Search results for: adriamycin induced nephrotoxicity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2770

Search results for: adriamycin induced nephrotoxicity

280 Noninvasive Technique for Measurement of Heartbeat in Zebrafish Embryos Exposed to Electromagnetic Fields at 27 GHz

Authors: Sara Ignoto, Elena M. Scalisi, Carmen Sica, Martina Contino, Greta Ferruggia, Antonio Salvaggio, Santi C. Pavone, Gino Sorbello, Loreto Di Donato, Roberta Pecoraro, Maria V. Brundo

Abstract:

The new fifth generation technology (5G), which should favor high data-rate connections (1Gbps) and latency times lower than the current ones (<1ms), has the characteristic of working on different frequency bands of the radio wave spectrum (700 MHz, 3.6-3.8 GHz and 26.5-27.5 GHz), thus also exploiting higher frequencies than previous mobile radio generations (1G-4G). The higher frequency waves, however, have a lower capacity to propagate in free space and therefore, in order to guarantee the capillary coverage of the territory for high reliability applications, it will be necessary to install a large number of repeaters. Following the introduction of this new technology, there has been growing concern in recent years about the possible harmful effects on human health and several studies were published using several animal models. This study aimed to observe the possible short-term effects induced by 5G-millimeter waves on heartbeat of early life stages of Danio rerio using DanioScope software (Noldus). DanioScope is the complete toolbox for measurements on zebrafish embryos and larvae. The effect of substances can be measured on the developing zebrafish embryo by a range of parameters: earliest activity of the embryo’s tail, activity of the developing heart, speed of blood flowing through the vein, length and diameters of body parts. Activity measurements, cardiovascular data, blood flow data and morphometric parameters can be combined in one single tool. Obtained data are elaborate and provided by the software both numerical as well as graphical. The experiments were performed at 27 GHz by a no commercial high gain pyramidal horn antenna. According to OECD guidelines, exposure to 5G-millimeter waves was tested by fish embryo toxicity test within 96 hours post fertilization, Observations were recorded every 24h, until the end of the short-term test (96h). The results have showed an increase of heartbeat rate on exposed embryos at 48h hpf than control group, but this increase has not been shown at 72-96 h hpf. Nowadays, there is a scant of literature data about this topic, so these results could be useful to approach new studies and also to evaluate potential cardiotoxic effects of mobile radiofrequency.

Keywords: Danio rerio, DanioScope, cardiotoxicity, millimeter waves.

Procedia PDF Downloads 163
279 Unravelling the Relationship Between Maternal and Fetal ACE2 Gene Polymorphism and Preeclampsia Risk

Authors: Sonia Tamanna, Akramul Hassan, Mohammad Shakil Mahmood, Farzana Ansari, Gowhar Rashid, Mir Fahim Faisal, M. Zakir Hossain Howlader

Abstract:

Background: Preeclampsia (PE), a pregnancy-specific hypertensive disorder, significantly impacts maternal and fetal health. It is particularly prevalent in underdeveloped countries and is linked to preterm delivery and fetal growth. The renin-angiotensin system (RAS) plays a crucial role in ensuring a successful pregnancy outcome, with Angiotensin-Converting Enzyme 2 (ACE2) being a key component. ACE2 converts ANG II to Ang-(1-7), offering protection against ANG II-induced stress and inflammation while regulating blood pressure and osmotic balance during pregnancy. The reduced maternal plasma angiotensin-converting enzyme 2 (ACE2) seen in preeclampsia might contribute to its pathogenesis. However, there has been a dearth of comprehensive research into the association between ACE2 gene polymorphism and preeclampsia. In the South Asian population, hypertension is strongly linked to two SNPs: rs2285666 and rs879922. This genotype was therefore considered, and the possible association of maternal and fetal ACE2 gene polymorphism with preeclampsia within the Bangladeshi population was evaluated. Method: DNA was extracted from peripheral white blood cells (WBCs) using the organic method, and SNP genotyping was done via PCR-RFLP. Odds ratios (OR) with 95% confidence intervals (95% CI) were calculated using logistic regression to determine relative risk. Result: A comprehensive case-control study was conducted on 51 PE patients and their infants, along with 56 control subjects and their infants. Maternal single nuvleotide polymorphisms (SNP) (rs2285666) analysis revealed a strong association between the TT genotype and preeclampsia, with a four-fold increased risk in mothers (P=0.024, OR=4.00, 95% CI=1.36-11.37) compared to their ancestral genotype CC. However, the CT genotype (rs2285666) showed no significant difference (P=0.46, OR=1.54, 95% CI=0.57-4.14). Notably, no significant correlation was found in infants, regardless of their gender. For rs879922, no significant association was observed in both mothers and infants. This pioneering study suggests that mothers carrying the ACE2 gene variant rs2285666 (TT allele) may be at higher risk for preeclampsia, potentially influencing hypertension characteristics, whereas rs879922 does not appear to be associated with developing preeclampsia. Conclusion: This study sheds light on the role of ACE2 gene polymorphism, particularly the rs2285666 TT allele, in maternal susceptibility to preeclampsia. However, rs879922 does not appear to be linked to the risk of PE. This research contributes to our understanding of the genetic underpinnings of preeclampsia, offering insights into potential avenues for prevention and management.

Keywords: ACE2, PCR-RFLP, preeclampsia, single nuvleotide polymorphisms (SNPs)

Procedia PDF Downloads 61
278 Solutions of Thickening the Sludge from the Wastewater Treatment by a Rotor with Bars

Authors: Victorita Radulescu

Abstract:

Introduction: The sewage treatment plants, in the second stage, are formed by tanks having as main purpose the formation of the suspensions with high possible solid concentration values. The paper presents a solution to produce a rapid concentration of the slurry and sludge, having as main purpose the minimization as much as possible the size of the tanks. The solution is based on a rotor with bars, tested into two different areas of industrial activity: the remediation of the wastewater from the oil industry and, in the last year, into the mining industry. Basic Methods: It was designed, realized and tested a thickening system with vertical bars that manages to reduce sludge moisture content from 94% to 87%. The design was based on the hypothesis that the streamlines of the vortices detached from the rotor with vertical bars accelerate, under certain conditions, the sludge thickening. It is moved at the lateral sides, and in time, it became sediment. The formed vortices with the vertical axis in the viscous fluid, under the action of the lift, drag, weight, and inertia forces participate at a rapid aggregation of the particles thus accelerating the sludge concentration. Appears an interdependence between the Re number attached to the flow with vortex induced by the vertical bars and the size of the hydraulic compaction phenomenon, resulting from an accelerated process of sedimentation, therefore, a sludge thickening depending on the physic-chemical characteristics of the resulting sludge is projected the rotor's dimensions. Major findings/ Results: Based on the experimental measurements was performed the numerical simulation of the hydraulic rotor, as to assure the necessary vortices. The experimental measurements were performed to determine the optimal height and the density of the bars for the sludge thickening system, to assure the tanks dimensions as small as possible. The time thickening/settling was reduced by 24% compared to the conventional used systems. In the present, the thickeners intend to decrease the intermediate stage of water treatment, using primary and secondary settling; but they assume a quite long time, the order of 10-15 hours. By using this system, there are no intermediary steps; the thickening is done automatically when are created the vortices. Conclusions: The experimental tests were carried out in the wastewater treatment plant of the Refinery of oil from Brazi, near the city Ploiesti. The results prove its efficiency in reducing the time for compacting the sludge and the smaller humidity of the evacuated sediments. The utilization of this equipment is now extended and it is tested the mining industry, with significant results, in Lupeni mine, from the Jiu Valley.

Keywords: experimental tests, hydrodynamic modeling, rotor efficiency, wastewater treatment

Procedia PDF Downloads 118
277 Use of Satellite Altimetry and Moderate Resolution Imaging Technology of Flood Extent to Support Seasonal Outlooks of Nuisance Flood Risk along United States Coastlines and Managed Areas

Authors: Varis Ransibrahmanakul, Doug Pirhalla, Scott Sheridan, Cameron Lee

Abstract:

U.S. coastal areas and ecosystems are facing multiple sea level rise threats and effects: heavy rain events, cyclones, and changing wind and weather patterns all influence coastal flooding, sedimentation, and erosion along critical barrier islands and can strongly impact habitat resiliency and water quality in protected habitats. These impacts are increasing over time and have accelerated the need for new tracking techniques, models and tools of flood risk to support enhanced preparedness for coastal management and mitigation. To address this issue, NOAA National Ocean Service (NOS) evaluated new metrics from satellite altimetry AVISO/Copernicus and MODIS IR flood extents to isolate nodes atmospheric variability indicative of elevated sea level and nuisance flood events. Using de-trended time series of cross-shelf sea surface heights (SSH), we identified specific Self Organizing Maps (SOM) nodes and transitions having a strongest regional association with oceanic spatial patterns (e.g., heightened downwelling favorable wind-stress and enhanced southward coastal transport) indicative of elevated coastal sea levels. Results show the impacts of the inverted barometer effect as well as the effects of surface wind forcing; Ekman-induced transport along broad expanses of the U.S. eastern coastline. Higher sea levels and corresponding localized flooding are associated with either pattern indicative of enhanced on-shore flow, deepening cyclones, or local- scale winds, generally coupled with an increased local to regional precipitation. These findings will support an integration of satellite products and will inform seasonal outlook model development supported through NOAAs Climate Program Office and NOS office of Center for Operational Oceanographic Products and Services (CO-OPS). Overall results will prioritize ecological areas and coastal lab facilities at risk based on numbers of nuisance flood projected and inform coastal management of flood risk around low lying areas subjected to bank erosion.

Keywords: AVISO satellite altimetry SSHA, MODIS IR flood map, nuisance flood, remote sensing of flood

Procedia PDF Downloads 143
276 Through the Robot’s Eyes: A Comparison of Robot-Piloted, Virtual Reality, and Computer Based Exposure for Fear of Injections

Authors: Bonnie Clough, Tamara Ownsworth, Vladimir Estivill-Castro, Matt Stainer, Rene Hexel, Andrew Bulmer, Wendy Moyle, Allison Waters, David Neumann, Jayke Bennett

Abstract:

The success of global vaccination programs is reliant on the uptake of vaccines to achieve herd immunity. Yet, many individuals do not obtain vaccines or venipuncture procedures when needed. Whilst health education may be effective for those individuals who are hesitant due to safety or efficacy concerns, for many of these individuals, the primary concern relates to blood or injection fear or phobia (BII). BII is highly prevalent and associated with a range of negative health impacts, both at individual and population levels. Exposure therapy is an efficacious treatment for specific phobias, including BII, but has high patient dropout and low implementation by therapists. Whilst virtual reality approaches exposure therapy may be more acceptable, they have similarly low rates of implementation by therapists and are often difficult to tailor to an individual client’s needs. It was proposed that a piloted robot may be able to adequately facilitate fear induction and be an acceptable approach to exposure therapy. The current study examined fear induction responses, acceptability, and feasibility of a piloted robot for BII exposure. A Nao humanoid robot was programmed to connect with a virtual reality head-mounted display, enabling live streaming and exploration of real environments from a distance. Thirty adult participants with BII fear were randomly assigned to robot-pilot or virtual reality exposure conditions in a laboratory-based fear exposure task. All participants also completed a computer-based two-dimensional exposure task, with an order of conditions counterbalanced across participants. Measures included fear (heart rate variability, galvanic skin response, stress indices, and subjective units of distress), engagement with a feared stimulus (eye gaze: time to first fixation and a total number of fixations), acceptability, and perceived treatment credibility. Preliminary results indicate that fear responses can be adequately induced via a robot-piloted platform. Further results will be discussed, as will implications for the treatment of BII phobia and other fears. It is anticipated that piloted robots may provide a useful platform for facilitating exposure therapy, being more acceptable than in-vivo exposure and more flexible than virtual reality exposure.

Keywords: anxiety, digital mental health, exposure therapy, phobia, robot, virtual reality

Procedia PDF Downloads 77
275 Urban Waste Management for Health and Well-Being in Lagos, Nigeria

Authors: Bolawole F. Ogunbodede, Mokolade Johnson, Adetunji Adejumo

Abstract:

High population growth rate, reactive infrastructure provision, inability of physical planning to cope with developmental pace are responsible for waste water crisis in the Lagos Metropolis. Septic tank is still the most prevalent waste-water holding system. Unfortunately, there is a dearth of septage treatment infrastructure. Public waste-water treatment system statistics relative to the 23 million people in Lagos State is worrisome. 1.85 billion Cubic meters of wastewater is generated on daily basis and only 5% of the 26 million population is connected to public sewerage system. This is compounded by inadequate budgetary allocation and erratic power supply in the last two decades. This paper explored community participatory waste-water management alternative at Oworonshoki Municipality in Lagos. The study is underpinned by decentralized Waste-water Management systems in built-up areas. The initiative accommodates 5 step waste-water issue including generation, storage, collection, processing and disposal through participatory decision making in two Oworonshoki Community Development Association (CDA) areas. Drone assisted mapping highlighted building footage. Structured interviews and focused group discussion of land lord associations in the CDA areas provided collaborator platform for decision-making. Water stagnation in primary open drainage channels and natural retention ponds in framing wetlands is traceable to frequent of climate change induced tidal influences in recent decades. Rise in water table resulting in septic-tank leakage and water pollution is reported to be responsible for the increase in the water born infirmities documented in primary health centers. This is in addition to unhealthy dumping of solid wastes in the drainage channels. The effect of uncontrolled disposal system renders surface waters and underground water systems unsafe for human and recreational use; destroys biotic life; and poisons the fragile sand barrier-lagoon urban ecosystems. Cluster decentralized system was conceptualized to service 255 households. Stakeholders agreed on public-private partnership initiative for efficient wastewater service delivery.

Keywords: health, infrastructure, management, septage, well-being

Procedia PDF Downloads 174
274 Inertial Spreading of Drop on Porous Surfaces

Authors: Shilpa Sahoo, Michel Louge, Anthony Reeves, Olivier Desjardins, Susan Daniel, Sadik Omowunmi

Abstract:

The microgravity on the International Space Station (ISS) was exploited to study the imbibition of water into a network of hydrophilic cylindrical capillaries on time and length scales long enough to observe details hitherto inaccessible under Earth gravity. When a drop touches a porous medium, it spreads as if laid on a composite surface. The surface first behaves as a hydrophobic material, as liquid must penetrate pores filled with air. When contact is established, some of the liquid is drawn into pores by a capillarity that is resisted by viscous forces growing with length of the imbibed region. This process always begins with an inertial regime that is complicated by possible contact pinning. To study imbibition on Earth, time and distance must be shrunk to mitigate gravity-induced distortion. These small scales make it impossible to observe the inertial and pinning processes in detail. Instead, in the International Space Station (ISS), astronaut Luca Parmitano slowly extruded water spheres until they touched any of nine capillary plates. The 12mm diameter droplets were large enough for high-speed GX1050C video cameras on top and side to visualize details near individual capillaries, and long enough to observe dynamics of the entire imbibition process. To investigate the role of contact pinning, a text matrix was produced which consisted nine kinds of porous capillary plates made of gold-coated brass treated with Self-Assembled Monolayers (SAM) that fixed advancing and receding contact angles to known values. In the ISS, long-term microgravity allowed unambiguous observations of the role of contact line pinning during the inertial phase of imbibition. The high-speed videos of spreading and imbibition on the porous plates were analyzed using computer vision software to calculate the radius of the droplet contact patch with the plate and height of the droplet vs time. These observations are compared with numerical simulations and with data that we obtained at the ESA ZARM free-fall tower in Bremen with a unique mechanism producing relatively large water spheres and similarity in the results were observed. The data obtained from the ISS can be used as a benchmark for further numerical simulations in the field.

Keywords: droplet imbibition, hydrophilic surface, inertial phase, porous medium

Procedia PDF Downloads 139
273 Evaluation of Toxicity of Root-bark Powder of Securidaca Longepedunculata Enhanced with Diatomaceous Earth Fossilshield Against Callosobruchus Maculatus (F.) (Coleoptera-Bruchidea)

Authors: Mala Tankam Carine, Kekeunou Sévilor, Nukenine Elias

Abstract:

Storage and preservation of agricultural products remain the only conditions ensuring the almost permanent availability of foodstuffs. However, infestations due to insects and microorganisms often occur. Callosobruchus maculatus is a pest that causes a lot of damage to cowpea stocks in the tropics. Several methods are adopted to limit their damage, but the use of synthetic chemical insecticides is the most widespread. Biopesticides in sustainable agriculture respond to several environmental, economic and social concerns while offering innovative opportunities that are ecologically and economically viable for producers, workers, consumers and ecosystems. Our main objective is to evaluate the insecticidal efficacy of binary combinations of Fossilshield with root-bark powder of Securidaca longepedunculata against Callosobruchus maculatus in stored cowpea Vigna unguiculata. Laboratory bioassays were conducted in stored grains to evaluate the toxicity of root-bark powder of Securidaca longepedunculata alone or combined with diatomaceous earth Fossil-Shield ® against C. maculatus. Twenty-hour-old adults of C. maculatus were exposed to 50g of cowpea seeds treated with four doses (10, 20, 30, and 40g/kg) of root-bark powder of S. longepedunculata, on the one hand, and (0.5, 1, 1.5, and 2 g/kg) on DE and binary combinations on the other hand. 0g/kg corresponded to untreated control. Adult mortality was recorded up to 7 days (d) post-treatment, whereas the number of F1 progeny was assessed after 30 d. Weight loss and germinative ability were conducted after 120 d. All treatments were arranged according to a completely randomized block with four replicates. The combined mixture of S. longepedunculata and DE controlled the beetle faster compared to the root-bark powder of S. longepedunculata alone. According to the Co-toxicity coefficient, additive effect of binary combinations was recorded at 3-day post-exposure time with the mixture 25% FossilShield + 75% S. longepedunculata. A synergistic action was observed after 3-d post-exposure at mixture 50% FossilShield + 50% S. longepedunculata and at 1-d and 3-d post-exposure periods at mixture 75% FossilShield + 25% S. longepedunculata. The mixture 25% FossilShield + 75% S. longepedunculata induced a decreased progeny of 6 times fewer individuals for 4.5 times less weight loss and 2, 9 times more sprouted grains than with root-bark powder of S. longepedunculata. The combination of FossilShield + S. longepedunculata was more potent than root-bark powder of S. longepedunculata alone, although the root-bark powder of S. longepedunculata caused significant reduction of F1 adults compared to the control. Combined action of botanical insecticides with FossilShield as a grain protectant in an integrated pest management approach is discussed.

Keywords: diatomaceous earth, cowpea, callosobruchus maculatus, securidaca longepedunculata, combined action, co-toxicity coefficient

Procedia PDF Downloads 71
272 Electrochemical Corrosion and Mechanical Properties of Structural Materials for Oil and Gas Applications in Simulated Deep-Sea Well Environments

Authors: Turin Datta, Kisor K. Sahu

Abstract:

Structural materials used in today’s oil and gas exploration and drilling of both onshore and offshore oil and gas wells must possess superior tensile properties, excellent resistance to corrosive degradation that includes general, localized (pitting and crevice) and environment assisted cracking such as stress corrosion cracking and hydrogen embrittlement. The High Pressure and High Temperature (HPHT) wells are typically operated at temperature and pressure that can exceed 300-3500F and 10,000psi (69MPa) respectively which necessitates the use of exotic materials in these exotic sources of natural resources. This research investigation is focussed on the evaluation of tensile properties and corrosion behavior of AISI 4140 High-Strength Low Alloy Steel (HSLA) possessing tempered martensitic microstructure and Duplex 2205 Stainless Steel (DSS) having austenitic and ferritic phase. The selection of this two alloys are primarily based on economic considerations as 4140 HSLA is cheaper when compared to DSS 2205. Due to the harsh aggressive chemical species encountered in deep oil and gas wells like chloride ions (Cl-), carbon dioxide (CO2), hydrogen sulphide (H2S) along with other mineral organic acids, DSS 2205, having a dual-phase microstructure can mitigate the degradation resulting from the presence of both chloride ions (Cl-) and hydrogen simultaneously. Tensile properties evaluation indicates a ductile failure of DSS 2205 whereas 4140 HSLA exhibit quasi-cleavage fracture due to the phenomenon of ‘tempered martensitic embrittlement’. From the potentiodynamic polarization testing, it is observed that DSS 2205 has higher corrosion resistance than 4140 HSLA; the former exhibits passivity signifying resistance to localized corrosion while the latter exhibits active dissolution in all the environmental parameters space that was tested. From the Scanning Electron Microscopy (SEM) evaluation, it is understood that stable pits appear in DSS 2205 only when the temperature exceeds the critical pitting temperature (CPT). SEM observation of the corroded 4140 HSLA specimen tested in aqueous 3.5 wt.% NaCl solution reveals intergranular cracking which appears due to the adsorption and diffusion of hydrogen during polarization, thus, causing hydrogen-induced cracking/hydrogen embrittlement. General corrosion testing of DSS 2205 in acidic brine (pH~3.0) solution at ambient temperature using coupons indicate no weight loss even after three months whereas the corrosion rate of AISI 4140 HSLA is significantly higher after one month of testing.

Keywords: DSS 2205, polarization, pitting, SEM

Procedia PDF Downloads 264
271 Interrelationship between Quadriceps' Activation and Inhibition as a Function of Knee-Joint Angle and Muscle Length: A Torque and Electro and Mechanomyographic Investigation

Authors: Ronald Croce, Timothy Quinn, John Miller

Abstract:

Incomplete activation, or activation failure, of motor units during maximal voluntary contractions is often referred to as muscle inhibition (MI), and is defined as the inability of the central nervous system to maximally drive a muscle during a voluntary contraction. The purpose of the present study was to assess the interrelationship amongst peak torque (PT), muscle inhibition (MI; incomplete activation of motor units), and voluntary muscle activation (VMA) of the quadriceps’ muscle group as a function of knee angle and muscle length during maximal voluntary isometric contractions (MVICs). Nine young adult males (mean + standard deviation: age: 21.58 + 1.30 years; height: 180.07 + 4.99 cm; weight: 89.07 + 7.55 kg) performed MVICs in random order with the knee at 15, 55, and 95° flexion. MI was assessed using the interpolated twitch technique and was estimated by the amount of additional knee extensor PT evoked by the superimposed twitch during MVICs. Voluntary muscle activation was estimated by root mean square amplitude electromyography (EMGrms) and mechanomyography (MMGrms) of agonist (vastus medialis [VM], vastus lateralis [VL], and rectus femoris [RF]) and antagonist (biceps femoris ([BF]) muscles during MVICs. Data were analyzed using separate repeated measures analysis of variance. Results revealed a strong dependency of quadriceps’ PT (p < 0.001), MI (p < 0.001) and MA (p < 0.01) on knee joint position: PT was smallest at the most shortened muscle position (15°) and greatest at mid-position (55°); MI and MA were smallest at the most shortened muscle position (15°) and greatest at the most lengthened position (95°), with the RF showing the greatest change in MA. It is hypothesized that the ability to more fully activate the quadriceps at short compared to longer muscle lengths (96% contracted at 15°; 91% at 55°; 90% at 95°) might partly compensate for the unfavorable force-length mechanics at the more extended position and consequent declines in VMA (decreases in EMGrms and MMGrms muscle amplitude during MVICs) and force production (PT = 111-Nm at 15°, 217-NM at 55°, 199-Nm at 95°). Biceps femoris EMG and MMG data showed no statistical differences (p = 0.11 and 0.12, respectively) at joint angles tested, although there were greater values at the extended position. Increased BF muscle amplitude at this position could be a mechanism by which anterior shear and tibial rotation induced by high quadriceps’ activity are countered. Measuring and understanding the degree to which one sees MI and VMA in the QF muscle has particular clinical relevance because different knee-joint disorders, such ligament injuries or osteoarthritis, increase levels of MI observed and markedly reduced the capability of full VMA.

Keywords: electromyography, interpolated twitch technique, mechanomyography, muscle activation, muscle inhibition

Procedia PDF Downloads 347
270 iPSC-derived MSC Mediated Immunosuppression during Mouse Airway Transplantation

Authors: Mohammad Afzal Khan, Fatimah Alanazi, Hala Abdalrahman Ahmed, Talal Shamma, Kilian Kelly, Mohammed A. Hammad, Abdullah O. Alawad, Abdullah Mohammed Assiri, Dieter Clemens Broering

Abstract:

Lung transplantation is a life-saving surgical replacement of diseased lungs in patients with end-stage respiratory malfunctions. Despite the remarkable short-term recovery, long-term lung survival continues to face several significant challenges, including chronic rejection and severe toxic side-effects due to global immunosuppression. Stem cell-based immunotherapy has been recognized as a crucial immunoregulatory regimen in various preclinical and clinical studies. Despite initial therapeutic outcomes, conventional stem cells face key limitations. The Cymerus™ manufacturing facilitates the production of a virtually limitless supply of consistent human induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells, which could play a key role in selective immunosuppression and graft repair during rejection. Here, we demonstrated the impact of iPSC-derived human MSCs on the development of immune-tolerance and long-term graft survival in mouse orthotopic airway allografts. BALB/c→C57BL/6 allografts were reconstituted with iPSC-derived MSCs (2 million/transplant/ at d0), and allografts were examined for regulatory T cells (Tregs), oxygenation, microvascular blood flow, airway epithelium and collagen deposition during rejection. We demonstrated that iPSC-derived MSC treatment leads to significant increase in tissue expression of hTSG-6 protein, followed by an upregulation of mouse Tregs and IL-5, IL-10, IL-15 cytokines, which augments graft microvascular blood flow and oxygenation, and thereby maintained a healthy airway epithelium and prevented the subepithelial deposition of collagen at d90 post-transplantation. Collectively, these data confirmed that iPSC-derived MSC-mediated immunosuppression has potential to establish immune-tolerance and rescue allograft from sustained hypoxic/ischemic phase and subsequently limits long-term airway epithelial injury and collagen progression, which therapeutically warrant a study of Cymerus iPSC-derived MSCs as a potential management option for immunosuppression in transplant recipients.

Keywords: stem cell therapy, immunotolerance, regulatory T cells, hypoxia and ischemia, microvasculature

Procedia PDF Downloads 158
269 Experimental Uniaxial Tensile Characterization of One-Dimensional Nickel Nanowires

Authors: Ram Mohan, Mahendran Samykano, Shyam Aravamudhan

Abstract:

Metallic nanowires with sub-micron and hundreds of nanometer diameter have a diversity of applications in nano/micro-electromechanical systems (NEMS/MEMS). Characterizing the mechanical properties of such sub-micron and nano-scale metallic nanowires are tedious; require sophisticated and careful experimentation to be performed within high-powered microscopy systems (scanning electron microscope (SEM), atomic force microscope (AFM)). Also, needed are nanoscale devices for placing the nanowires; loading them with the intended conditions; obtaining the data for load–deflection during the deformation within the high-powered microscopy environment poses significant challenges. Even picking the grown nanowires and placing them correctly within a nanoscale loading device is not an easy task. Mechanical characterizations through experimental methods for such nanowires are still very limited. Various techniques at different levels of fidelity, resolution, and induced errors have been attempted by material science and nanomaterial researchers. The methods for determining the load, deflection within the nanoscale devices also pose a significant problem. The state of the art is thus still at its infancy. All these factors result and is seen in the wide differences in the characterization curves and the reported properties in the current literature. In this paper, we discuss and present our experimental method, results, and discussions of uniaxial tensile loading and the development of subsequent stress–strain characteristics curves for Nickel nanowires. Nickel nanowires in the diameter range of 220–270 nm were obtained in our laboratory via an electrodeposition method, which is a solution based, template method followed in our present work for growing 1-D Nickel nanowires. Process variables such as the presence of magnetic field, its intensity; and varying electrical current density during the electrodeposition process were found to influence the morphological and physical characteristics including crystal orientation, size of the grown nanowires1. To further understand the correlation and influence of electrodeposition process variables, associated formed structural features of our grown Nickel nanowires to their mechanical properties, careful experiments within scanning electron microscope (SEM) were conducted. Details of the uniaxial tensile characterization, testing methodology, nanoscale testing device, load–deflection characteristics, microscopy images of failure progression, and the subsequent stress–strain curves are discussed and presented.

Keywords: uniaxial tensile characterization, nanowires, electrodeposition, stress-strain, nickel

Procedia PDF Downloads 406
268 Application of Micro-Tunneling Technique to Rectify Tilted Structures Constructed on Cohesive Soil

Authors: Yasser R. Tawfic, Mohamed A. Eid

Abstract:

Foundation differential settlement and supported structure tilting is an occasionally occurred engineering problem. This may be caused by overloading, changes in ground soil properties or unsupported nearby excavations. Engineering thinking points directly toward the logic solution for such problem by uplifting the settled side. This can be achieved with deep foundation elements such as micro-piles and macro-piles™, jacked piers and helical piers, jet grouted soil-crete columns, compaction grout columns, cement grouting or with chemical grouting, or traditional pit underpinning with concrete and mortar. Although, some of these techniques offer economic, fast and low noise solutions, many of them are quite the contrary. For tilted structures, with limited inclination, it may be much easier to cause a balancing settlement on the less-settlement side which shall be done carefully in a proper rate. This principal has been applied in Leaning Tower of Pisa stabilization with soil extraction from the ground surface. In this research, the authors attempt to introduce a new solution with a different point of view. So, micro-tunneling technique is presented in here as an intended ground deformation cause. In general, micro-tunneling is expected to induce limited ground deformations. Thus, the researchers propose to apply the technique to form small size ground unsupported holes to produce the target deformations. This shall be done in four phases: •Application of one or more micro-tunnels, regarding the existing differential settlement value, under the raised side of the tilted structure. •For each individual tunnel, the lining shall be pulled out from both sides (from jacking and receiving shafts) in slow rate. •If required, according to calculations and site records, an additional surface load can be applied on the raised foundation side. •Finally, a strengthening soil grouting shall be applied for stabilization after adjustment. A finite element based numerical model is presented to simulate the proposed construction phases for different tunneling positions and tunnels group. For each case, the surface settlements are calculated and induced plasticity points are checked. These results show the impact of the suggested procedure on the tilted structure and its feasibility. Comparing results also show the importance of the position selection and tunnels group gradual effect. Thus, a new engineering solution is presented to one of the structural and geotechnical engineering challenges.

Keywords: differential settlement, micro-tunneling, soil-structure interaction, tilted structures

Procedia PDF Downloads 208
267 Effect of Hypoxia on AOX2 Expression in Chlamydomonas reinhardtii

Authors: Maria Ostroukhova, Zhanneta Zalutskaya, Elena Ermilova

Abstract:

The alternative oxidase (AOX) mediates cyanide-resistant respiration, which bypasses proton-pumping complexes III and IV of the cytochrome pathway to directly transfer electrons from reduced ubiquinone to molecular oxygen. In Chlamydomonas reinhardtii, AOX is a monomeric protein that is encoded by two genes of discrete subfamilies, AOX1 and AOX2. Although AOX has been proposed to play essential roles in stress tolerance of organisms, the role of subfamily AOX2 is largely unknown. In C. reinhardtii, AOX2 was initially identified as one of constitutively low expressed genes. Like other photosynthetic organisms C. reinhardtii cells frequently experience periods of hypoxia. To examine AOX2 transcriptional regulation and role of AOX2 in hypoxia adaptation, real-time PCR analysis and artificial microRNA method were employed. Two experimental approaches have been used to induce the anoxic conditions: dark-anaerobic and light-anaerobic conditions. C. reinhardtii cells exposed to the oxygen deprivation have shown increased AOX2 mRNA levels. By contrast, AOX1 was not an anoxia-responsive gene. In C. reinhardtii, a subset of genes is regulated by transcription factor CRR1 in anaerobic conditions. Notable, the AOX2 promoter region contains the potential motif for CRR1 binding. Therefore, the role of CRR1 in the control of AOX2 transcription was tested. The CRR1-underexpressing strains, that were generated and characterized in this work, exhibited low levels of AOX2 transcripts under anoxic conditions. However, the transformants still slightly induced AOX2 gene expression in the darkness. These confirmed our suggestions that darkness is a regulatory stimulus for AOX genes in C. reinhardtii. Thus, other factors must contribute to AOX2 promoter activity under dark-anoxic conditions. Moreover, knock-down of CRR1 caused a complete reduction of AOX2 expression under light-anoxic conditions. These results indicate that (1) CRR1 is required for AOX2 expression during hypoxia, and (2) AOX2 gene is regulated by CRR1 together with yet-unknown regulatory factor(s). In addition, the AOX2-underexpressing strains were generated. The analysis of amiRNA-AOX2 strains suggested a role of this alternative oxidase in hypoxia adaptation of the alga. In conclusion, the results reported here show that C. reinhardtii AOX2 gene is stress inducible. CRR1 transcriptional factor is involved in the regulation of the AOX2 gene expression in the absence of oxygen. Moreover, AOX2 but not AOX1 functions under oxygen deprivation. This work was supported by Russian Science Foundation (research grant № 16-14-10004).

Keywords: alternative oxidase 2, artificial microRNA approach, chlamydomonas reinhardtii, hypoxia

Procedia PDF Downloads 241
266 Gravitational Water Vortex Power Plant: Experimental-Parametric Design of a Hydraulic Structure Capable of Inducing the Artificial Formation of a Gravitational Water Vortex Appropriate for Hydroelectric Generation

Authors: Henrry Vicente Rojas Asuero, Holger Manuel Benavides Muñoz

Abstract:

Approximately 80% of the energy consumed worldwide is generated from fossil sources, which are responsible for the emission of a large volume of greenhouse gases. For this reason, the global trend, at present, is the widespread use of energy produced from renewable sources. This seeks safety and diversification of energy supply, based on social cohesion, economic feasibility and environmental protection. In this scenario, small hydropower systems (P ≤ 10MW) stand out due to their high efficiency, economic competitiveness and low environmental impact. Small hydropower systems, along with wind and solar energy, are expected to represent a significant percentage of the world's energy matrix in the near term. Among the various technologies present in the state of the art, relating to small hydropower systems, is the Gravitational Water Vortex Power Plant, a recent technology that excels because of its versatility of operation, since it can operate with jumps in the range of 0.70 m-2.00 m and flow rates from 1 m3/s to 20 m3/s. Its operating system is based on the utilization of the energy of rotation contained within a large water vortex artificially induced. This paper presents the study and experimental design of an optimal hydraulic structure with the capacity to induce the artificial formation of a gravitational water vortex trough a system of easy application and high efficiency, able to operate in conditions of very low head and minimum flow. The proposed structure consists of a channel, with variable base, vortex inductor, tangential flow generator, coupled to a circular tank with a conical transition bottom hole. In the laboratory test, the angular velocity of the water vortex was related to the geometric characteristics of the inductor channel, as well as the influence of the conical transition bottom hole on the physical characteristics of the water vortex. The results show angular velocity values of greater magnitude as a function of depth, in addition the presence of the conical transition in the bottom hole of the circular tank improves the water vortex formation conditions while increasing the angular velocity values. Thus, the proposed system is a sustainable solution for the energy supply of rural areas near to watercourses.

Keywords: experimental model, gravitational water vortex power plant, renewable energy, small hydropower

Procedia PDF Downloads 289
265 Effect of Chronic Exposure to Diazinon on Glucose Homeostasis and Oxidative Stress in Pancreas of Rats and the Potential Role of Mesna in Ameliorating This Effect

Authors: Azza El-Medany, Jamila El-Medany

Abstract:

Residential and agricultural pesticide use is widespread in the world. Their extensive and indiscriminative use, in addition with their ability to interact with biological systems other than their primary targets constitute a health hazards to both humans and animals. The toxic effects of pesticides include alterations in metabolism; there is a lack of knowledge that organophosphates can cause pancreatic toxicity. The primary goal of this work is to study the effects of chronic exposure to Diazinon an organophosphate used in agriculture on pancreatic tissues and evaluate the ameliorating effect of Mesna as antioxidant on the toxicity of Diazinon on pancreatic tissues.40 adult male rats, their weight ranged between 300-350 g. The rats were classified into three groups; control (10 rats) was received corn oil at a dose of 1 0 mg/kg/day by gavage once a day for 2 months. Diazinon (15 rats) was received Diazinon at a dose of 10 mg/kg/day dissolved in corn oil by gavage once a day for 2 months. Treated group (15 rats), were received Mesna 180mg/kg once a week by gavage 15 minutes before administration of Diazinon for 2 months. At the end of the experiment, animals were anesthetized, blood samples were taken by cardiac puncture for glucose and insulin assays and pancreas was removed and divided into 3 portions; first portion for histopathological study; second portion for ultrastructural study; third portion for biochemical study using Elisa Kits including determination of malondialdehyde (MDA), tumor necrosis factor α (TNF-α), myeloperoxidase activity (MPO), interleukin 1β (IL-1β). A significant increase in the levels of MDA, TNF-α, MPO activity, IL-1β, serum glucose levels in the toxicated group with Diazinon were observed, while a significant reduction was noticed in GSH in serum insulin levels. After treatment with Mesna a significant reduction was observed in the previously mentioned parameters except that there was a significant rise in GSH in insulin levels. Histopathological and ultra-structural studies showed destruction in pancreatic tissues and β cells were the most affected cells among the injured islets as compared with the control group. The current study try to spot light about the effects of chronic exposure to pesticides on vital organs as pancreas also the role of oxidative stress that may be induced by them in evoking their toxicity. This study shows the role of antioxidant drugs in ameliorating or preventing the toxicity. This appears to be a promising approach that may be considered as a complementary treatment of pesticide toxicity.

Keywords: Diazinon, reduced glutathione, myeloperoxidase activity, tumor necrosis factor α, Mesna

Procedia PDF Downloads 241
264 A Review of the Future of Sustainable Urban Water Supply in South Africa

Authors: Jeremiah Mutamba

Abstract:

Water is a critical resource for sustainable economic growth and social development. It enables societies to thrive and influences every urban center’s future. Thus, water must always be available in the right quantity and quality. However, in South Africa - a known physically water scarce nation – the future of sustainable urban supply of water may be in jeopardy. The country facing a water crisis influenced by insufficient infrastructure investment and maintenance, recurrent droughts and climate variation, human induced water quality deterioration, as well as growing lack of technical capacity in water institutions, particularly local municipalities. Aside of the eight metropolitan municipalities for the country, most municipalities struggle with provision of reliable water to their citizens. These municipalities contend with having now capable engineers, aging infrastructure with concomitant high system water losses (of 30% and upwards), coupled with growing water demand from expanding industries and population growth. Also, a significant portion (44%) of national water treatment plants are in critically poor condition, requiring urgent rehabilitation. Municipalities also struggle to raise funding to instate projects. All these factors militate against sustainable urban water supply in the country. Urgent mitigation measures are required. This paper seeks to review the extent of the current water supply challenges in South Africa’s urban centers, including searching for practical and cost-effective measures. The study followed a qualitative approach, combining desktop literature research, interviews with key sector stakeholders, and a workshop. Phenomenological data analysis technique was used to study and examine interview data and secondary desktop data. Preliminary findings established the building of technical or engineering capacity, reversal of the high physical water losses, rehabilitation of poor condition and dysfunctional water treatment works, diversification of water resource mix, and water scarcity awareness programs as possible practical solutions. Other proposed solutions include the use of performance-based or value-based contracting to fund initiatives to reduce high system water losses. Out-come based arrangements for revenue increasing water loss reduction projects were considered more practical in funding-stressed local municipalities. If proactively implemented in an integrated manner, these proposed solutions are likely to ensure sustainable urban water supply in South African urban centers in the future.

Keywords: sustainable, water scarcity, water supply, South Africa

Procedia PDF Downloads 123
263 Physical Model Testing of Storm-Driven Wave Impact Loads and Scour at a Beach Seawall

Authors: Sylvain Perrin, Thomas Saillour

Abstract:

The Grande-Motte port and seafront development project on the French Mediterranean coastline entailed evaluating wave impact loads (pressures and forces) on the new beach seawall and comparing the resulting scour potential at the base of the existing and new seawall. A physical model was built at ARTELIA’s hydraulics laboratory in Grenoble (France) to provide insight into the evolution of scouring overtime at the front of the wall, quasi-static and impulsive wave force intensity and distribution on the wall, and water and sand overtopping discharges over the wall. The beach was constituted of fine sand and approximately 50 m wide above mean sea level (MSL). Seabed slopes were in the range of 0.5% offshore to 1.5% closer to the beach. A smooth concrete structure will replace the existing concrete seawall with an elevated curved crown wall. Prior the start of breaking (at -7 m MSL contour), storm-driven maximum spectral significant wave heights of 2.8 m and 3.2 m were estimated for the benchmark historical storm event dated of 1997 and the 50-year return period storms respectively, resulting in 1 m high waves at the beach. For the wave load assessment, a tensor scale measured wave forces and moments and five piezo / piezo-resistive pressure sensors were placed on the wall. Light-weight sediment physical model and pressure and force measurements were performed with scale 1:18. The polyvinyl chloride light-weight particles used to model the prototype silty sand had a density of approximately 1 400 kg/m3 and a median diameter (d50) of 0.3 mm. Quantitative assessments of the seabed evolution were made using a measuring rod and also a laser scan survey. Testing demonstrated the occurrence of numerous impulsive wave impacts on the reflector (22%), induced not by direct wave breaking but mostly by wave run-up slamming on the top curved part of the wall. Wave forces of up to 264 kilonewtons and impulsive pressure spikes of up to 127 kilonewtons were measured. Maximum scour of -0.9 m was measured for the new seawall versus -0.6 m for the existing seawall, which is imputable to increased wave reflection (coefficient was 25.7 - 30.4% vs 23.4 - 28.6%). This paper presents a methodology for the setup and operation of a physical model in order to assess the hydrodynamic and morphodynamic processes at a beach seawall during storms events. It discusses the pros and cons of such methodology versus others, notably regarding structures peculiarities and model effects.

Keywords: beach, impacts, scour, seawall, waves

Procedia PDF Downloads 153
262 Problem Based Learning and Teaching by Example in Dimensioning of Mechanisms: Feedback

Authors: Nicolas Peyret, Sylvain Courtois, Gaël Chevallier

Abstract:

This article outlines the development of the Project Based Learning (PBL) at the level of a last year’s Bachelor’s Degree. This form of pedagogy has for objective to allow a better involving of the students from the beginning of the module. The theoretical contributions are introduced during the project to solving a technological problem. The module in question is the module of mechanical dimensioning method of Supméca a French engineering school. This school issues a Master’s Degree. While the teaching methods used in primary and secondary education are frequently renewed in France at the instigation of teachers and inspectors, higher education remains relatively traditional in its practices. Recently, some colleagues have felt the need to put the application back at the heart of their theoretical teaching. This need is induced by the difficulty of covering all the knowledge deductively before its application. It is therefore tempting to make the students 'learn by doing', even if it doesn’t cover some parts of the theoretical knowledge. The other argument that supports this type of learning is the lack of motivation the students have for the magisterial courses. The role-play allowed scenarios favoring interaction between students and teachers… However, this pedagogical form known as 'pedagogy by project' is difficult to apply in the first years of university studies because of the low level of autonomy and individual responsibility that the students have. The question of what the student actually learns from the initial program as well as the evaluation of the competences acquired by the students in this type of pedagogy also remains an open problem. Thus we propose to add to the pedagogy by project format a regressive part of interventionism by the teacher based on pedagogy by example. This pedagogical scenario is based on the cognitive load theory and Bruner's constructivist theory. It has been built by relying on the six points of the encouragement process defined by Bruner, with a concrete objective, to allow the students to go beyond the basic skills of dimensioning and allow them to acquire the more global skills of engineering. The implementation of project-based teaching coupled with pedagogy by example makes it possible to compensate for the lack of experience and autonomy of first-year students, while at the same time involving them strongly in the first few minutes of the module. In this project, students have been confronted with the real dimensioning problems and are able to understand the links and influences between parameter variations and dimensioning, an objective that we did not reach in classical teaching. It is this form of pedagogy which allows to accelerate the mastery of basic skills and so spend more time on the engineer skills namely the convergence of each dimensioning in order to obtain a validated mechanism. A self-evaluation of the project skills acquired by the students will also be presented.

Keywords: Bruner's constructivist theory, mechanisms dimensioning, pedagogy by example, problem based learning

Procedia PDF Downloads 190
261 Numerical Investigation of Phase Change Materials (PCM) Solidification in a Finned Rectangular Heat Exchanger

Authors: Mounir Baccar, Imen Jmal

Abstract:

Because of the rise in energy costs, thermal storage systems designed for the heating and cooling of buildings are becoming increasingly important. Energy storage can not only reduce the time or rate mismatch between energy supply and demand but also plays an important role in energy conservation. One of the most preferable storage techniques is the Latent Heat Thermal Energy Storage (LHTES) by Phase Change Materials (PCM) due to its important energy storage density and isothermal storage process. This paper presents a numerical study of the solidification of a PCM (paraffin RT27) in a rectangular thermal storage exchanger for air conditioning systems taking into account the presence of natural convection. Resolution of continuity, momentum and thermal energy equations are treated by the finite volume method. The main objective of this numerical approach is to study the effect of natural convection on the PCM solidification time and the impact of fins number on heat transfer enhancement. It also aims at investigating the temporal evolution of PCM solidification, as well as the longitudinal profiles of the HTF circling in the duct. The present research undertakes the study of two cases: the first one treats the solidification of PCM in a PCM-air heat exchanger without fins, while the second focuses on the solidification of PCM in a heat exchanger of the same type with the addition of fins (3 fins, 5 fins, and 9 fins). Without fins, the stratification of the PCM from colder to hotter during the heat transfer process has been noted. This behavior prevents the formation of thermo-convective cells in PCM area and then makes transferring almost conductive. In the presence of fins, energy extraction from PCM to airflow occurs at a faster rate, which contributes to the reduction of the discharging time and the increase of the outlet air temperature (HTF). However, for a great number of fins (9 fins), the enhancement of the solidification process is not significant because of the effect of confinement of PCM liquid spaces for the development of thermo-convective flow. Hence, it can be concluded that the effect of natural convection is not very significant for a high number of fins. In the optimum case, using 3 fins, the increasing temperature of the HTF exceeds approximately 10°C during the first 30 minutes. When solidification progresses from the surfaces of the PCM-container and propagates to the central liquid phase, an insulating layer will be created in the vicinity of the container surfaces and the fins, causing a low heat exchange rate between PCM and air. As the solid PCM layer gets thicker, a progressive regression of the field of movements is induced in the liquid phase, thus leading to the inhibition of heat extraction process. After about 2 hours, 68% of the PCM became solid, and heat transfer was almost dominated by conduction mechanism.

Keywords: heat transfer enhancement, front solidification, PCM, natural convection

Procedia PDF Downloads 187
260 Design, Simulation and Fabrication of Electro-Magnetic Pulse Welding Coil and Initial Experimentation

Authors: Bharatkumar Doshi

Abstract:

Electro-Magnetic Pulse Welding (EMPW) is a solid state welding process carried out at almost room temperature, in which joining is enabled by high impact velocity deformation. In this process, high voltage capacitor’s stored energy is discharged in an EM coil resulting in a damped, sinusoidal current with an amplitude of several hundred kiloamperes. Due to these transient magnetic fields of few tens of Tesla near the coil is generated. As the conductive (tube) part is positioned in this area, an opposing eddy current is induced in this part. Consequently, high Lorentz forces act on the part, leading to acceleration away from the coil. In case of a tube, it gets compressed under forming velocities of more than 300 meters per second. After passing the joining gap it collides with the second metallic joining rod, leading to the formation of a jet under appropriate collision conditions. Due to the prevailing high pressure, metallurgical bonding takes place. A characteristic feature is the wavy interface resulting from the heavy plastic deformations. In the process, the formation of intermetallic compounds which might deteriorate the weld strength can be avoided, even for metals with dissimilar thermal properties. In order to optimize the process parameters like current, voltage, inductance, coil dimensions, workpiece dimensions, air gap, impact velocity, effective plastic strain, shear stress acting in the welding zone/impact zone etc. are very critical and important to establish. These process parameters could be determined by simulation using Finite Element Methods (FEM) in which electromagnetic –structural couple field analysis is performed. The feasibility of welding could thus be investigated by varying the parameters in the simulation using COMSOL. Simulation results shall be applied in performing the preliminary experiments of welding the different alloy steel tubes and/or alloy steel to other materials. The single turn coil (S.S.304) with field shaper (copper) has been designed and manufactured. The preliminary experiments are performed using existing EMPW facility available Institute for Plasma Research, Gandhinagar, India. The experiments are performed at 22kV charged into 64µF capacitor bank and the energy is discharged into single turn EM coil. Welding of axi-symetric components such as aluminum tube and rod has been proven experimentally using EMPW techniques. In this paper EM coil design, manufacturing, Electromagnetic-structural FEM simulation of Magnetic Pulse Welding and preliminary experiment results is reported.

Keywords: COMSOL, EMPW, FEM, Lorentz force

Procedia PDF Downloads 184
259 Modeling, Topology Optimization and Experimental Validation of Glass-Transition-Based 4D-Printed Polymeric Structures

Authors: Sara A. Pakvis, Giulia Scalet, Stefania Marconi, Ferdinando Auricchio, Matthijs Langelaar

Abstract:

In recent developments in the field of multi-material additive manufacturing, differences in material properties are exploited to create printed shape-memory structures, which are referred to as 4D-printed structures. New printing techniques allow for the deliberate introduction of prestresses in the specimen during manufacturing, and, in combination with the right design, this enables new functionalities. This research focuses on bi-polymer 4D-printed structures, where the transformation process is based on a heat-induced glass transition in one material lowering its Young’s modulus, combined with an initial prestress in the other material. Upon the decrease in stiffness, the prestress is released, which results in the realization of an essentially pre-programmed deformation. As the design of such functional multi-material structures is crucial but far from trivial, a systematic methodology to find the design of 4D-printed structures is developed, where a finite element model is combined with a density-based topology optimization method to describe the material layout. This modeling approach is verified by a convergence analysis and validated by comparing its numerical results to analytical and published data. Specific aspects that are addressed include the interplay between the definition of the prestress and the material interpolation function used in the density-based topology description, the inclusion of a temperature-dependent stiffness relationship to simulate the glass transition effect, and the importance of the consideration of geometric nonlinearity in the finite element modeling. The efficacy of topology optimization to design 4D-printed structures is explored by applying the methodology to a variety of design problems, both in 2D and 3D settings. Bi-layer designs composed of thermoplastic polymers are printed by means of the fused deposition modeling (FDM) technology. Acrylonitrile butadiene styrene (ABS) polymer undergoes the glass transition transformation, while polyurethane (TPU) polymer is prestressed by means of the 3D-printing process itself. Tests inducing shape transformation in the printed samples through heating are performed to calibrate the prestress and validate the modeling approach by comparing the numerical results to the experimental findings. Using the experimentally obtained prestress values, more complex designs have been generated through topology optimization, and samples have been printed and tested to evaluate their performance. This study demonstrates that by combining topology optimization and 4D-printing concepts, stimuli-responsive structures with specific properties can be designed and realized.

Keywords: 4D-printing, glass transition, shape memory polymer, topology optimization

Procedia PDF Downloads 207
258 Reservoir-Triggered Seismicity of Water Level Variation in the Lake Aswan

Authors: Abdel-Monem Sayed Mohamed

Abstract:

Lake Aswan is one of the largest man-made reservoirs in the world. The reservoir began to fill in 1964 and the level rose gradually, with annual irrigation cycles, until it reached a maximum water level of 181.5 m in November 1999, with a capacity of 160 km3. The filling of such large reservoir changes the stress system either through increasing vertical compressional stress by loading and/or increased pore pressure through the decrease of the effective normal stress. The resulted effect on fault zones changes stability depending strongly on the orientation of pre-existing stress and geometry of the reservoir/fault system. The main earthquake occurred on November 14, 1981, with magnitude 5.5. This event occurred after 17 years of the reservoir began to fill, along the active part of the Kalabsha fault and located not far from the High Dam. Numerous of small earthquakes follow this earthquake and continue till now. For this reason, 13 seismograph stations (radio-telemetry network short-period seismometers) were installed around the northern part of Lake Aswan. The main purpose of the network is to monitor the earthquake activity continuously within Aswan region. The data described here are obtained from the continuous record of earthquake activity and lake-water level variation through the period from 1982 to 2015. The seismicity is concentrated in the Kalabsha area, where there is an intersection of the easterly trending Kalabsha fault with the northerly trending faults. The earthquake foci are distributed in two seismic zones, shallow and deep in the crust. Shallow events have focal depths of less than 12 km while deep events extend from 12 to 28 km. Correlation between the seismicity and the water level variation in the lake provides great suggestion to distinguish the micro-earthquakes, particularly, those in shallow seismic zone in the reservoir–triggered seismicity category. The water loading is one factor from several factors, as an activating medium in triggering earthquakes. The common factors for all cases of induced seismicity seem to be the presence of specific geological conditions, the tectonic setting and water loading. The role of the water loading is as a supplementary source of earthquake events. So, the earthquake activity in the area originated tectonically (ML ≥ 4) and the water factor works as an activating medium in triggering small earthquakes (ML ≤ 3). Study of the inducing seismicity from the water level variation in Aswan Lake is of great importance and play great roles necessity for the safety of the High Dam body and its economic resources.

Keywords: Aswan lake, Aswan seismic network, seismicity, water level variation

Procedia PDF Downloads 370
257 Correlations between Folate, Homocysteine Levels, and Markers of Brain Atrophy in Elderly Male and Female Rats

Authors: Fatimah A. Alhomaid, Nadia H. Mahmoud, Maha A. Al-Qaraawi

Abstract:

The present study was designed to induce hyperhomocysteinemia (HHcy) in elderly male and female rats. Also,to evaluate, the effect of (HHcy) as a risk factor for cerebrovascular disease and brain atrophy and folate supplementation on serum levels of Hcy, total cholesterol, low density lipoprotein cholesterol (LDLc), high density lipoprotein cholesterol (HDLc), triglycerides, pyridoxal phosphate , folate also, histopathological examination of brain and cerebrovascular vessels In this work 50 male and 50 female elderly albino rats were used and divided into five groups. The first group served as control, the second and third group received two different dose of L-methionine, the fourth and fifth group received fortified diet with folate powder plus L-methionine. Our results showed that homocysteine levels in male and female rats that received low and high dose of methionine were higher than in the control group, while the levels of folate significantly decreased in male rats only. Induced hyperhomocysteinemia in elderly male and female rats led to significant increase in serum level of cholesterol, LDLc and triglycerides but serum level of HDLc were significantly lower in methionine treated male and female rats than in control. Our results showed that a strong positive correlation between all these parameters and homocysteine except HDLc levels which correlate negatively to Hcy levels. Administration of folate to methionine treated male rats led to insignificant changes in the level of cholesterol when compared to control group but this level was found to be significantly decrease in female rats received small dose of methionine. When the level of cholesterol compared to the same dose of methionine treated group we found a significant decrease in both male and female rats. LDLc and triglycerides level significantly decrease in male rats only versus the control rats, while when compared to low and high dose of methionine a significant decreased occurs. A significant increase in serum level of HDLc in male and female rats when compared to both control and methionine treated groups. In male and female rats supplemented with folate we found an increased serum levels of folate when compared to rats received both dose of methionine. The levels of pyridoxal phosphate significantly decreased in all treated rats compared to the control group and its level were increased with supplementation of folate versus the rats received small and large dose of methionine. It can be concluded that hyperhomocysteinemia may be an additional risk factor for cerebrovascular atherosclesosis and brain atrophy in elderly people and diatery supplementation with folate blocking the activity of homocysteine and may be considered as a therapeutic possibility.

Keywords: hyperhomocysteinemia, brain atrophy, cerebrovascular, L-methionine, pyridoxal phosphate

Procedia PDF Downloads 302
256 Petrology and Finite Strain of the Al Amar Region, Northern Ar-Rayn Terrane, Eastern Arabian Shield, Saudi Arabia

Authors: Lami Mohammed, Hussain J. Al Faifi, Abdel Aziz Al Bassam, Osama M. K. Kassem

Abstract:

The Neoproterozoic basement rocks of the Ar Rayn terrane have been identified as parts of the Eastern Arabian Shield. It focuses on the petrological and finite strain properties to display the tectonic setting of the Al Amar suture for high deformed volcanic and granitoids rocks. The volcanic rocks are classified into two major series: the eastern side cycle, which includes dacite, rhyodacite, rhyolite, and ignimbrites, and the western side cycle, which includes andesite and pyroclastics. Granitoids rocks also contain monzodiorite, tonalite, granodiorite, and alkali-feldspar granite. To evaluate the proportions of shear contributions in penetratively deformed rocks. Asymmetrical porphyroclast and sigmoidal structural markers along the suture's strike, namely the Al Amar, are expected to reveal strain factors. The Rf/phi and Fry techniques are used to characterize quartz and feldspar porphyroclast, biotite, and hornblende grains in Abt schist, high deformed volcanic rock, and granitoids. The findings exposed that these rocks had experienced shape flattening, finite strain accumulation, and overall volume loss. The magnitude of the strain appears to increase across the nappe contacts with neighboring lithologies. Subhorizontal foliation likely developed in tandem with thrusting and nappe stacking, almost parallel to tectonic contacts. The ductile strain accumulation that occurred during thrusting along the Al Amar suture mostly includes a considerable pure shear component. Progressive thrusting by overlaid transpression and oblique convergence is shown by stacked nappes and diagonal stretching lineations along the thrust axes. The subhorizontal lineation might be the result of the suture's most recent activity. The current study's findings contradict the widely accepted model that links orogen-scale structures in the Arabian Shield to oblique convergence with dominant simple shear deformation. A significant pure shear component/crustal thickening increment should have played a significant role in the evolution of the suture and thus in the Shield's overall deformation history. This foliation was primarily generated by thrusting nappes together, showing that nappe stacking was linked to substantial vertical shortening induced by the active Al Amar suture on a massive scale.

Keywords: petrology, finite strain analysis, al amar region, ar-rayn terrane, Arabian shield

Procedia PDF Downloads 121
255 Evaluation of Rhizobia for Nodulation, Shoot and Root Biomass from Host Range Studies Using Soybean, Common Bean, Bambara Groundnut and Mung Bean

Authors: Sharon K. Mahlangu, Mustapha Mohammed, Felix D. Dakora

Abstract:

Rural households in Africa depend largely on legumes as a source of high-protein food due to N₂-fixation by rhizobia when they infect plant roots. However, the legume/rhizobia symbiosis can exhibit some level of specificity such that some legumes may be selectively nodulated by only a particular group of rhizobia. In contrast, some legumes are highly promiscuous and are nodulated by a wide range of rhizobia. Little is known about the nodulation promiscuity of bacterial symbionts from wild legumes such as Aspalathus linearis, especially if they can nodulate cultivated grain legumes such as cowpea and Kersting’s groundnut. Determining the host range of the symbionts of wild legumes can potentially reveal novel rhizobial strains that can be used to increase nitrogen fixation in cultivated legumes. In this study, bacteria were isolated and tested for their ability to induce root nodules on their homologous hosts. Seeds were surface-sterilized with alcohol and sodium hypochlorite and planted in sterile sand contained in plastic pots. The pot surface was covered with sterile non-absorbent cotton wool to avoid contamination. The plants were watered with nitrogen-free nutrient solution and sterile water in alternation. Three replicate pots were used per isolate. The plants were grown for 90 days in a naturally-lit glasshouse and assessed for nodulation (nodule number and nodule biomass) and shoot biomass. Seven isolates from each of Kersting’s groundnut and cowpea and two from Rooibos tea plants were tested for their ability to nodulate soybean, mung bean, common bean and Bambara groundnut. The results showed that of the isolates from cowpea, where VUSA55 and VUSA42 could nodulate all test host plants, followed by VUSA48 which nodulated cowpea, Bambara groundnut and soybean. The two isolates from Rooibos tea plants nodulated Bambara groundnut, soybean and common bean. However, isolate L1R3.3.1 also nodulated mung bean. There was a greater accumulation of shoot biomass when cowpea isolate VUSA55 nodulated common bean. Isolate VUSA55 produced the highest shoot biomass, followed by VUSA42 and VUSA48. The two Kersting’s groundnut isolates, MGSA131 and MGSA110, accumulated average shoot biomass. In contrast, the two Rooibos tea isolates induced a higher accumulation of biomass in Bambara groundnut, followed by common bean. The results suggest that inoculating these agriculturally important grain legumes with cowpea isolates can contribute to improved soil fertility, especially soil nitrogen levels.

Keywords: legumes, nitrogen fixation, nodulation, rhizobia

Procedia PDF Downloads 221
254 Measurement of Magnetic Properties of Grainoriented Electrical Steels at Low and High Fields Using a Novel Single

Authors: Nkwachukwu Chukwuchekwa, Joy Ulumma Chukwuchekwa

Abstract:

Magnetic characteristics of grain-oriented electrical steel (GOES) are usually measured at high flux densities suitable for its typical applications in power transformers. There are limited magnetic data at low flux densities which are relevant for the characterization of GOES for applications in metering instrument transformers and low frequency magnetic shielding in magnetic resonance imaging medical scanners. Magnetic properties such as coercivity, B-H loop, AC relative permeability and specific power loss of conventional grain oriented (CGO) and high permeability grain oriented (HGO) electrical steels were measured and compared at high and low flux densities at power magnetising frequency. 40 strips comprising 20 CGO and 20 HGO, 305 mm x 30 mm x 0.27 mm from a supplier were tested. The HGO and CGO strips had average grain sizes of 9 mm and 4 mm respectively. Each strip was singly magnetised under sinusoidal peak flux density from 8.0 mT to 1.5 T at a magnetising frequency of 50 Hz. The novel single sheet tester comprises a personal computer in which LabVIEW version 8.5 from National Instruments (NI) was installed, a NI 4461 data acquisition (DAQ) card, an impedance matching transformer, to match the 600  minimum load impedance of the DAQ card with the 5 to 20  low impedance of the magnetising circuit, and a 4.7 Ω shunt resistor. A double vertical yoke made of GOES which is 290 mm long and 32 mm wide is used. A 500-turn secondary winding, about 80 mm in length, was wound around a plastic former, 270 mm x 40 mm, housing the sample, while a 100-turn primary winding, covering the entire length of the plastic former was wound over the secondary winding. A standard Epstein strip to be tested is placed between the yokes. The magnetising voltage was generated by the LabVIEW program through a voltage output from the DAQ card. The voltage drop across the shunt resistor and the secondary voltage were acquired by the card for calculation of magnetic field strength and flux density respectively. A feedback control system implemented in LabVIEW was used to control the flux density and to make the induced secondary voltage waveforms sinusoidal to have repeatable and comparable measurements. The low noise NI4461 card with 24 bit resolution and a sampling rate of 204.8 KHz and 92 KHz bandwidth were chosen to take the measurements to minimize the influence of thermal noise. In order to reduce environmental noise, the yokes, sample and search coil carrier were placed in a noise shielding chamber. HGO was found to have better magnetic properties at both high and low magnetisation regimes. This is because of the higher grain size of HGO and higher grain-grain misorientation of CGO. HGO is better CGO in both low and high magnetic field applications.

Keywords: flux density, electrical steel, LabVIEW, magnetization

Procedia PDF Downloads 291
253 Evaluating the Effect of 'Terroir' on Volatile Composition of Red Wines

Authors: María Luisa Gonzalez-SanJose, Mihaela Mihnea, Vicente Gomez-Miguel

Abstract:

The zoning methodology currently recommended by the OIVV as official methodology to carry out viticulture zoning studies and to define and delimit the ‘terroirs’ has been applied in this study. This methodology has been successfully applied on the most significant an important Spanish Oenological D.O. regions, such as Ribera de Duero, Rioja, Rueda and Toro, but also it have been applied around the world in Portugal, different countries of South America, and so on. This is a complex methodology that uses edaphoclimatic data but also other corresponding to vineyards and other soils’ uses The methodology is useful to determine Homogeneous Soil Units (HSU) to different scale depending on the interest of each study, and has been applied from viticulture regions to particular vineyards. It seems that this methodology is an appropriate method to delimit correctly the medium in order to enhance its uses and to obtain the best viticulture and oenological products. The present work is focused on the comparison of volatile composition of wines made from grapes grown in different HSU that coexist in a particular viticulture region of Castile-Lion cited near to Burgos. Three different HSU were selected for this study. They represented around of 50% of the global area of vineyards of the studied region. Five different vineyards on each HSU under study were chosen. To reduce variability factors, other criteria were also considered as grape variety, clone, rootstocks, vineyard’s age, training systems and cultural practices. This study was carried out during three consecutive years, then wine from three different vintage were made and analysed. Different red wines were made from grapes harvested in the different vineyards under study. Grapes were harvested to ‘Technological maturity’, which are correlated with adequate levels of sugar, acidity, phenolic content (nowadays named phenolic maturity), good sanitary stages and adequate levels of aroma precursors. Results of the volatile profile of the wines produced from grapes of each HSU showed significant differences among them pointing out a direct effect of the edaphoclimatic characteristic of each UHT on the composition of the grapes and then on the volatile composition of the wines. Variability induced by HSU co-existed with the well-known inter-annual variability correlated mainly with the specific climatic conditions of each vintage, however was most intense, so the wine of each HSU were perfectly differenced. A discriminant analysis allowed to define the volatiles with discriminant capacities which were 21 of the 74 volatiles analysed. Detected discriminant volatiles were chemical different, although .most of them were esters, followed by were superior alcohols and fatty acid of short chain. Only one lactone and two aldehydes were selected as discriminant variable, and no varietal aroma compounds were selected, which agree with the fact that all the wine were made from the same grape variety.

Keywords: viticulture zoning, terroir, wine, volatile profile

Procedia PDF Downloads 221
252 Humic Acid and Azadirachtin Derivatives for the Management of Crop Pests

Authors: R. S. Giraddi, C. M. Poleshi

Abstract:

Organic cultivation of crops is gaining importance consumer awareness towards pesticide residue free foodstuffs is increasing globally. This is also because of high costs of synthetic fertilizers and pesticides, making the conventional farming non-remunerative. In India, organic manures (such as vermicompost) are an important input in organic agriculture.  Though vermicompost obtained through earthworm and microbe-mediated processes is known to comprise most of the crop nutrients, but they are in small amounts thus necessitating enrichment of nutrients so that crop nourishment is complete. Another characteristic of organic manures is that the pest infestations are kept under check due to induced resistance put up by the crop plants. In the present investigation, deoiled neem cake containing azadirachtin, copper ore tailings (COT), a source of micro-nutrients and microbial consortia were added for enrichment of vermicompost. Neem cake is a by-product obtained during the process of oil extraction from neem plant seeds. Three enriched vermicompost blends were prepared using vermicompost (at 70, 65 and 60%), deoiled neem cake (25, 30 and 35%), microbial consortia and COTwastes (5%). Enriched vermicompost was thoroughly mixed, moistened (25+5%), packed and incubated for 15 days at room temperature. In the crop response studies, the field trials on chili (Capsicum annum var. longum) and soybean, (Glycine max cv JS 335) were conducted during Kharif 2015 at the Main Agricultural Research Station, UAS, Dharwad-Karnataka, India. The vermicompost blend enriched with neem cake (known to possess higher amounts of nutrients) and vermicompost were applied to the crops and at two dosages and at two intervals of crop cycle (at sowing and 30 days after sowing) as per the treatment plan along with 50% recommended dose of fertilizer (RDF). 10 plants selected randomly in each plot were studied for pest density and plant damage. At maturity, crops were harvested, and the yields were recorded as per the treatments, and the data were analyzed using appropriate statistical tools and procedures. In the crops, chili and soybean, crop nourishment with neem enriched vermicompost reduced insect density and plant damage significantly compared to other treatments. These treatments registered as much yield (16.7 to 19.9 q/ha) as that realized in conventional chemical control (18.2 q/ha) in soybean, while 72 to 77 q/ha of green chili was harvested in the same treatments, being comparable to the chemical control (74 q/ha). The yield superiority of the treatments was of the order neem enriched vermicompost>conventional chemical control>neem cake>vermicompost>untreated control.  The significant features of the result are that it reduces use of inorganic manures by 50% and synthetic chemical insecticides by 100%.

Keywords: humic acid, azadirachtin, vermicompost, insect-pest

Procedia PDF Downloads 277
251 The Effect of Acute Muscular Exercise and Training Status on Haematological Indices in Adult Males

Authors: Ibrahim Musa, Mohammed Abdul-Aziz Mabrouk, Yusuf Tanko

Abstract:

Introduction: Long term physical training affect the performance of athletes especially the females. Soccer which is a team sport, played in an outdoor field, require adequate oxygen transport system for the maximal aerobic power during exercise in order to complete 90 minutes of competitive play. Suboptimal haematological status has often been recorded in athletes with intensive physical activity. It may be due to the iron depletion caused by hemolysis or haemodilution results from plasma volume expansion. There is lack of data regarding the dynamics of red blood cell variables, in male football players. We hypothesized that, a long competitive season involving frequent matches and intense training could influence red blood cell variables, as a consequence of applying repeated physical loads when compared with sedentary. Methods: This cross sectional study was carried on 40 adult males (20 athletes and 20 non athletes) between 18-25 years of age. The 20 apparently healthy male non athletes were taken as sedentary and 20 male footballers comprise the study group. The university institutional review board (ABUTH/HREC/TRG/36) gave approval for all procedures in accordance with the Declaration of Helsinki. Red blood cell (RBC) concentration, packed cell volume (PCV), and plasma volume were measured in fasting state and immediately after exercise. Statistical analysis was done by using SPSS/ win.20.0 for comparison within and between the groups, using student’s paired and unpaired “t” test respectively. Results: The finding from our study shows that, immediately after termination of exercise, the mean RBC counts and PCV significantly (p<0.005) decreased with significant increased (p<0.005) in plasma volume when compared with pre-exercised values in both group. In addition the post exercise RBC was significantly higher in untrained (261.10±8.5) when compared with trained (255.20±4.5). However, there was no significant differences in the post exercise hematocrit and plasma volume parameters between the sedentary and the footballers. Moreover, beside changes in pre-exercise values among the sedentary and the football players, the resting red blood cell counts and Plasma volume (PV %) was significantly (p < 0.05) higher in the sedentary group (306.30±10.05 x 104 /mm3; 58.40±0.54%) when compared with football players (293.70±4.65 x 104 /mm3; 55.60±1.18%). On the other hand, the sedentary group exhibited significant (p < 0.05) decrease in PCV (41.60±0.54%) when compared with the football players (44.40±1.18%). Conclusions: It is therefore proposed that the acute football exercise induced reduction in RBC and PCV is entirely due to plasma volume expansion, and not of red blood cell hemolysis. In addition, the training status also influenced haematological indices of male football players differently from the sedentary at rest due to adaptive response. This is novel.

Keywords: Haematological Indices, Performance Status, Sedentary, Male Football Players

Procedia PDF Downloads 257