Search results for: affects power
5617 Green Prossesing of PS/Nanoparticle Fibers and Studying Morphology and Properties
Authors: M. Kheirandish, S. Borhani
Abstract:
In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples.Keywords: electrospininng, nanoparticle, polystyrene, ZnO
Procedia PDF Downloads 2475616 Thermal Analysis on Heat Transfer Enhancement and Fluid Flow for Al2O3 Water-Ethylene Glycol Nano Fluid in Single PEMFC Mini Channel
Authors: Irnie Zakaria, W. A. N. W. Mohamed, W. H. Azmi
Abstract:
Thermal enhancement of a single mini channel in Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is numerically investigated. In this study, low concentration of Al2O3 in Water - Ethylene Glycol mixtures is used as coolant in mini channel of carbon graphite plate to mimic the PEMFC cooling plate. A steady and incompressible flow with constant heat flux is assumed in the channel of 1mm x 5mm x 100mm. Nano particle of Al2O3 used ranges from 0.1, 0.3 and 0.5 vol % concentration and then dispersed in 60:40 (water: Ethylene Glycol) mixture. The effect of different flow rates to fluid flow and heat transfer enhancement in Re number range of 20 to 140 was observed. The result showed that heat transfer coefficient was improved by 18.11%, 9.86% and 5.37% for 0.5, 0.3 and 0.1 vol % Al2O3 in 60:40 (water: EG) as compared to base fluid of 60:40 (water: EG). It is also showed that the higher vol % concentration of Al2O3 performed better in term of thermal enhancement but at the expense of higher pumping power required due to increase in pressure drop experienced. Maximum additional pumping power of 0.0012W was required for 0.5 vol % Al2O3 in 60:40 (water: EG) at Re number 140.Keywords: heat transfer, mini channel, nanofluid, PEMFC
Procedia PDF Downloads 3415615 Numerical Analysis of the Computational Fluid Dynamics of Co-Digestion in a Large-Scale Continuous Stirred Tank Reactor
Authors: Sylvana A. Vega, Cesar E. Huilinir, Carlos J. Gonzalez
Abstract:
Co-digestion in anaerobic biodigesters is a technology improving hydrolysis by increasing methane generation. In the present study, the dimensional computational fluid dynamics (CFD) is numerically analyzed using Ansys Fluent software for agitation in a full-scale Continuous Stirred Tank Reactor (CSTR) biodigester during the co-digestion process. For this, a rheological study of the substrate is carried out, establishing rotation speeds of the stirrers depending on the microbial activity and energy ranges. The substrate is organic waste from industrial sources of sanitary water, butcher, fishmonger, and dairy. Once the rheological behavior curves have been obtained, it is obtained that it is a non-Newtonian fluid of the pseudoplastic type, with a solids rate of 12%. In the simulation, the rheological results of the fluid are considered, and the full-scale CSTR biodigester is modeled. It was coupling the second-order continuity differential equations, the three-dimensional Navier Stokes, the power-law model for non-Newtonian fluids, and three turbulence models: k-ε RNG, k-ε Realizable, and RMS (Reynolds Stress Model), for a 45° tilt vane impeller. It is simulated for three minutes since it is desired to study an intermittent mixture with a saving benefit of energy consumed. The results show that the absolute errors of the power number associated with the k-ε RNG, k-ε Realizable, and RMS models were 7.62%, 1.85%, and 5.05%, respectively, the numbers of power obtained from the analytical-experimental equation of Nagata. The results of the generalized Reynolds number show that the fluid dynamics have a transition-turbulent flow regime. Concerning the Froude number, the result indicates there is no need to implement baffles in the biodigester design, and the power number provides a steady trend close to 1.5. It is observed that the levels of design speeds within the biodigester are approximately 0.1 m/s, which are speeds suitable for the microbial community, where they can coexist and feed on the substrate in co-digestion. It is concluded that the model that more accurately predicts the behavior of fluid dynamics within the reactor is the k-ε Realizable model. The flow paths obtained are consistent with what is stated in the referenced literature, where the 45° inclination PBT impeller is the right type of agitator to keep particles in suspension and, in turn, increase the dispersion of gas in the liquid phase. If a 24/7 complete mix is considered under stirred agitation, with a plant factor of 80%, 51,840 kWh/year are estimated. On the contrary, if intermittent agitations of 3 min every 15 min are used under the same design conditions, reduce almost 80% of energy costs. It is a feasible solution to predict the energy expenditure of an anaerobic biodigester CSTR. It is recommended to use high mixing intensities, at the beginning and end of the joint phase acetogenesis/methanogenesis. This high intensity of mixing, in the beginning, produces the activation of the bacteria, and once reaching the end of the Hydraulic Retention Time period, it produces another increase in the mixing agitations, favoring the final dispersion of the biogas that may be trapped in the biodigester bottom.Keywords: anaerobic co-digestion, computational fluid dynamics, CFD, net power, organic waste
Procedia PDF Downloads 1205614 Islamic Equity Markets Response to Volatility of Bitcoin
Authors: Zakaria S. G. Hegazy, Walid M. A. Ahmed
Abstract:
This paper examines the dependence structure of Islamic stock markets on Bitcoin’s realized volatility components in bear, normal, and bull market periods. A quantile regression approach is employed, after adjusting raw returns with respect to a broad set of relevant global factors and accounting for structural breaks in the data. The results reveal that upside volatility tends to exert negative influences on Islamic developed-market returns more in bear than in bull market conditions, while downside volatility positively affects returns during bear and bull conditions. For emerging markets, we find that the upside (downside) component exerts lagged negative (positive) effects on returns in bear (all) market regimes. By and large, the dependence structures turn out to be asymmetric. Our evidence provides essential implications for investors.Keywords: cryptocurrency markets, bitcoin, realized volatility measures, asymmetry, quantile regression
Procedia PDF Downloads 1925613 Powered Two-Wheeler Rider’s Comfort over Road Sections with Skew Superelevation
Authors: Panagiotis Lemonakis, Nikolaos Moisiadis, Andromachi Gkoutzini, George Kaliabetsos, Nikos Eliou
Abstract:
The proper surface water drainage not only affects vehicle movement dynamics but also increases the likelihood of an accident due to the fact that inadequate drainage is associated with potential hydroplaning and splash and spray driving conditions. Nine solutions have been proposed to address hydroplaning in sections with inadequate drainage, e.g., augmented superelevation and longitudinal rates, reduction of runoff length, and skew superelevation. The latter has been extensively implemented in highways recently, enhancing the safety level in the applied road segments in regards to the effective drainage of the rainwater. However, the concept of the skew superelevation has raised concerns regarding the driver’s comfort when traveling over skew superelevation sections, particularly at high speeds. These concerns alleviated through the concept of the round-up skew superelevation, which reduces both the lateral and the vertical acceleration imposed to the drivers and hence, improves comfort and traffic safety. Various research studies aimed at investigating driving comfort by evaluating the lateral and vertical accelerations sustained by the road users and vehicles. These studies focused on the influence of the skew superelevation to passenger cars, buses and trucks, and the drivers themselves, traveling at a certain range of speeds either below or above the design speed. The outcome of these investigations which based on the use of simulations, revealed that the imposed accelerations did not exceed the statutory thresholds even when the travelling speed was significantly greater than the design speed. Nevertheless, the effect of the skew superelevation to other vehicle types for instance, motorcycles, has not been investigated so far. The present research study aims to bridge this gap by investigating the impact of skew superelevation on the motorcycle rider’s comfort. Power two-wheeler riders are susceptible to any changes on the pavement surface and therefore a comparison between the traditional superelevation practice and the skew superelevation concept is of paramount importance. The methodology based on the utilization of sophisticated software in order to design the model of the road for several values of the longitudinal slope. Based on the values of the slopes and the use of a mathematical equation, the accelerations imposed on the wheel of the motorcycle were calculated. Due to the fact that the final aim of the study is the influence of the skew superelevation to the rider, it was deemed necessary to convey the calculated accelerations from the wheel to the rider. That was accomplished by implementing the quarter car suspension model adjusted to the features of two-wheeler vehicles. Finally, the accelerations derived from this process evaluated according to specific thresholds originated from the International Organization for Standardization, which correspond to certain levels of comfort. The most important conclusion drawn is that the comfort of the riders is not dependent on the form of road gradient to a great extent due to the fact that the vertical acceleration imposed to the riders took similar values regardless of the value of the longitudinal slope.Keywords: acceleration, comfort, motorcycle, safety, skew superelevation
Procedia PDF Downloads 1575612 Bioremediation of Arsenic from Industrially Polluted Soil of Vatva, Ahmedabad, Gujarat, India
Authors: C. Makwana, S. R. Dave
Abstract:
Arsenic is toxic to almost all living cells. Its contamination in natural sources affects the growth of microorganisms. The presence of arsenic is associated with various human disorders also. The attempt of this sort of study provides information regarding the performance of our isolated microorganisms in the presence of Arsenic, which have ample scope for bioremediation. Six isolates were selected from the polluted sample of industrial zone Vatva, Ahmedabad, Gujarat, India, out of which two were Thermophilic organisms. The thermophilic exopolysaccharide (EPS) producing Bacillus was used for microbial enhance oil recovery (MEOR) and in the bio beneficiation. Inorganic arsenic primarily exists in the form of arsenate or arsenite. This arsenic resistance isolate was capable of transforming As +3 to As+5. This isolate would be useful for arsenic remediation standpoint from aquatic systems. The study revealed that the thermophilic microorganism was growing at 55 degree centigrade showed considerable remediation property. The results on the growth and enzyme catalysis would be discussed in response to Arsenic remediation.Keywords: aquatic systems, thermophilic, exopolysacchride, arsenic
Procedia PDF Downloads 2175611 Relationship Between Collegiality and the EQ of Leaders
Authors: Prakash Singh
Abstract:
Being a collegial leader would require such a person to promote an organizational passion that identifies and acknowledges the contribution of every employee. Collegiality is about sharing responsibilities and being accountable for one’s actions. Leaders must therefore be equipped with the knowledge, skills, abilities, beliefs, and dispositions that will allow them to succeed in their organizations. These abilities should not only dwell on cognition alone, but also, equally, on the development of their emotional intelligence (EQ). It is therefore a myth that leaders are entrusted with absolute power to manage all the resources of their organizations. Workers feel confident with leaders who are adaptable, flexible and supportive when it comes to shared decision-making and the devolution of power within the organization. Research strongly supports the notion that a leader requires a high level of EQ in addition to IQ (cognitive intelligence) to achieve the goals of the organization. On the other hand, traditional managers require cognitive abilities and technical skills to get the work done by their employees. This does not imply that management is not important in organizations. However, the approach of managers becomes highly critical when the focus is purely task orientated. Enabling or empowering employees, therefore, is an important aspect in establishing emotionally intelligent collaboration, as the willing and satisfied participation of the employees can be the result of leaders’ commitment to establishing a collegial working environment as demonstrated by their behaviours. This paper therefore analyses why it matters for ideal leaders to be imbued with the traits of EQ and collegiality.Keywords: collegiality, emotional intelligence, empowering employees, traditional managers
Procedia PDF Downloads 3545610 Mesoporous Carbon Sphere/Nickel Cobalt Sulfide Core-Shell Microspheres for Supercapacitor Electrode Material
Authors: Charmaine Lamiel, Van Hoa Nguyen, Marjorie Baynosa, Jae-Jin Shim
Abstract:
The depletion of non-renewable sources had led to the continuous development of various energy storage systems in order to cope with the world’s demand in energy. Supercapacitors have attracted considerable attention because they can store more energy than conventional capacitors and have higher power density than batteries. The combination of carbon-based material and metal chalcogenides are now being considered in response to the search for active electrode materials exhibiting high electrochemical performance. In this study, a hierarchical mesoporous carbon sphere@nickel cobalt sulfide (CS@Ni-Co-S) core-shell was synthesized using a simple hydrothermal method. The CS@Ni-Co-S core-shell microstructures exhibited a high capacitance of 724.4 F g−1 at 2 A g−1 in a 6 M KOH electrolyte. Good specific retention of 86.1% and high Coulombic efficiency of 97.9% was obtained after 2000 charge-discharge cycles. The electrode exhibited a high energy density of 58.0 Wh kg−1 (1440 W kg−1) and high power density of 7200 W kg−1 (34.2 Wh kg−1). The reaction involved green synthesis without further sulfurization or post-heat treatment. Through this study, a cost-effective and facile synthesis of CS@Ni-Co-S as an active electrode showed favorable electrochemical performance.Keywords: carbon sphere, electrochemical, hydrothermal, nickel cobalt sulfide, supercapacitor
Procedia PDF Downloads 2435609 Design, Analysis and Construction of a 250vac 8amps Arc Welding Machine
Authors: Anthony Okechukwu Ifediniru, Austin Ikechukwu Gbasouzor, Isidore Uche Uju
Abstract:
This article is centered on the design, analysis, construction, and test of a locally made arc welding machine that operates on 250vac with 8 amp output taps ranging from 60vac to 250vac at a fixed frequency, which is of benefit to urban areas; while considering its cost-effectiveness, strength, portability, and mobility. The welding machine uses a power supply to create an electric arc between an electrode and the metal at the welding point. A current selector coil needed for current selection is connected to the primary winding. Electric power is supplied to the primary winding of its transformer and is transferred to the secondary winding by induction. The voltage and current output of the secondary winding are connected to the output terminal, which is used to carry out welding work. The output current of the machine ranges from 110amps for low current welding to 250amps for high current welding. The machine uses a step-down transformer configuration for stepping down the voltage in order to obtain a high current level for effective welding. The welder can adjust the output current within a certain range. This allows the welder to properly set the output current for the type of welding that is being performed. The constructed arc welding machine was tested by connecting the work piece to it. Since there was no shock or spark from the transformer’s laminated core and was successfully used to join metals, it confirmed and validated the design.Keywords: AC current, arc welding machine, DC current, transformer, welds
Procedia PDF Downloads 1875608 Novel Adaptive Radial Basis Function Neural Networks Based Approach for Short-Term Load Forecasting of Jordanian Power Grid
Authors: Eyad Almaita
Abstract:
In this paper, a novel adaptive Radial Basis Function Neural Networks (RBFNN) algorithm is used to forecast the hour by hour electrical load demand in Jordan. A small and effective RBFNN model is used to forecast the hourly total load demand based on a small number of features. These features are; the load in the previous day, the load in the same day in the previous week, the temperature in the same hour, the hour number, the day number, and the day type. The proposed adaptive RBFNN model can enhance the reliability of the conventional RBFNN after embedding the network in the system. This is achieved by introducing an adaptive algorithm that allows the change of the weights of the RBFNN after the training process is completed, which will eliminates the need to retrain the RBFNN model again. The data used in this paper is real data measured by National Electrical Power co. (Jordan). The data for the period Jan./2012-April/2013 is used train the RBFNN models and the data for the period May/2013- Sep. /2013 is used to validate the models effectiveness.Keywords: load forecasting, adaptive neural network, radial basis function, short-term, electricity consumption
Procedia PDF Downloads 3525607 The Impact of Shariah Non-Compliance Risk on Islamic Financial Institutions
Authors: Ibtissam Mharzi Alaoui, Camélia Sehaqui
Abstract:
The success of a bank depends upon its effective risk management. With the growing complexity and diversity of financial products and services, as well as the accelerating pace of globalization over the past decade, risk management is becoming increasingly difficult. thus, all measurement and monitoring functions must be much more vigorous, relevant and adequate. The Shariah non-compliance risk is specific aspect of Islamic finance which ipso facto, deserves particular attention. It affects the validity of all Islamic financial contracts and it turns out to be likely to result in considerable losses on the overall Islamic financial institutions (IFIs). The purpose of this paper is to review the theoretical literature on Shariah non-compliance risk in order to give a clearer understanding of its sources, causes and consequences. Our intention through this work is to bring added value to the Islamic finance industry all over the world. The findings provide a useful reference work for the Islamic banks in structuring (or restructuring) of their own system of shariah risk management and internal control.Keywords: Shariah non-compliance, risk management, financial products, Islamic finance.
Procedia PDF Downloads 965606 Motion of a Dust Grain Type Particle in Binary Stellar Systems
Authors: Rajib Mia, Badam Singh Kushvah
Abstract:
In this present paper, we use the photogravitational version of the restricted three body problem (RTBP) in binary systems. In the photogravitational RTBP, an infinitesimal particle (dust grain) is moving under the gravitational attraction and radiation pressure from the two bigger primaries. The third particle does not affect the motion of two bigger primaries. The zero-velocity curves, zero-velocity surfaces and their projections on the plane are studied. We have used existing analytical method to solve the equations of motion. We have obtained the Lagrangian points in some binary stellar systems. It is found that mass reduction factor affects the Lagrangian points. The linear stability of Lagrangian points is studied and found that these points are unstable. Moreover, trajectories of the infinitesimal particle at the triangular points are studied.Keywords: binary systems, Lagrangian points, linear stability, photogravitational RTBP, trajectories
Procedia PDF Downloads 2605605 Graphene Supported Nano Cerium Oxides Hybrid as an Electrocatalyst for Oxygen Reduction Reactions
Authors: Siba Soren, Purnendu Parhi
Abstract:
Today, the world is facing a severe challenge due to depletion of traditional fossil fuels. Scientists across the globe are working for a solution that involves a dramatic shift to practical and environmentally sustainable energy sources. High-capacity energy systems, such as metal-air batteries, fuel cells, are highly desirable to meet the urgent requirement of sustainable energies. Among the fuel cells, Direct methanol fuel cells (DMFCs) are recognized as an ideal power source for mobile applications and have received considerable attention in recent past. In this advanced electrochemical energy conversion technologies, Oxygen Reduction Reaction (ORR) is of utmost importance. However, the poor kinetics of cathodic ORR in DMFCs significantly hampers their possibilities of commercialization. The oxygen is reduced in alkaline medium either through a 4-electron (equation i) or a 2-electron (equation ii) reduction pathway at the cathode ((i) O₂ + 2H₂O + 4e⁻ → 4OH⁻, (ii) O₂ + H₂O + 2e⁻ → OH⁻ + HO₂⁻ ). Due to sluggish ORR kinetics the ability to control the reduction of molecular oxygen electrocatalytically is still limited. The electrocatalytic ORR starts with adsorption of O₂ on the electrode surface followed by O–O bond activation/cleavage and oxide removal. The reaction further involves transfer of 4 electrons and 4 protons. The sluggish kinetics of ORR, on the one hand, demands high loading of precious metal-containing catalysts (e.g., Pt), which unfavorably increases the cost of these electrochemical energy conversion devices. Therefore, synthesis of active electrocatalyst with an increase in ORR performance is need of the hour. In the recent literature, there are many reports on transition metal oxide (TMO) based ORR catalysts for their high activity TMOs are also having drawbacks like low electrical conductivity, which seriously affects the electron transfer process during ORR. It was found that 2D graphene layer is having high electrical conductivity, large surface area, and excellent chemical stability, appeared to be an ultimate choice as support material to enhance the catalytic performance of bare metal oxide. g-C₃N₄ is also another candidate that has been used by the researcher for improving the ORR performance of metal oxides. This material provides more active reaction sites than other N containing carbon materials. Rare earth oxide like CeO₂ is also a good candidate for studying the ORR activity as the metal oxide not only possess unique electronic properties but also possess catalytically active sites. Here we will discuss the ORR performance (in alkaline medium) of N-rGO/C₃N₄ supported nano Cerium Oxides hybrid synthesized by microwave assisted Solvothermal method. These materials exhibit superior electrochemical stability and methanol tolerance capability to that of commercial Pt/C.Keywords: oxygen reduction reaction, electrocatalyst, cerium oxide, graphene
Procedia PDF Downloads 2005604 Effect of Wolffia globosa Incorporation on the Physical, Phytochemical and Antioxidant Properties of Breadsticks
Authors: May Phyo Wai, Tanyawan Suantawee
Abstract:
The positive correlation between unhealthy diets (high in fats, sugars, carbohydrates, and low fibers) and the risk of non-communicable diseases (NCDs) like obesity, hypertension, diabetes, and heart diseases has led to a growing interest in healthier lifestyles and diets. Consequently, people are opting for foods rich in fiber and phytochemicals. Wolffia globosa, also known as duckweed or watermeal, is the smallest plant with high nutritional value, including protein, fiber, phytochemicals, and antioxidant properties. It offers numerous health benefits, such as improving gut health and lowering blood glucose levels, and it is widely available in Thailand. The purpose of this study was to develop nutritionally enhanced breadsticks utilizing vacuum heat-dried Wolffia globosa power (WP). Various concentrations of WP (0% as control, 5%, 10%, and 15 % w/w/) were added, and then the breadsticks’ physical properties (hardness, fracturability, and color), phytochemicals (total phenolic compounds: TPC and total flavonoid contents: TFC), and antioxidant properties (DPPH radical scavenging activity (DPPH) and ferric reducing antioxidant power (FRAP) assay) were investigated. Experiments were done by triplicates and data was analyzed by one-way ANOVA. The results showed that the hardness, measured by a texture analyzer, increased significantly (p<0.05) with higher WP concentrations, reaching 2,897.01 ± 77.31 g at 15% WP from 1,314.41 ± 32.52 g of the control. In contrast, the lightness (L*), redness (a*), and yellowness (b*) of the breadsticks significantly decreased (p < 0.05) in a dose-dependent manner with added WP. Incorporating WP, rich in phytochemicals and antioxidants, into the flour significantly enhanced the TPC and TFC of the breadsticks (p<0.05), with TPC and TFC increasing dose-dependently rising to 1.8-fold and 3.5-fold at 15% WP, respectively. The antioxidant power, assessed by DPPH and FRAP assays, also showed a similar trend, with significantly higher values at 10% and 15% WP (p<0.05). These results indicate that adding WP significantly boosted the TPC, TFC, DPPH, and FRAP values of the developed breadsticks. Therefore, incorporating WP into breadsticks might be a promising strategy for creating food products enriched with phytochemicals and antioxidants, offering consumers healthier options in the market.Keywords: antioxidant properties, breadsticks, phytochemicals, Wolffia globosa
Procedia PDF Downloads 415603 Ethical Concerns in the Internet of Things and Smart Devices: Case Studies and Analysis
Authors: Mitchell Browe, Oriehi Destiny Anyaiwe, Zahraddeen Gwarzo
Abstract:
The Internet of Things (IoT) is a major evolution of technology and of the internet, which has the power to revolutionize the way people live. IoT has the power to change the way people interact with each other and with their homes; It has the ability to give people new ways to interact with and monitor their health; It can alter socioeconomic landscapes by providing new and efficient methods of resource management, saving time and money for both individuals and society as a whole; It even has the potential to save lives through autonomous vehicle technology and smart security measures. Unfortunately, nearly every revolution bears challenges which must be addressed to minimize harm by the new technology upon its adopters. IoT represents an internet technology revolution which has the potential to risk privacy, safety, and security of its users, should devices be developed, implemented, or utilized improperly. This article examines past and current examples of these ethical faults in an attempt to highlight the importance of consumer awareness of potential dangers of these technologies in making informed purchasing and utilization decisions, as well as to reveal how deficiencies and limitations of IoT devices should be better addressed by both companies and by regulatory bodies. Aspects such as consumer trust, corporate transparency, and misuse of individual data are all factors in the implementation of proper ethical boundaries in the IoT.Keywords: IoT, ethical concerns, privacy, safety, security, smart devices
Procedia PDF Downloads 955602 Assessment of Five Photoplethysmographic Methods for Estimating Heart Rate Variability
Authors: Akshay B. Pawar, Rohit Y. Parasnis
Abstract:
Heart Rate Variability (HRV) is a widely used indicator of the regulation between the autonomic nervous system (ANS) and the cardiovascular system. Besides being non-invasive, it also has the potential to predict mortality in cases involving critical injuries. The gold standard method for determining HRV is based on the analysis of RR interval time series extracted from ECG signals. However, because it is much more convenient to obtain photoplethysmogramic (PPG) signals as compared to ECG signals (which require the attachment of several electrodes to the body), many researchers have used pulse cycle intervals instead of RR intervals to estimate HRV. They have also compared this method with the gold standard technique. Though most of their observations indicate a strong correlation between the two methods, recent studies show that in healthy subjects, except for a few parameters, the pulse-based method cannot be a surrogate for the standard RR interval- based method. Moreover, the former tends to overestimate short-term variability in heart rate. This calls for improvements in or alternatives to the pulse-cycle interval method. In this study, besides the systolic peak-peak interval method (PP method) that has been studied several times, four recent PPG-based techniques, namely the first derivative peak-peak interval method (P1D method), the second derivative peak-peak interval method (P2D method), the valley-valley interval method (VV method) and the tangent-intersection interval method (TI method) were compared with the gold standard technique. ECG and PPG signals were obtained from 10 young and healthy adults (consisting of both males and females) seated in the armchair position. In order to de-noise these signals and eliminate baseline drift, they were passed through certain digital filters. After filtering, the following HRV parameters were computed from PPG using each of the five methods and also from ECG using the gold standard method: time domain parameters (SDNN, pNN50 and RMSSD), frequency domain parameters (Very low-frequency power (VLF), Low-frequency power (LF), High-frequency power (HF) and Total power or “TP”). Besides, Poincaré plots were also plotted and their SD1/SD2 ratios determined. The resulting sets of parameters were compared with those yielded by the standard method using measures of statistical correlation (correlation coefficient) as well as statistical agreement (Bland-Altman plots). From the viewpoint of correlation, our results show that the best PPG-based methods for the determination of most parameters and Poincaré plots are the P2D method (shows more than 93% correlation with the standard method) and the PP method (mean correlation: 88%) whereas the TI, VV and P1D methods perform poorly (<70% correlation in most cases). However, our evaluation of statistical agreement using Bland-Altman plots shows that none of the five techniques agrees satisfactorily well with the gold standard method as far as time-domain parameters are concerned. In conclusion, excellent statistical correlation implies that certain PPG-based methods provide a good amount of information on the pattern of heart rate variation, whereas poor statistical agreement implies that PPG cannot completely replace ECG in the determination of HRV.Keywords: photoplethysmography, heart rate variability, correlation coefficient, Bland-Altman plot
Procedia PDF Downloads 3255601 Social Technology and Youth Justice: An Exploration of Ethical and Practical Challenges
Authors: Ravinder Barn, Balbir Barn
Abstract:
This paper outlines ethical and practical challenges in the building of social technology for use with socially excluded and marginalised groups. The primary aim of this study was to design, deploy and evaluate social technology that may help to promote better engagement between case workers and young people to help prevent recidivism, and support young people’s transition towards social inclusion in society. A total of 107 practitioners/managers (n=64), and young people (n=43) contributed to the data collection via surveys, focus groups and 1-1 interviews. Through a process of co-design where end-users are involved as key contributors to social technological design, this paper seeks to make an important contribution to the area of participatory methodologies by arguing that whilst giving ‘voice’ to key stakeholders in the research process is crucial, there is a risk that competing voices may lead to tensions and unintended outcomes. The paper is contextualized within a Foucauldian perspective to examine significant concepts including power, authority and surveillance. Implications for youth justice policy and practice are considered. The authors conclude that marginalized youth and over-stretched practitioners are better served when such social technology is perceived and adopted as a tool of empowerment within a framework of child welfare and child rights.Keywords: youth justice, social technology, marginalization, participatory research, power
Procedia PDF Downloads 4515600 Public Policy and Institutional Reforms in Ethiopian Experience: A Retrospective Policy Analysis
Authors: Tewele Gerlase Haile
Abstract:
Like any other country, Ethiopia's state government has reached today by undergoing many political changes. Until the last quarter of the 19th century, the aristocratic regimes of Ethiopia were using their infinite mystical power to shape the traditional public administrative institutions of the country. Mystical, feudal, social, and revolutionary political systems were used as sources of ruling power to the long-lasted monarchical, military and dictatorial regimes. For a country that is struggling to escape from the vicious cycle of poverty, famines, and civil wars, understanding how political regimes reform public policies and institutions is necessary for several reasons. A retrospective policy analysis approach is employed to determine how public policies are shaped by institutional factors and why the traditional public administration paradigm of Ethiopia continues to date despite regime changes. Using the experiences of political reforms practiced in four successive regimes (1916-2023), this retrospective analysis reveals a causal relationship among policy, institutional, and political failures. Moreover, Ethiopia's law-making and policy-making background significantly reflects the behavior of governments and their institutions. With a macro-level policy analysis in mind, the paper analyzes why the recent policy and institutional reforms twisted the country into unresolved military catastrophes.Keywords: public administration, public policy, institutional reform, political structure
Procedia PDF Downloads 295599 Technology Impact in Learning and Teaching English Language Writing
Authors: Laura Naka
Abstract:
The invention of computer writing programs has changed the way of teaching second language writing. This artificial intelligence engine can provide students with feedback on their essays, on their grammatical and spelling errors, convenient writing and editing tools to facilitate student’s writing process. However, it is not yet proved if this technology is helping students to improve their writing skills. There are several programs that are of great assistance for students concerning their writing skills. New technology provides students with different software programs which enable them to be more creative, to express their opinions and ideas in words, pictures and sounds, but at the end main and most correct feedback should be given by their teachers. No matter how new technology affects in writing skills, always comes from their teachers. This research will try to present some of the advantages and disadvantages that new technology has in writing process for students. The research takes place in the University of Gjakova ‘’Fehmi Agani’’ Faculty of Education-Preschool Program. The research aims to provide random sample response by using questionnaires and observation.Keywords: English language learning, technology, academic writing, teaching L2.
Procedia PDF Downloads 5785598 Physiological and Psychological Influence on Office Workers during Demand Response
Authors: Megumi Nishida, Naoya Motegi, Takurou Kikuchi, Tomoko Tokumura
Abstract:
In recent years, power system has been changed and flexible power pricing system such as demand response has been sought in Japan. The demand response system is simple in the household sector and the owner, decision-maker, can gain the benefits of power saving. On the other hand, the execution of the demand response in the office building is more complex than household because various people such as owners, building administrators and occupants are involved in making decisions. While the owners benefit from the demand saving, the occupants are forced to be exposed to demand-saved environment certain benefits. One of the reasons is that building systems are usually centralized control and each occupant cannot choose either participate demand response event or not, and contribution of each occupant to demand response is unclear to provide incentives. However, the recent development of IT and building systems enables the personalized control of office environment where each occupant can control the lighting level or temperature around him or herself. Therefore, it can be possible to have a system which each occupant can make a decision of demand response participation in office building. This study investigates the personal behavior upon demand response requests, under the condition where each occupant can adjust their brightness individually in their workspace. Once workers participate in the demand response, their task lights are automatically turned off. The participation rates in the demand response events are compared between four groups which are divided by different motivation, the presence or absence of incentives and the way of participation. The result shows that there are the significant differences of participation rates in demand response event between four groups. The way of participation has a large effect on the participation rate. ‘Opt-out’ group, where the occupants are automatically enrolled in a demand response event if they don't express non-participation, will have the highest participation rate in the four groups. The incentive has also an effect on the participation rate. This study also reports that the impact of low illumination office environment on the occupants, such as stress or fatigue. The electrocardiogram and the questionnaire are used to investigate the autonomic nervous activity and subjective symptoms about the fatigue of the occupants. There is no big difference between dim workspace during demand response event and bright workspace in autonomic nervous activity and fatigue.Keywords: demand response, illumination, questionnaire, electrocardiogram
Procedia PDF Downloads 3605597 From Myth to Screen: A Cultural Criticism of the Adaptation of Nordic Mythology in Marvel Cinematic Universe’s Thor Trilogy
Authors: Vathya Anindita Putri, Henny Saptatia Drajati Nugrahani
Abstract:
This research aims to explore the representation of Nordic mythology in the commercial film titled “Thor” produced by the Marvel Cinematic Universe. First, the Nordic mythology adaptation and representation in “Thor” compared to other media. Second, the importance of using the mise en scene technique, the comprehensive portrayal of Nordic mythology and the audience's experiences in enjoying the film. This research is conducted using qualitative methods. The two research questions are analyzed using three theories: Adaptation theory by Robert Stam, Mise en Scene theory by Jean-Luc Godard, and Cultural Criticism theory by Michel Foucault. Robert Stam emphasizes the importance of social and historical in understanding film adaptations. Film adaptations always occur in a specific cultural and historical context; therefore, authors and producers must consider these factors when creating a successful adaptation. Jean-Luc Godard uses the “politiques des auteurs” approach to understand that films are not just cultural products made for entertainment, but they are works of art by authors and directors. It is important to explore how authors and directors convey their ideas and emotions in their films, in this case, a film set in Nordic mythology. Foucault takes an approach to analyzing power that considers how power operates and influences social relationships in a specific context. Foucault’s theory is used to analyze how the representation of Nordic mythology is used as an instrument of power by the Marvel Cinematic Universe to influence how the audience views Nordic mythology. The initial findings of this research are that the fusion of Nordic mythology with modern superhero storytelling in the film “Thor” produced by Marvel, is successful. The film contains conflicts in the modern world and represents the symbolism of Nordic mythology. The rich and interesting atmosphere of Nordic mythology is presented through epic battle scenes, captivating character roles, and the use of visual effects that make the film more vivid and real.Keywords: adaptation theory, cultural criticism theory, film criticism, Marvel cinematic universe, Mise en Scene theory, Nordic mythology
Procedia PDF Downloads 915596 Three-Dimensional Carbon Foams for the Application as Electrode Material in Energy Storage Systems
Authors: H. Beisch, J. Marx, S. Garlof, R. Shvets, I. I. Grygorchak, A. Kityk, B. Fiedler
Abstract:
Carbon materials, especially three-dimensional carbon foams, show very high potential in the application as electrode material for energy storage systems such as batteries and supercapacitors with unique fast charging and discharging times. Regarding their high specific surface areas (SSA) high specific capacities can be reached. Globugraphite is a newly developed carbon foam with an interconnected globular carbon morphology. Especially, this foam has a statistically distributed hierarchical pore structure resulting from the manufacturing process based on sintered ceramic templates which are synthetized during a final chemical vapor deposition (CVD) process. For morphology characterization scanning electron (SEM) and transmission electron microscopy (TEM) is used. In addition, the SSA is carried out by nitrogen adsorption combined with the Brunauer–Emmett–Teller (BET) theory. Electrochemical measurements in organic and inorganic electrolyte provide high energy densities and power densities resulting from ion absorption by forming an electrochemical double layer. All values are summarized in a Ragone Diagram. Finally, power densities up to 833 W/kg and energy densities up to 48 Wh/kg could be achieved. The corresponding SSA is between 376 m²/g and 859 m²/g. For organic electrolyte a specific capacity of 71 F/g at a density of 20 mg/cm³ was achieved.Keywords: BET, CVD process, electron microscopy, Ragone diagram
Procedia PDF Downloads 1775595 Effect of Variation of Injection Timing on Performance and Emission Characteristics of Compression Ignition Engine: A CFD Approach
Authors: N. Balamurugan, N. V. Mahalakshmi
Abstract:
Compression ignition (CI) engines are known for their high thermal efficiency in comparison with spark-ignited (SI) engines. This makes CI engines a potential candidate for the future prime source of power for transportation sector to reduce greenhouse gas emissions and to shrink carbon footprint. However, CI engines produce high levels of NOx and soot emissions. Conventional methods to reduce NOx and soot emissions often result in the infamous NOx-soot trade-off. The injection parameters are one of the most important factors in the working of CI engines. The engine performance, power output, economy etc., is greatly dependent on the effectiveness of the injection parameters. The injection parameter has their direct impact on combustion process and pollutant formation. The injection parameter’s values are required to be optimised according to the application of the engine. Control of fuel injection mode is one method for reduction of NOx and soot emissions that is achievable. This study aims to assess, compare and analyse the influence of the effect of injection characteristics that is SOI timing studied on combustion and emissions in in-cylinder combustion processes with that of conventional DI Diesel Engine system using the commercial Computational Fluid Dynamic (CFD) package STAR- CD ES-ICE.Keywords: variation of injection timing, compression ignition engine, spark-ignited, Computational Fluid Dynamic
Procedia PDF Downloads 2985594 Probiotics as Therapeutic Agents in the Treatment of Various Diseases: A Literature Review
Authors: K. B. Chathyushya, M. Shiva Prakash, R. Hemalatha
Abstract:
Introduction: Gastrointestinal (GI) tract has a number of microorganisms (microbiota) that influences the host’s health. The imbalance in the gut microbiota, which is also called as gut dysbiosis, affects human health which causes various metabolic, inflammatory, and infectious diseases. Probiotics play an important role in reinstating the gut balance. Probiotics are involved in the maintenance of healthier gut microbiota and have also been identified as effective adjuvants in insulin resistance therapies. Methods: This paper systematically reviews different randomized, controlled, blinded trials of probiotics for the treatment of various diseases along with the therapeutic or prophylactic properties of probiotic bacteria in different metabolic, inflammatory, infectious and anxiety-related disorders. Conclusion: The present review summarises that probiotics have some considerable effect in the management of various diseases, however, the benefits are strain specific, although more clinical trials are need to be carried out with different probiotic and symbiotic combinations as some probiotics have broad spectrum of benefits and few with specific activityKeywords: life style diseases, cognition, health, gut dysbiosis, probiotics
Procedia PDF Downloads 1355593 Application of Phenol Degrading Microorganisms for the Treatment of Olive Mill Waste (OMW)
Authors: M. A. El-Khateeb
Abstract:
The growth of the olive oil production in Saudi Arabia peculiarly in Al Jouf region in recent years has been accompanied by an increase in the discharge of associated processing waste. Olive mill waste is produced throughout the extraction of oil from the olive fruit using the traditional mill and press process. Deterioration of the environment due to olive mill disposal wastes is a serious problem. When olive mill waste disposed into the soil, it affects soil quality, soil micro flora, and also toxic to plants. The aim of this work is to isolate microorganism (bacterial or fungal strains) from OMW capable of degrading phenols. Olive mill wastewater, olive mill waste and soil (beside oil production mill) contaminated with olive waste were used for isolation of phenol tolerant microorganisms. Four strains (two fungal and two bacterial) were isolated from olive mill waste. The isolated strains were Candida tropicalis and Phanerochaete chrysosporium (fungal strains) and Bacillus sp. and Rhodococcus sp. (bacterial strains). These strains were able to degrade phenols and could be used for bioremediation of olive mill waste.Keywords: bioremediation, bacteria, fungi, Sakaka
Procedia PDF Downloads 3655592 Public Participation in Political Transformation: From the Coup D’etat in 2014 to the Events Leading up to the Proposed Election in 2018 in Thailand
Authors: Pataramon Satalak, Sakrit Isariyanon, Teerapong Puripanik
Abstract:
This article uses the recent events in Thailand as a case study for examining why democratic transition is necessary during political upheaval to ensure that the people’s power remains unaffected. After seizing power in May 2014, the military, backed by anti-government protestors, selected and established their own system to govern the country. They set up the National Council for Peace and Order (NCPO) which established a People’s Assembly, aiming to reach a compromise between the conflicting opinions of former, pro-government and anti-government protesters. It plans to achieve this through political reform before returning sovereign power to the people via an election in 2018. If a governmental authority is not representative of the people (e.g. a military government) it does not count as a legitimate government. During the last four years of military government, from May 2014 to January 2018, their rule of Thailand has been widely controversial, specifically regarding their commitment to democracy, human rights violations and their manipulation of the rule of law. Democratic legitimacy relies not only on established mechanisms for public participation (like referendums or elections) but also public participation based on accessible and educational reform (often via NGOs) to ensure that the free and fair will of the people can be expressed. Through their actions over the last three years, the Thai military government has damaged both of these components, impacting future public participation in politics. The authors make some observations about the specific actions the military government has taken to erode the democratic legitimacy of future public participation: the increasing dominance of military courts over civil courts; civil society’s limited involvement in political activities; the drafting of a new constitution and their attempt to master support through referenda and its consequence for delaying organic law-making process; the structure of the legislative powers (Senate and the members of parliament); and the control of people’s basic freedoms of expression, movement and assembly in political activities. One clear consequence of the military government’s specific actions over the last three years is the increased uncertainty amongst Thai people that their fundamental freedoms and political rights will be respected in the future. This will directly affect their participation in future democratic processes. The military government’s actions (e.g. their response to the UN representatives) will also have influenced potential international engagement in Thai civil society to help educate disadvantaged people about their rights, and their participation in the political arena. These actions challenge the democratic idea that there should be a checking and balancing of power between people and government. These examples provide evidence that a democratic transition is crucial during any process of political transformation.Keywords: political tranformation, public participation, Thailand coup d'etat 2014, election 2018
Procedia PDF Downloads 1525591 Technical and Economic Evaluation of Harmonic Mitigation from Offshore Wind Power Plants by Transmission Owners
Authors: A. Prajapati, K. L. Koo, F. Ghassemi, M. Mulimakwenda
Abstract:
In the UK, as the volume of non-linear loads connected to transmission grid continues to rise steeply, the harmonic distortion levels on transmission network are becoming a serious concern for the network owners and system operators. This paper outlines the findings of the study conducted to verify the proposal that the harmonic mitigation could be optimized and can be managed economically and effectively at the transmission network level by the Transmission Owner (TO) instead of the individual polluter connected to the grid. Harmonic mitigation studies were conducted on selected regions of the transmission network in England for recently connected offshore wind power plants to strategize and optimize selected harmonic filter options. The results – filter volume and capacity – were then compared against the mitigation measures adopted by the individual connections. Estimation ratios were developed based on the actual installed and optimal proposed filters. These estimation ratios were then used to derive harmonic filter requirements for future contracted connections. The study has concluded that a saving of 37% in the filter volume/capacity could be achieved if the TO is to centrally manage the harmonic mitigation instead of individual polluter installing their own mitigation solution.Keywords: C-type filter, harmonics, optimization, offshore wind farms, interconnectors, HVDC, renewable energy, transmission owner
Procedia PDF Downloads 1625590 The Quality Health Services and Patient Satisfaction in Hospital
Authors: Nadia Fatima Zahra Malki
Abstract:
Quality is one of the most important modern management patterns that organizations seek to achieve in all areas and sectors in order to meet the needs and desires of customers and to remain and continuity, as they constitute a competitive advantage for the organization. and among the most prominent organizations that must be available on the quality factor are health organizations as they relate to the most valuable component of production. It is a person, and his health, and any error in it threatens his life and may lead to death, so she must provide health services of high quality to achieve the highest degree of satisfaction for the patient. This research aims to study the quality of health services and the extent of their impact on patient satisfaction, and this is through an applied study that relied on measuring the level of quality of health services in the university hospital center of Algeria and the extent of their impact on patient satisfaction according to the dimensions of the quality of health services, and we reached a conclusion that the determinants of the quality of health services It affects patient satisfaction, which necessitates developing health services according to patients' requirements and improving their quality to obtain patient satisfaction.Keywords: health service, health quality, quality determinants, patient satisfaction
Procedia PDF Downloads 685589 Creep Compliance Characteristics of Cement Dust Asphalt Concrete Mixtures
Authors: Ayman Othman, Tallat Abd el Wahed
Abstract:
The current research is directed towards studying the creep compliance characteristics of asphalt concrete mixtures modified with cement dust. This study can aid in assessing the permanent deformation potential of asphalt concrete mixtures. Cement dust was added to the mixture as mineral filler and compared with regular lime stone filler. A power law model was used to characterize the creep compliance behavior of the studied mixtures. Creep testing results have revealed that the creep compliance power law parameters have a strong relationship with mixture type. Testing results of the studied mixtures, as indicated by the creep compliance parameters revealed an enhancement in the creep resistance, Marshall stability, indirect tensile strength and compressive strength for cement dust mixtures as compared to mixtures with traditional lime stone filler. It is concluded that cement dust can be successfully used to decrease the potential of asphalt concrete mixture to permanent deformation and improve its mechanical properties. This is in addition to the environmental benefits that can be gained when using cement dust in asphalt paving technology.Keywords: cement dust, asphalt concrete mixtures, creep compliance, Marshall stability, indirect tensile strength, compressive strength
Procedia PDF Downloads 4315588 Development of Portable Hybrid Renewable Energy System for Sustainable Electricity Supply to Rural Communities in Nigeria
Authors: Abdulkarim Nasir, Alhassan T. Yahaya, Hauwa T. Abdulkarim, Abdussalam El-Suleiman, Yakubu K. Abubakar
Abstract:
The need for sustainable and reliable electricity supply in rural communities of Nigeria remains a pressing issue, given the country's vast energy deficit and the significant number of inhabitants lacking access to electricity. This research focuses on the development of a portable hybrid renewable energy system designed to provide a sustainable and efficient electricity supply to these underserved regions. The proposed system integrates multiple renewable energy sources, specifically solar and wind, to harness the abundant natural resources available in Nigeria. The design and development process involves the selection and optimization of components such as photovoltaic panels, wind turbines, energy storage units (batteries), and power management systems. These components are chosen based on their suitability for rural environments, cost-effectiveness, and ease of maintenance. The hybrid system is designed to be portable, allowing for easy transportation and deployment in remote locations with limited infrastructure. Key to the system's effectiveness is its hybrid nature, which ensures continuous power supply by compensating for the intermittent nature of individual renewable sources. Solar energy is harnessed during the day, while wind energy is captured whenever wind conditions are favourable, thus ensuring a more stable and reliable energy output. Energy storage units are critical in this setup, storing excess energy generated during peak production times and supplying power during periods of low renewable generation. These studies include assessing the solar irradiance, wind speed patterns, and energy consumption needs of rural communities. The simulation results inform the optimization of the system's design to maximize energy efficiency and reliability. This paper presents the development and evaluation of a 4 kW standalone hybrid system combining wind and solar power. The portable device measures approximately 8 feet 5 inches in width, 8 inches 4 inches in depth, and around 38 feet in height. It includes four solar panels with a capacity of 120 watts each, a 1.5 kW wind turbine, a solar charge controller, remote power storage, batteries, and battery control mechanisms. Designed to operate independently of the grid, this hybrid device offers versatility for use in highways and various other applications. It also presents a summary and characterization of the device, along with photovoltaic data collected in Nigeria during the month of April. The construction plan for the hybrid energy tower is outlined, which involves combining a vertical-axis wind turbine with solar panels to harness both wind and solar energy. Positioned between the roadway divider and automobiles, the tower takes advantage of the air velocity generated by passing vehicles. The solar panels are strategically mounted to deflect air toward the turbine while generating energy. Generators and gear systems attached to the turbine shaft enable power generation, offering a portable solution to energy challenges in Nigerian communities. The study also addresses the economic feasibility of the system, considering the initial investment costs, maintenance, and potential savings from reduced fossil fuel use. A comparative analysis with traditional energy supply methods highlights the long-term benefits and sustainability of the hybrid system.Keywords: renewable energy, solar panel, wind turbine, hybrid system, generator
Procedia PDF Downloads 48