyol medium limits the growth and agglomeration of the grains producing particles with the diameter of 30-200 nm. In this work nano scaled LiNbO3 was prepared by the polyol method. The starting materials (niobium oxalate and LiOH) were diluted in H2O2. Then it was suspended in ethylene glycol and heated up to about the boiling point of the mixture with intensive stirring. After the thermal equilibrium was reached, the mixture was kept in this temperature for 4 hours. The suspension was cooled overnight. The mixture was centrifuged and the particles were filtered. Dynamic Light Scattering (DLS) measurement was carried out and the size of the particles were found to be 80-100 nms. This was confirmed by Scanning Electron Microscope (SEM) investigations. The element analysis of SEM showed large amount of Nb in the sample. The production of LiNbO3 nano particles were succesful by the polyol method. The agglomeration of the particles were avoided and the size of 80-100nm could be reached.

Keywords: lithium-niobate, nanoparticles, polyol, SEM

Procedia PDF Downloads 129
768 Sublethal Effect of Tebufenozide, an Ecdysteroid Agonist, on the Reproduction of German Cockroach (Blattodea: Blattellidae)

Authors: Samira Kilani-Morakchi, Amina Badi, Nadia Aribi

Abstract:

German cockroach, Blattella germanica, is known to be an important pest due to its high reproductive potential and its ability to build up large infectious populations. The infestations were generally controlled by neurotoxic insecticides including organophosphates (OP), carbamate and pyrethroids. An alternative cockroach’s control approach is the use insect growth regulators (IGRs). The relative fewer effects of these chemicals on non-target insects and animals, and their favourable environmental fate, make them attractive insecticides for inclusion in integrated pest management programmes. The juvenoids and chitin synthesis inhibitors are two classes of IGRs that have received the most attention for useful chemicals to manage German cockroaches while ecdysone agonists were mostly used to control Lepidopteran species. In the present study, the sublethal effects of the non-sreroidal ecdysone agonist tebufenozide were evaluated topically on adults of the B. germanica. The effects on reproduction were observed in adults females of cockroaches that survived exposure to LD25 (146 µg/g of insect) of tebufenozide. Dissection of treated females showed a clear reduction in both the number of oocytes per paired ovaries and the size of basal oocytes, as compared to controls. In addition, tebufenozide significantly reduced the mating success of pairs and altered the fertility as shown through the reduction of ootheca development and total absence of viable nymph. Tebufenozide disrupted the German cockroach reproduction by interfering with homeostasis of the insect hormones. In conclusion, the overall results suggested that tebufenozide can be used as a biorational insecticide for controlling cockroaches.

Keywords: B. germanica, ecdysteroid agonist, tebufenozide, reproduction

Procedia PDF Downloads 291
767 Synthesis of Pyrimidine-Based Polymers Consist of 2-{4-[4,6-Bis-(4-Hexyl-Thiophen-2-yl)-Pyrimidin-2-yl]-Phenyl}-Thiazolo[5,4-B]Pyridine with Deep HOMO Level for Photovoltaics

Authors: Hyehyeon Lee, Jiwon Yu, Juwon Kim, Raquel Kristina Leoni Tumiar, Taewon Kim, Juae Kim, Hongsuk Suh

Abstract:

Photovoltaics, which have many advantages in cost, easy processing, and light-weight, have attracted attention. We synthesized pyrimidine-based conjugated polymers with 2-{4-[4,6-bis-(4-hexyl-thiophen-2-yl)-pyrimidin-2-yl]-phenyl}-thiazolo[5,4-b]pyridine (pPTP) which have an ability of powerful electron withdrawing and introduced into the PSCs. By Stille polymerization, we designed the conjugated polymers, pPTPBDT-12, pPTPBDT-EH, pPTPBDTT-EH and pPTPTTI. The HOMO energy levels of four polymers (pPTPBDT-12, pPTPBDT-EH, pPTPBDTT-EH and pPTPTTI) were at -5.61 ~ -5.89 eV, their LUMO (Lowest Unoccupied Molecular Orbital) energy levels were at -3.95 ~ -4.09 eV. The device including pPTPBDT-12 and PC71BM (1:2) indicated a V_oc of 0.67 V, a J_sc of 1.33 mA/cm², and a fill factor (FF) of 0.25, giving a power conversion efficiency (PCE) of 0.23%. The device including pPTPBDT-EH and PC71BM (1:2) indicated a V_oc of 0.72 V, a J_sc of 2.56 mA/cm², and a fill factor (FF) of 0.30, giving a power conversion efficiency of 0.56%. The device including pPTPBDTT-EH and PC71BM (1:2) indicated a V_oc of 0.72 V, a J_sc of 3.61 mA/cm², and a fill factor (FF) of 0.29, giving a power conversion efficiency of 0.74%. The device including pPTPTTI and PC71BM (1:2) indicated a V_oc of 0.83 V, a J_sc of 4.41 mA/cm², and a fill factor (FF) of 0.31, giving a power conversion efficiency of 1.13%. Therefore, pPTPBDT-12, pPTPBDT-EH, pPTPBDTT-EH, and pPTPTTI were synthesized by Stille polymerization. And We find one of the best efficiency for these polymers, called pPTPTTI. Their optical properties were measured and the results show that pyrimidine-based polymers especially like pPTPTTI have a great promise to act as the donor of the active layer.

Keywords: polymer solar cells, pyrimidine-based polymers, photovoltaics, conjugated polymer

Procedia PDF Downloads 195
766 In Silico Screening, Identification and Validation of Cryptosporidium hominis Hypothetical Protein and Virtual Screening of Inhibitors as Therapeutics

Authors: Arpit Kumar Shrivastava, Subrat Kumar, Rajani Kanta Mohapatra, Priyadarshi Soumyaranjan Sahu

Abstract:

Computational approaches to predict structure, function and other biological characteristics of proteins are becoming more common in comparison to the traditional methods in drug discovery. Cryptosporidiosis is a major zoonotic diarrheal disease particularly in children, which is caused primarily by Cryptosporidium hominis and Cryptosporidium parvum. Currently, there are no vaccines for cryptosporidiosis and recommended drugs are not effective. With the availability of complete genome sequence of C. hominis, new targets have been recognized for the development of effective and better drugs and/or vaccines. We identified a unique hypothetical epitopic protein in C. hominis genome through BLASTP analysis. A 3D model of the hypothetical protein was generated using I-Tasser server through threading methodology. The quality of the model was validated through Ramachandran plot by PROCHECK server. The functional annotation of the hypothetical protein through DALI server revealed structural similarity with human Transportin 3. Phylogenetic analysis for this hypothetical protein also showed C. hominis hypothetical protein (CUV04613) was the closely related to human transportin 3 protein. The 3D protein model is further subjected to virtual screening study with inhibitors from the Zinc Database by using Dock Blaster software. Docking study reported N-(3-chlorobenzyl) ethane-1,2-diamine as the best inhibitor in terms of docking score. Docking analysis elucidated that Leu 525, Ile 526, Glu 528, Glu 529 are critical residues for ligand–receptor interactions. The molecular dynamic simulation was done to access the reliability of the binding pose of inhibitor and protein complex using GROMACS software at 10ns time point. Trajectories were analyzed at each 2.5 ns time interval, among which, H-bond with LEU-525 and GLY- 530 are significantly present in MD trajectories. Furthermore, antigenic determinants of the protein were determined with the help of DNA Star software. Our study findings showed a great potential in order to provide insights in the development of new drug(s) or vaccine(s) for control as well as prevention of cryptosporidiosis among humans and animals.

Keywords: cryptosporidium hominis, hypothetical protein, molecular docking, molecular dynamics simulation

Procedia PDF Downloads 359
765 Theory of the Optimum Signal Approximation Clarifying the Importance in the Recognition of Parallel World and Application to Secure Signal Communication with Feedback

Authors: Takuro Kida, Yuichi Kida

Abstract:

In this paper, it is shown a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detail algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output-signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory, and it is indicated that introducing conversations with feedback do not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.

Keywords: matrix filterbank, optimum signal approximation, category theory, simultaneous minimization

Procedia PDF Downloads 135